1 /* SPDX-License-Identifier: BSD-2-Clause */ 2 /* 3 * Copyright (c) 2016-2021, Linaro Limited 4 */ 5 6 #ifndef __KERNEL_DT_H 7 #define __KERNEL_DT_H 8 9 #include <compiler.h> 10 #include <kernel/panic.h> 11 #include <scattered_array.h> 12 #include <stdint.h> 13 #include <tee_api_types.h> 14 #include <types_ext.h> 15 #include <util.h> 16 17 /* 18 * Bitfield to reflect status and secure-status values ("okay", "disabled" 19 * or not present) 20 */ 21 #define DT_STATUS_DISABLED U(0) 22 #define DT_STATUS_OK_NSEC BIT(0) 23 #define DT_STATUS_OK_SEC BIT(1) 24 25 #define DT_INFO_INVALID_REG ((paddr_t)-1) 26 #define DT_INFO_INVALID_REG_SIZE ((size_t)-1) 27 #define DT_INFO_INVALID_CLOCK -1 28 #define DT_INFO_INVALID_RESET -1 29 #define DT_INFO_INVALID_INTERRUPT -1 30 31 /* 32 * @status: Bit mask for DT_STATUS_* 33 * @reg: Device register physical base address or DT_INFO_INVALID_REG 34 * @reg_size: Device register size or DT_INFO_INVALID_REG_SIZE 35 * @clock: Device identifier (positive value) or DT_INFO_INVALID_CLOCK 36 * @reset: Device reset identifier (positive value) or DT_INFO_INVALID_CLOCK 37 * @interrupt: Device interrupt identifier (positive value) or 38 * DT_INFO_INVALID_INTERRUPT 39 * @type: IRQ_TYPE_* value parsed from interrupts properties or IRQ_TYPE_NONE if 40 * not present 41 * @prio: interrupt priority parsed from interrupts properties or 0 if not 42 * present 43 */ 44 struct dt_node_info { 45 unsigned int status; 46 paddr_t reg; 47 size_t reg_size; 48 int clock; 49 int reset; 50 int interrupt; 51 uint32_t type; 52 uint32_t prio; 53 }; 54 55 /* 56 * DT-aware drivers 57 */ 58 59 struct dt_device_match { 60 const char *compatible; 61 const void *compat_data; 62 }; 63 64 /* 65 * DT_MAP_AUTO: Uses status properties from device tree to determine mapping. 66 * DT_MAP_SECURE: Force mapping for device to be secure. 67 * DT_MAP_NON_SECURE: Force mapping for device to be non-secure. 68 */ 69 enum dt_map_dev_directive { 70 DT_MAP_AUTO, 71 DT_MAP_SECURE, 72 DT_MAP_NON_SECURE 73 }; 74 75 /* 76 * struct dt_descriptor - Descriptor of the device tree 77 * @blob: Pointer to the device tree binary 78 * @frag_id: Used ID of fragments for device tree overlay 79 */ 80 struct dt_descriptor { 81 void *blob; 82 #ifdef _CFG_USE_DTB_OVERLAY 83 int frag_id; 84 #endif 85 }; 86 87 extern uint8_t embedded_secure_dtb[]; 88 89 #ifdef CFG_DT 90 /* 91 * dt_getprop_as_number() - get a DT property a unsigned number 92 * @fdt: DT base address 93 * @nodeoffset: node offset 94 * @name: property string name 95 * @num: output number read 96 * Return 0 on success and a negative FDT error value on error 97 * 98 * The size of the property determines if it is read as an unsigned 32-bit 99 * or 64-bit integer. 100 */ 101 int dt_getprop_as_number(const void *fdt, int nodeoffset, const char *name, 102 uint64_t *num); 103 104 /* 105 * Find a driver that is suitable for the given DT node, that is, with 106 * a matching "compatible" property. 107 * 108 * @fdt: pointer to the device tree 109 * @offs: node offset 110 */ 111 const struct dt_driver *dt_find_compatible_driver(const void *fdt, int offs); 112 113 /* 114 * Map a device into secure or non-secure memory and return the base VA and 115 * the mapping size. The mapping is done with type MEM_AREA_IO_SEC or 116 * MEM_AREA_IO_NSEC, depending on the device status. 117 * If the mapping already exists, the function simply returns the @vbase and 118 * @size information. 119 * 120 * @offs is the offset of the node that describes the device in @fdt. 121 * @base receives the base virtual address corresponding to the base physical 122 * address of the "reg" property 123 * @size receives the size of the mapping 124 * @mapping what kind of mapping is done for memory. 125 * 126 * Returns 0 on success or -1 in case of error. 127 */ 128 int dt_map_dev(const void *fdt, int offs, vaddr_t *base, size_t *size, 129 enum dt_map_dev_directive mapping); 130 131 /* 132 * Check whether the node at @offs contains the property with propname or not. 133 * 134 * @offs is the offset of the node that describes the device in @fdt. 135 * @propname is the property that need to check 136 * 137 * Returns true on success or false if no propname. 138 */ 139 bool dt_have_prop(const void *fdt, int offs, const char *propname); 140 141 /* 142 * Modify or add "status" property to "disabled" 143 * 144 * @fdt reference to the Device Tree 145 * @node is the node offset to modify 146 * 147 * Returns 0 on success or -1 on failure 148 */ 149 int dt_disable_status(void *fdt, int node); 150 151 /* 152 * Force secure-status = "okay" and status="disabled" for the target node. 153 * 154 * @fdt reference to the Device Tree 155 * @node is the node offset to modify 156 * 157 * Returns 0 on success or -1 on failure 158 */ 159 int dt_enable_secure_status(void *fdt, int node); 160 161 /* 162 * FDT manipulation functions, not provided by <libfdt.h> 163 */ 164 165 /* 166 * Return the base address for the "reg" property of the specified node or 167 * (paddr_t)-1 in case of error 168 */ 169 paddr_t fdt_reg_base_address(const void *fdt, int offs); 170 171 /* 172 * Return the reg size for the reg property of the specified node or -1 in case 173 * of error 174 */ 175 size_t fdt_reg_size(const void *fdt, int offs); 176 177 /* 178 * Read the status and secure-status properties into a bitfield. 179 * Return -1 on failure, DT_STATUS_DISABLED if the node is disabled, 180 * otherwise return a combination of DT_STATUS_OK_NSEC and DT_STATUS_OK_SEC. 181 */ 182 int fdt_get_status(const void *fdt, int offs); 183 184 /* 185 * fdt_fill_device_info - Get generic device info from a node 186 * 187 * This function fills the generic information from a given node. 188 * Currently supports a single base register, a single clock, 189 * a single reset ID line and a single interrupt ID. 190 * Default DT_INFO_* macros are used when the relate property is not found. 191 */ 192 void fdt_fill_device_info(const void *fdt, struct dt_node_info *info, 193 int node); 194 /* 195 * Read cells from a given property of the given node. Any number of 32-bit 196 * cells of the property can be read. Returns 0 on success, or a negative 197 * FDT error value otherwise. 198 */ 199 int fdt_read_uint32_array(const void *fdt, int node, const char *prop_name, 200 uint32_t *array, size_t count); 201 202 /* 203 * Read one cell from a given multi-value property of the given node. 204 * Returns 0 on success, or a negative FDT error value otherwise. 205 */ 206 int fdt_read_uint32_index(const void *fdt, int node, const char *prop_name, 207 int index, uint32_t *value); 208 209 /* 210 * Read one cell from a given property of the given node. 211 * Returns 0 on success, or a negative FDT error value otherwise. 212 */ 213 int fdt_read_uint32(const void *fdt, int node, const char *prop_name, 214 uint32_t *value); 215 216 /* 217 * Read one cell from a property of a cell or default to a given value 218 * Returns the 32bit cell value or @dflt_value on failure. 219 */ 220 uint32_t fdt_read_uint32_default(const void *fdt, int node, 221 const char *prop_name, uint32_t dflt_value); 222 223 /* 224 * This function fills reg node info (base & size) with an index. 225 * 226 * Returns 0 on success and a negative FDT error code on failure. 227 */ 228 int fdt_get_reg_props_by_index(const void *fdt, int node, int index, 229 paddr_t *base, size_t *size); 230 231 /* 232 * This function fills reg node info (base & size) with an index found by 233 * checking the reg-names node. 234 * 235 * Returns 0 on success and a negative FDT error code on failure. 236 */ 237 int fdt_get_reg_props_by_name(const void *fdt, int node, const char *name, 238 paddr_t *base, size_t *size); 239 240 /* 241 * Returns embedded DTB if present, then external DTB if found, 242 * then manifest DTB if found, then NULL. 243 */ 244 void *get_dt(void); 245 246 /* 247 * get_secure_dt() - returns secure DTB for drivers 248 * 249 * Returns device tree that is considered secure for drivers to use. 250 * 251 * 1. Returns embedded DTB if available, 252 * 2. Secure external DTB if available, 253 * 3. Manifest DTB if available, 254 * 4. If neither then NULL 255 */ 256 void *get_secure_dt(void); 257 258 /* Returns embedded DTB location if present, otherwise NULL */ 259 void *get_embedded_dt(void); 260 261 /* Returns true if passed DTB is same as Embedded DTB, otherwise false */ 262 static inline bool is_embedded_dt(void *fdt) 263 { 264 return fdt && fdt == get_embedded_dt(); 265 } 266 267 /* Returns DTB descriptor of the external DTB if present, otherwise NULL */ 268 struct dt_descriptor *get_external_dt_desc(void); 269 270 /* 271 * init_external_dt() - Initialize the external DTB located at given address. 272 * @phys_dt: Physical address where the external DTB located. 273 * @dt_sz: Maximum size of the external DTB. 274 * 275 * Initialize the external DTB. 276 * 277 * 1. Add MMU mapping of the external DTB, 278 * 2. Initialize device tree overlay 279 */ 280 void init_external_dt(unsigned long phys_dt, size_t dt_sz); 281 282 /* Returns external DTB if present, otherwise NULL */ 283 void *get_external_dt(void); 284 285 /* 286 * add_dt_path_subnode() - Add new child node into a parent node. 287 * @dt: Pointer to a device tree descriptor which has DTB. 288 * @path: Path to the parent node. 289 * @subnode: Name of the child node. 290 * 291 * Returns the offset of the child node in DTB on success or a negative libfdt 292 * error number. 293 */ 294 int add_dt_path_subnode(struct dt_descriptor *dt, const char *path, 295 const char *subnode); 296 297 /* 298 * add_res_mem_dt_node() - Create "reserved-memory" parent and child nodes. 299 * @dt: Pointer to a device tree descriptor which has DTB. 300 * @name: Name of the child node. 301 * @pa: Physical address of specific reserved memory region. 302 * @size: Size of specific reserved memory region. 303 * 304 * Returns 0 if succeeds, otherwise a negative libfdt error number. 305 */ 306 int add_res_mem_dt_node(struct dt_descriptor *dt, const char *name, 307 paddr_t pa, size_t size); 308 309 /* 310 * init_manifest_dt() - Initialize the manifest DTB to given address. 311 * @fdt: Physical address where the manifest DTB located. 312 * 313 * Initialize the manifest DTB to physical address 314 */ 315 void init_manifest_dt(void *fdt); 316 317 /* 318 * reinit_manifest_dt() - Reinitialize the manifest DTB 319 * 320 * Add MMU mapping of the manifest DTB and initialize device tree overlay 321 */ 322 void reinit_manifest_dt(void); 323 324 /* Returns TOS_FW_CONFIG DTB or SP manifest DTB if present, otherwise NULL */ 325 void *get_manifest_dt(void); 326 327 #else /* !CFG_DT */ 328 329 static inline const struct dt_driver *dt_find_compatible_driver( 330 const void *fdt __unused, 331 int offs __unused) 332 { 333 return NULL; 334 } 335 336 static inline int dt_map_dev(const void *fdt __unused, int offs __unused, 337 vaddr_t *vbase __unused, size_t *size __unused, 338 enum dt_map_dev_directive mapping __unused) 339 { 340 return -1; 341 } 342 343 static inline paddr_t fdt_reg_base_address(const void *fdt __unused, 344 int offs __unused) 345 { 346 return (paddr_t)-1; 347 } 348 349 static inline size_t fdt_reg_size(const void *fdt __unused, 350 int offs __unused) 351 { 352 return (size_t)-1; 353 } 354 355 static inline int fdt_get_status(const void *fdt __unused, int offs __unused) 356 { 357 return -1; 358 } 359 360 __noreturn 361 static inline void fdt_fill_device_info(const void *fdt __unused, 362 struct dt_node_info *info __unused, 363 int node __unused) 364 { 365 panic(); 366 } 367 368 static inline int fdt_read_uint32_array(const void *fdt __unused, 369 int node __unused, 370 const char *prop_name __unused, 371 uint32_t *array __unused, 372 size_t count __unused) 373 { 374 return -1; 375 } 376 377 static inline int fdt_read_uint32(const void *fdt __unused, 378 int node __unused, 379 const char *prop_name __unused, 380 uint32_t *value __unused) 381 { 382 return -1; 383 } 384 385 static inline uint32_t fdt_read_uint32_default(const void *fdt __unused, 386 int node __unused, 387 const char *prop_name __unused, 388 uint32_t dflt_value __unused) 389 { 390 return dflt_value; 391 } 392 393 static inline int fdt_read_uint32_index(const void *fdt __unused, 394 int node __unused, 395 const char *prop_name __unused, 396 int index __unused, 397 uint32_t *value __unused) 398 { 399 return -1; 400 } 401 402 static inline int fdt_get_reg_props_by_index(const void *fdt __unused, 403 int node __unused, 404 int index __unused, 405 paddr_t *base __unused, 406 size_t *size __unused) 407 { 408 return -1; 409 } 410 411 static inline int fdt_get_reg_props_by_name(const void *fdt __unused, 412 int node __unused, 413 const char *name __unused, 414 paddr_t *base __unused, 415 size_t *size __unused) 416 { 417 return -1; 418 } 419 420 static inline int dt_getprop_as_number(const void *fdt __unused, 421 int nodeoffset __unused, 422 const char *name __unused, 423 uint64_t *num __unused) 424 { 425 return -1; 426 } 427 428 static inline void *get_dt(void) 429 { 430 return NULL; 431 } 432 433 static inline void *get_secure_dt(void) 434 { 435 return NULL; 436 } 437 438 static inline void *get_embedded_dt(void) 439 { 440 return NULL; 441 } 442 443 static inline bool is_embedded_dt(void *fdt __unused) 444 { 445 return false; 446 } 447 448 static inline struct dt_descriptor *get_external_dt_desc(void) 449 { 450 return NULL; 451 } 452 453 static inline void init_external_dt(unsigned long phys_dt __unused, 454 size_t dt_sz __unused) 455 { 456 } 457 458 static inline void *get_external_dt(void) 459 { 460 return NULL; 461 } 462 463 static inline int add_dt_path_subnode(struct dt_descriptor *dt __unused, 464 const char *path __unused, 465 const char *subnode __unused) 466 { 467 return -1; 468 } 469 470 static inline int add_res_mem_dt_node(struct dt_descriptor *dt __unused, 471 const char *name __unused, 472 paddr_t pa __unused, 473 size_t size __unused) 474 { 475 return -1; 476 } 477 478 static inline void init_manifest_dt(void *fdt __unused) 479 { 480 } 481 482 static inline void reinit_manifest_dt(void) 483 { 484 } 485 486 static inline void *get_manifest_dt(void) 487 { 488 return NULL; 489 } 490 491 #endif /* !CFG_DT */ 492 #endif /* __KERNEL_DT_H */ 493