1 /* SPDX-License-Identifier: BSD-2-Clause */ 2 /* 3 * Copyright (c) 2016-2021, Linaro Limited 4 */ 5 6 #ifndef KERNEL_DT_H 7 #define KERNEL_DT_H 8 9 #include <compiler.h> 10 #include <kernel/interrupt.h> 11 #include <kernel/panic.h> 12 #include <scattered_array.h> 13 #include <stdint.h> 14 #include <tee_api_types.h> 15 #include <types_ext.h> 16 #include <util.h> 17 18 /* 19 * Bitfield to reflect status and secure-status values ("okay", "disabled" 20 * or not present) 21 */ 22 #define DT_STATUS_DISABLED U(0) 23 #define DT_STATUS_OK_NSEC BIT(0) 24 #define DT_STATUS_OK_SEC BIT(1) 25 26 #define DT_INFO_INVALID_REG ((paddr_t)-1) 27 #define DT_INFO_INVALID_REG_SIZE ((size_t)-1) 28 #define DT_INFO_INVALID_CLOCK -1 29 #define DT_INFO_INVALID_RESET -1 30 #define DT_INFO_INVALID_INTERRUPT -1 31 32 /* 33 * @status: Bit mask for DT_STATUS_* 34 * @reg: Device register physical base address or DT_INFO_INVALID_REG 35 * @reg_size: Device register size or DT_INFO_INVALID_REG_SIZE 36 * @clock: Device identifier (positive value) or DT_INFO_INVALID_CLOCK 37 * @reset: Device reset identifier (positive value) or DT_INFO_INVALID_CLOCK 38 * @interrupt: Device interrupt identifier (positive value) or 39 * DT_INFO_INVALID_INTERRUPT 40 * @type: IRQ_TYPE_* value parsed from interrupts properties or IRQ_TYPE_NONE if 41 * not present 42 * @prio: interrupt priority parsed from interrupts properties or 0 if not 43 * present 44 */ 45 struct dt_node_info { 46 unsigned int status; 47 paddr_t reg; 48 size_t reg_size; 49 int clock; 50 int reset; 51 int interrupt; 52 uint32_t type; 53 uint32_t prio; 54 }; 55 56 /* 57 * DT-aware drivers 58 */ 59 60 struct dt_device_match { 61 const char *compatible; 62 const void *compat_data; 63 }; 64 65 enum dt_driver_type { 66 DT_DRIVER_NOTYPE, 67 DT_DRIVER_UART, 68 DT_DRIVER_CLK, 69 DT_DRIVER_RSTCTRL, 70 }; 71 72 /* 73 * DT_MAP_AUTO: Uses status properties from device tree to determine mapping. 74 * DT_MAP_SECURE: Force mapping for device to be secure. 75 * DT_MAP_NON_SECURE: Force mapping for device to be non-secure. 76 */ 77 enum dt_map_dev_directive { 78 DT_MAP_AUTO, 79 DT_MAP_SECURE, 80 DT_MAP_NON_SECURE 81 }; 82 83 /* 84 * dt_driver_probe_func - Callback probe function for a driver. 85 * 86 * @fdt: FDT base address 87 * @nodeoffset: Offset of the node in the FDT 88 * @compat_data: Data registered for the compatible that probed the device 89 * 90 * Return TEE_SUCCESS on successful probe, 91 * TEE_ERROR_DEFER_DRIVER_INIT if probe must be deferred 92 * TEE_ERROR_ITEM_NOT_FOUND when no driver matched node's compatible string 93 * Any other TEE_ERROR_* compliant code. 94 */ 95 typedef TEE_Result (*dt_driver_probe_func)(const void *fdt, int nodeoffset, 96 const void *compat_data); 97 98 #if defined(CFG_DT) 99 /* 100 * Driver instance registered to be probed on compatible node found in the DT. 101 * 102 * @name: Driver name 103 * @type: Drive type 104 * @match_table: Compatible matching identifiers, null terminated 105 * @driver: Driver private reference or NULL 106 * @probe: Probe callback (see dt_driver_probe_func) or NULL 107 */ 108 struct dt_driver { 109 const char *name; 110 enum dt_driver_type type; 111 const struct dt_device_match *match_table; /* null-terminated */ 112 const void *driver; 113 TEE_Result (*probe)(const void *fdt, int node, const void *compat_data); 114 }; 115 116 #define DEFINE_DT_DRIVER(name) \ 117 SCATTERED_ARRAY_DEFINE_PG_ITEM(dt_drivers, struct dt_driver) 118 119 /* 120 * Find a driver that is suitable for the given DT node, that is, with 121 * a matching "compatible" property. 122 * 123 * @fdt: pointer to the device tree 124 * @offs: node offset 125 */ 126 const struct dt_driver *dt_find_compatible_driver(const void *fdt, int offs); 127 128 /* 129 * Map a device into secure or non-secure memory and return the base VA and 130 * the mapping size. The mapping is done with type MEM_AREA_IO_SEC or 131 * MEM_AREA_IO_NSEC, depending on the device status. 132 * If the mapping already exists, the function simply returns the @vbase and 133 * @size information. 134 * 135 * @offs is the offset of the node that describes the device in @fdt. 136 * @base receives the base virtual address corresponding to the base physical 137 * address of the "reg" property 138 * @size receives the size of the mapping 139 * @mapping what kind of mapping is done for memory. 140 * 141 * Returns 0 on success or -1 in case of error. 142 */ 143 int dt_map_dev(const void *fdt, int offs, vaddr_t *base, size_t *size, 144 enum dt_map_dev_directive mapping); 145 146 /* 147 * Check whether the node at @offs contains the property with propname or not. 148 * 149 * @offs is the offset of the node that describes the device in @fdt. 150 * @propname is the property that need to check 151 * 152 * Returns true on success or false if no propname. 153 */ 154 bool dt_have_prop(const void *fdt, int offs, const char *propname); 155 156 /* 157 * Modify or add "status" property to "disabled" 158 * 159 * @fdt reference to the Device Tree 160 * @node is the node offset to modify 161 * 162 * Returns 0 on success or -1 on failure 163 */ 164 int dt_disable_status(void *fdt, int node); 165 166 /* 167 * Force secure-status = "okay" and status="disabled" for the target node. 168 * 169 * @fdt reference to the Device Tree 170 * @node is the node offset to modify 171 * 172 * Returns 0 on success or -1 on failure 173 */ 174 int dt_enable_secure_status(void *fdt, int node); 175 176 /* 177 * FDT manipulation functions, not provided by <libfdt.h> 178 */ 179 180 /* 181 * Return the base address for the "reg" property of the specified node or 182 * (paddr_t)-1 in case of error 183 */ 184 paddr_t _fdt_reg_base_address(const void *fdt, int offs); 185 186 /* 187 * Return the reg size for the reg property of the specified node or -1 in case 188 * of error 189 */ 190 size_t _fdt_reg_size(const void *fdt, int offs); 191 192 /* 193 * Read the status and secure-status properties into a bitfield. 194 * Return -1 on failure, DT_STATUS_DISABLED if the node is disabled, 195 * otherwise return a combination of DT_STATUS_OK_NSEC and DT_STATUS_OK_SEC. 196 */ 197 int _fdt_get_status(const void *fdt, int offs); 198 199 /* 200 * fdt_fill_device_info - Get generic device info from a node 201 * 202 * This function fills the generic information from a given node. 203 * Currently supports a single base register, a single clock, 204 * a single reset ID line and a single interrupt ID. 205 * Default DT_INFO_* macros are used when the relate property is not found. 206 */ 207 void _fdt_fill_device_info(const void *fdt, struct dt_node_info *info, 208 int node); 209 /* 210 * Read cells from a given property of the given node. Any number of 32-bit 211 * cells of the property can be read. Returns 0 on success, or a negative 212 * FDT error value otherwise. 213 */ 214 int _fdt_read_uint32_array(const void *fdt, int node, const char *prop_name, 215 uint32_t *array, size_t count); 216 217 /* 218 * Read one cell from a given property of the given node. 219 * Returns 0 on success, or a negative FDT error value otherwise. 220 */ 221 int _fdt_read_uint32(const void *fdt, int node, const char *prop_name, 222 uint32_t *value); 223 224 /* 225 * Read one cell from a property of a cell or default to a given value 226 * Returns the 32bit cell value or @dflt_value on failure. 227 */ 228 uint32_t _fdt_read_uint32_default(const void *fdt, int node, 229 const char *prop_name, uint32_t dflt_value); 230 231 /* 232 * Check whether the node at @node has a reference name. 233 * 234 * @node is the offset of the node that describes the device in @fdt. 235 * 236 * Returns true on success or false if no property 237 */ 238 bool _fdt_check_node(const void *fdt, int node); 239 240 #else /* !CFG_DT */ 241 242 static inline const struct dt_driver *dt_find_compatible_driver( 243 const void *fdt __unused, 244 int offs __unused) 245 { 246 return NULL; 247 } 248 249 static inline int dt_map_dev(const void *fdt __unused, int offs __unused, 250 vaddr_t *vbase __unused, size_t *size __unused, 251 enum dt_map_dev_directive mapping __unused) 252 { 253 return -1; 254 } 255 256 static inline paddr_t _fdt_reg_base_address(const void *fdt __unused, 257 int offs __unused) 258 { 259 return (paddr_t)-1; 260 } 261 262 static inline size_t _fdt_reg_size(const void *fdt __unused, 263 int offs __unused) 264 { 265 return (size_t)-1; 266 } 267 268 static inline int _fdt_get_status(const void *fdt __unused, int offs __unused) 269 { 270 return -1; 271 } 272 273 __noreturn 274 static inline void _fdt_fill_device_info(const void *fdt __unused, 275 struct dt_node_info *info __unused, 276 int node __unused) 277 { 278 panic(); 279 } 280 281 static inline int _fdt_read_uint32_array(const void *fdt __unused, 282 int node __unused, 283 const char *prop_name __unused, 284 uint32_t *array __unused, 285 size_t count __unused) 286 { 287 return -1; 288 } 289 290 static inline int _fdt_read_uint32(const void *fdt __unused, 291 int node __unused, 292 const char *prop_name __unused, 293 uint32_t *value __unused) 294 { 295 return -1; 296 } 297 298 static inline uint32_t _fdt_read_uint32_default(const void *fdt __unused, 299 int node __unused, 300 const char *prop_name __unused, 301 uint32_t dflt_value __unused) 302 { 303 return dflt_value; 304 } 305 306 #endif /* !CFG_DT */ 307 308 #define for_each_dt_driver(drv) \ 309 for (drv = SCATTERED_ARRAY_BEGIN(dt_drivers, struct dt_driver); \ 310 drv < SCATTERED_ARRAY_END(dt_drivers, struct dt_driver); \ 311 drv++) 312 313 #endif /* KERNEL_DT_H */ 314