xref: /optee_os/core/include/kernel/dt.h (revision 76d6685e5f3b91d66dc2091b9d61601c050298bb)
1 /* SPDX-License-Identifier: BSD-2-Clause */
2 /*
3  * Copyright (c) 2016-2021, Linaro Limited
4  */
5 
6 #ifndef __KERNEL_DT_H
7 #define __KERNEL_DT_H
8 
9 #include <compiler.h>
10 #include <kernel/panic.h>
11 #include <scattered_array.h>
12 #include <stdint.h>
13 #include <tee_api_types.h>
14 #include <types_ext.h>
15 #include <util.h>
16 
17 /*
18  * Bitfield to reflect status and secure-status values ("okay", "disabled"
19  * or not present)
20  */
21 #define DT_STATUS_DISABLED		U(0)
22 #define DT_STATUS_OK_NSEC		BIT(0)
23 #define DT_STATUS_OK_SEC		BIT(1)
24 
25 #define DT_INFO_INVALID_REG		((paddr_t)-1)
26 #define DT_INFO_INVALID_REG_SIZE	((size_t)-1)
27 #define DT_INFO_INVALID_CLOCK		-1
28 #define DT_INFO_INVALID_RESET		-1
29 #define DT_INFO_INVALID_INTERRUPT	-1
30 
31 /*
32  * @status: Bit mask for DT_STATUS_*
33  * @reg: Device register physical base address or DT_INFO_INVALID_REG
34  * @reg_size: Device register size or DT_INFO_INVALID_REG_SIZE
35  * @clock: Device identifier (positive value) or DT_INFO_INVALID_CLOCK
36  * @reset: Device reset identifier (positive value) or DT_INFO_INVALID_CLOCK
37  * @interrupt: Device interrupt identifier (positive value) or
38  * DT_INFO_INVALID_INTERRUPT
39  * @type: IRQ_TYPE_* value parsed from interrupts properties or IRQ_TYPE_NONE if
40  * not present
41  * @prio: interrupt priority parsed from interrupts properties or 0 if not
42  * present
43  */
44 struct dt_node_info {
45 	unsigned int status;
46 	paddr_t reg;
47 	size_t reg_size;
48 	int clock;
49 	int reset;
50 	int interrupt;
51 	uint32_t type;
52 	uint32_t prio;
53 };
54 
55 /*
56  * DT-aware drivers
57  */
58 
59 struct dt_device_match {
60 	const char *compatible;
61 	const void *compat_data;
62 };
63 
64 /*
65  * DT_MAP_AUTO: Uses status properties from device tree to determine mapping.
66  * DT_MAP_SECURE: Force mapping for device to be secure.
67  * DT_MAP_NON_SECURE: Force mapping for device to be non-secure.
68  */
69 enum dt_map_dev_directive {
70 	DT_MAP_AUTO,
71 	DT_MAP_SECURE,
72 	DT_MAP_NON_SECURE
73 };
74 
75 /*
76  * struct dt_descriptor - Descriptor of the device tree
77  * @blob: Pointer to the device tree binary
78  * @frag_id: Used ID of fragments for device tree overlay
79  */
80 struct dt_descriptor {
81 	void *blob;
82 #ifdef _CFG_USE_DTB_OVERLAY
83 	int frag_id;
84 #endif
85 };
86 
87 extern uint8_t embedded_secure_dtb[];
88 
89 #ifdef CFG_DT
90 /*
91  * dt_getprop_as_number() - get a DT property a unsigned number
92  * @fdt: DT base address
93  * @nodeoffset: node offset
94  * @name: property string name
95  * @num: output number read
96  * Return 0 on success and a negative FDT error value on error
97  *
98  * The size of the property determines if it is read as an unsigned 32-bit
99  * or 64-bit integer.
100  */
101 int dt_getprop_as_number(const void *fdt, int nodeoffset, const char *name,
102 			 uint64_t *num);
103 
104 /*
105  * Find a driver that is suitable for the given DT node, that is, with
106  * a matching "compatible" property.
107  *
108  * @fdt: pointer to the device tree
109  * @offs: node offset
110  */
111 const struct dt_driver *dt_find_compatible_driver(const void *fdt, int offs);
112 
113 /*
114  * Map a device into secure or non-secure memory and return the base VA and
115  * the mapping size. The mapping is done with type MEM_AREA_IO_SEC or
116  * MEM_AREA_IO_NSEC, depending on the device status.
117  * If the mapping already exists, the function simply returns the @vbase and
118  * @size information.
119  *
120  * @offs is the offset of the node that describes the device in @fdt.
121  * @base receives the base virtual address corresponding to the base physical
122  * address of the "reg" property
123  * @size receives the size of the mapping
124  * @mapping what kind of mapping is done for memory.
125  *
126  * Returns 0 on success or -1 in case of error.
127  */
128 int dt_map_dev(const void *fdt, int offs, vaddr_t *base, size_t *size,
129 	       enum dt_map_dev_directive mapping);
130 
131 /*
132  * Check whether the node at @offs contains the property with propname or not.
133  *
134  * @offs is the offset of the node that describes the device in @fdt.
135  * @propname is the property that need to check
136  *
137  * Returns true on success or false if no propname.
138  */
139 bool dt_have_prop(const void *fdt, int offs, const char *propname);
140 
141 /*
142  * Modify or add "status" property to "disabled"
143  *
144  * @fdt reference to the Device Tree
145  * @node is the node offset to modify
146  *
147  * Returns 0 on success or -1 on failure
148  */
149 int dt_disable_status(void *fdt, int node);
150 
151 /*
152  * Force secure-status = "okay" and status="disabled" for the target node.
153  *
154  * @fdt reference to the Device Tree
155  * @node is the node offset to modify
156  *
157  * Returns 0 on success or -1 on failure
158  */
159 int dt_enable_secure_status(void *fdt, int node);
160 
161 /*
162  * FDT manipulation functions, not provided by <libfdt.h>
163  */
164 
165 /*
166  * Return the base address for the "reg" property of the specified node or
167  * (paddr_t)-1 in case of error
168  */
169 paddr_t fdt_reg_base_address(const void *fdt, int offs);
170 
171 /*
172  * Return the reg size for the reg property of the specified node or -1 in case
173  * of error
174  */
175 size_t fdt_reg_size(const void *fdt, int offs);
176 
177 /*
178  * Read the base address and/or reg size for the "reg" property of the
179  * specified node.
180  * @fdt: Reference to the Device Tree
181  * @offs: Offset to the node to read "reg" property from
182  * @base: Pointer to the output base address value, or NULL
183  * @size: Pointer to the output size value, or NULL
184  * Returns 0 on success and a negative FDT error value in case of failure
185  */
186 int fdt_reg_info(const void *fdt, int offs, paddr_t *base, size_t *size);
187 
188 /*
189  * Read the status and secure-status properties into a bitfield.
190  * Return -1 on failure, DT_STATUS_DISABLED if the node is disabled,
191  * otherwise return a combination of DT_STATUS_OK_NSEC and DT_STATUS_OK_SEC.
192  */
193 int fdt_get_status(const void *fdt, int offs);
194 
195 /*
196  * fdt_fill_device_info - Get generic device info from a node
197  *
198  * This function fills the generic information from a given node.
199  * Currently supports a single base register, a single clock,
200  * a single reset ID line and a single interrupt ID.
201  * Default DT_INFO_* macros are used when the relate property is not found.
202  */
203 void fdt_fill_device_info(const void *fdt, struct dt_node_info *info,
204 			  int node);
205 /*
206  * Read cells from a given property of the given node. Any number of 32-bit
207  * cells of the property can be read. Returns 0 on success, or a negative
208  * FDT error value otherwise.
209  */
210 int fdt_read_uint32_array(const void *fdt, int node, const char *prop_name,
211 			  uint32_t *array, size_t count);
212 
213 /*
214  * Read one cell from a given multi-value property of the given node.
215  * Returns 0 on success, or a negative FDT error value otherwise.
216  */
217 int fdt_read_uint32_index(const void *fdt, int node, const char *prop_name,
218 			  int index, uint32_t *value);
219 
220 /*
221  * Read one cell from a given property of the given node.
222  * Returns 0 on success, or a negative FDT error value otherwise.
223  */
224 int fdt_read_uint32(const void *fdt, int node, const char *prop_name,
225 		    uint32_t *value);
226 
227 /*
228  * Read one cell from a property of a cell or default to a given value
229  * Returns the 32bit cell value or @dflt_value on failure.
230  */
231 uint32_t fdt_read_uint32_default(const void *fdt, int node,
232 				 const char *prop_name, uint32_t dflt_value);
233 
234 /*
235  * This function fills reg node info (base & size) with an index.
236  *
237  * Returns 0 on success and a negative FDT error code on failure.
238  */
239 int fdt_get_reg_props_by_index(const void *fdt, int node, int index,
240 			       paddr_t *base, size_t *size);
241 
242 /*
243  * This function fills reg node info (base & size) with an index found by
244  * checking the reg-names node.
245  *
246  * Returns 0 on success and a negative FDT error code on failure.
247  */
248 int fdt_get_reg_props_by_name(const void *fdt, int node, const char *name,
249 			      paddr_t *base, size_t *size);
250 
251 /*
252  * Returns embedded DTB if present, then external DTB if found,
253  * then manifest DTB if found, then NULL.
254  */
255 void *get_dt(void);
256 
257 /*
258  * get_secure_dt() - returns secure DTB for drivers
259  *
260  * Returns device tree that is considered secure for drivers to use.
261  *
262  * 1. Returns embedded DTB if available,
263  * 2. Secure external DTB if available,
264  * 3. Manifest DTB if available,
265  * 4. If neither then NULL
266  */
267 void *get_secure_dt(void);
268 
269 /* Returns embedded DTB location if present, otherwise NULL */
270 void *get_embedded_dt(void);
271 
272 /* Returns true if passed DTB is same as Embedded DTB, otherwise false */
273 static inline bool is_embedded_dt(void *fdt)
274 {
275 	return fdt && fdt == get_embedded_dt();
276 }
277 
278 /* Returns DTB descriptor of the external DTB if present, otherwise NULL */
279 struct dt_descriptor *get_external_dt_desc(void);
280 
281 /*
282  * init_external_dt() - Initialize the external DTB located at given address.
283  * @phys_dt:	Physical address where the external DTB located.
284  * @dt_sz:	Maximum size of the external DTB.
285  *
286  * Initialize the external DTB.
287  *
288  * 1. Add MMU mapping of the external DTB,
289  * 2. Initialize device tree overlay
290  */
291 void init_external_dt(unsigned long phys_dt, size_t dt_sz);
292 
293 /* Returns external DTB if present, otherwise NULL */
294 void *get_external_dt(void);
295 
296 /*
297  * add_dt_path_subnode() - Add new child node into a parent node.
298  * @dt:		Pointer to a device tree descriptor which has DTB.
299  * @path:	Path to the parent node.
300  * @subnode:	Name of the child node.
301  *
302  * Returns the offset of the child node in DTB on success or a negative libfdt
303  * error number.
304  */
305 int add_dt_path_subnode(struct dt_descriptor *dt, const char *path,
306 			const char *subnode);
307 
308 /*
309  * add_res_mem_dt_node() - Create "reserved-memory" parent and child nodes.
310  * @dt:		Pointer to a device tree descriptor which has DTB.
311  * @name:	Name of the child node.
312  * @pa:		Physical address of specific reserved memory region.
313  * @size:	Size of specific reserved memory region.
314  *
315  * Returns 0 if succeeds, otherwise a negative libfdt error number.
316  */
317 int add_res_mem_dt_node(struct dt_descriptor *dt, const char *name,
318 			paddr_t pa, size_t size);
319 
320 /*
321  * init_manifest_dt() - Initialize the manifest DTB to given address.
322  * @fdt:	Physical address where the manifest DTB located.
323  *
324  * Initialize the manifest DTB to physical address
325  */
326 void init_manifest_dt(void *fdt);
327 
328 /*
329  * reinit_manifest_dt() - Reinitialize the manifest DTB
330  *
331  * Add MMU mapping of the manifest DTB and initialize device tree overlay
332  */
333 void reinit_manifest_dt(void);
334 
335 /* Returns TOS_FW_CONFIG DTB or SP manifest DTB if present, otherwise NULL */
336 void *get_manifest_dt(void);
337 
338 #else /* !CFG_DT */
339 
340 static inline const struct dt_driver *dt_find_compatible_driver(
341 					const void *fdt __unused,
342 					int offs __unused)
343 {
344 	return NULL;
345 }
346 
347 static inline int dt_map_dev(const void *fdt __unused, int offs __unused,
348 			     vaddr_t *vbase __unused, size_t *size __unused,
349 			     enum dt_map_dev_directive mapping __unused)
350 {
351 	return -1;
352 }
353 
354 static inline paddr_t fdt_reg_base_address(const void *fdt __unused,
355 					   int offs __unused)
356 {
357 	return (paddr_t)-1;
358 }
359 
360 static inline size_t fdt_reg_size(const void *fdt __unused,
361 				  int offs __unused)
362 {
363 	return (size_t)-1;
364 }
365 
366 static inline int fdt_reg_info(const void *fdt __unused, int offs __unused,
367 			       paddr_t *base __unused, size_t *size __unused)
368 {
369 	return -1;
370 }
371 
372 static inline int fdt_get_status(const void *fdt __unused, int offs __unused)
373 {
374 	return -1;
375 }
376 
377 __noreturn
378 static inline void fdt_fill_device_info(const void *fdt __unused,
379 					struct dt_node_info *info __unused,
380 					int node __unused)
381 {
382 	panic();
383 }
384 
385 static inline int fdt_read_uint32_array(const void *fdt __unused,
386 					int node __unused,
387 					const char *prop_name __unused,
388 					uint32_t *array __unused,
389 					size_t count __unused)
390 {
391 	return -1;
392 }
393 
394 static inline int fdt_read_uint32(const void *fdt __unused,
395 				  int node __unused,
396 				  const char *prop_name __unused,
397 				  uint32_t *value __unused)
398 {
399 	return -1;
400 }
401 
402 static inline uint32_t fdt_read_uint32_default(const void *fdt __unused,
403 					       int node __unused,
404 					       const char *prop_name __unused,
405 					       uint32_t dflt_value __unused)
406 {
407 	return dflt_value;
408 }
409 
410 static inline int fdt_read_uint32_index(const void *fdt __unused,
411 					int node __unused,
412 					const char *prop_name __unused,
413 					int index __unused,
414 					uint32_t *value __unused)
415 {
416 	return -1;
417 }
418 
419 static inline int fdt_get_reg_props_by_index(const void *fdt __unused,
420 					     int node __unused,
421 					     int index __unused,
422 					     paddr_t *base __unused,
423 					     size_t *size __unused)
424 {
425 	return -1;
426 }
427 
428 static inline int fdt_get_reg_props_by_name(const void *fdt __unused,
429 					    int node __unused,
430 					    const char *name __unused,
431 					    paddr_t *base __unused,
432 					    size_t *size __unused)
433 {
434 	return -1;
435 }
436 
437 static inline int dt_getprop_as_number(const void *fdt __unused,
438 				       int nodeoffset __unused,
439 				       const char *name __unused,
440 				       uint64_t *num __unused)
441 {
442 	return -1;
443 }
444 
445 static inline void *get_dt(void)
446 {
447 	return NULL;
448 }
449 
450 static inline void *get_secure_dt(void)
451 {
452 	return NULL;
453 }
454 
455 static inline void *get_embedded_dt(void)
456 {
457 	return NULL;
458 }
459 
460 static inline bool is_embedded_dt(void *fdt __unused)
461 {
462 	return false;
463 }
464 
465 static inline struct dt_descriptor *get_external_dt_desc(void)
466 {
467 	return NULL;
468 }
469 
470 static inline void init_external_dt(unsigned long phys_dt __unused,
471 				    size_t dt_sz __unused)
472 {
473 }
474 
475 static inline void *get_external_dt(void)
476 {
477 	return NULL;
478 }
479 
480 static inline int add_dt_path_subnode(struct dt_descriptor *dt __unused,
481 				      const char *path __unused,
482 				      const char *subnode __unused)
483 {
484 	return -1;
485 }
486 
487 static inline int add_res_mem_dt_node(struct dt_descriptor *dt __unused,
488 				      const char *name __unused,
489 				      paddr_t pa __unused,
490 				      size_t size __unused)
491 {
492 	return -1;
493 }
494 
495 static inline void init_manifest_dt(void *fdt __unused)
496 {
497 }
498 
499 static inline void reinit_manifest_dt(void)
500 {
501 }
502 
503 static inline void *get_manifest_dt(void)
504 {
505 	return NULL;
506 }
507 
508 #endif /* !CFG_DT */
509 
510 #ifdef CFG_DT_CACHED_NODE_INFO
511 /*
512  * Find the offset of a parent node in the parent node cache
513  * @fdt: FDT to work on
514  * @node_offset: Offset of the node we look for its parent
515  * @parent_offset: Output parent node offset upon success
516  * @return 0 on success and -1 on failure
517  */
518 int fdt_find_cached_parent_node(const void *fdt, int node_offset,
519 				int *parent_offset);
520 
521 /*
522  * Find the address/size cells value of a parent node in the parent node cache
523  * @fdt: FDT to work on
524  * @node_offset: Offset of the node we look for its parent
525  * @address_cells: Pointer to output #address-cells value upon success or NULL
526  * @size_cells: Pointer to output #size-cells value upon success or NULL
527  * @return 0 on success and -FDT_ERR_NOTFOUND on failure
528  */
529 int fdt_find_cached_parent_reg_cells(const void *fdt, int node_offset,
530 				     int *address_cells, int *size_cells);
531 /*
532  * Find the node offset from its phandle in the phandle cache
533  * @fdt: FDT to work on
534  * @phandle: Node phandle
535  * @node_offset: Pointer to output node offset upon success
536  * @return 0 on success and -FDT_ERR_NOTFOUND on failure
537  */
538 int fdt_find_cached_node_phandle(const void *fdt, uint32_t phandle,
539 				 int *node_offset);
540 #else
541 static inline int fdt_find_cached_parent_node(const void *fdt __unused,
542 					      int node_offset __unused,
543 					      int *parent_offset __unused)
544 {
545 	return -1;
546 }
547 
548 static inline int fdt_find_cached_parent_reg_cells(const void *fdt __unused,
549 						   int node_offset __unused,
550 						   int *address_cells __unused,
551 						   int *size_cells __unused)
552 {
553 	return -1;
554 }
555 
556 static inline int fdt_find_cached_node_phandle(const void *fdt __unused,
557 					       uint32_t phandle __unused,
558 					       int *node_offset __unused)
559 {
560 	return -1;
561 }
562 #endif /* CFG_DT_CACHED_NODE_INFO */
563 #endif /* __KERNEL_DT_H */
564