xref: /optee_os/core/include/kernel/dt.h (revision 48952fd403d867dbf13675e062cd8a7d2e5260a9)
1 /* SPDX-License-Identifier: BSD-2-Clause */
2 /*
3  * Copyright (c) 2016-2021, Linaro Limited
4  */
5 
6 #ifndef __KERNEL_DT_H
7 #define __KERNEL_DT_H
8 
9 #include <compiler.h>
10 #include <kernel/panic.h>
11 #include <scattered_array.h>
12 #include <stdint.h>
13 #include <tee_api_types.h>
14 #include <types_ext.h>
15 #include <util.h>
16 
17 /*
18  * Bitfield to reflect status and secure-status values ("okay", "disabled"
19  * or not present)
20  */
21 #define DT_STATUS_DISABLED		U(0)
22 #define DT_STATUS_OK_NSEC		BIT(0)
23 #define DT_STATUS_OK_SEC		BIT(1)
24 
25 #define DT_INFO_INVALID_REG		((paddr_t)-1)
26 #define DT_INFO_INVALID_REG_SIZE	((size_t)-1)
27 #define DT_INFO_INVALID_CLOCK		-1
28 #define DT_INFO_INVALID_RESET		-1
29 #define DT_INFO_INVALID_INTERRUPT	-1
30 
31 /*
32  * @status: Bit mask for DT_STATUS_*
33  * @reg: Device register physical base address or DT_INFO_INVALID_REG
34  * @reg_size: Device register size or DT_INFO_INVALID_REG_SIZE
35  * @clock: Device identifier (positive value) or DT_INFO_INVALID_CLOCK
36  * @reset: Device reset identifier (positive value) or DT_INFO_INVALID_CLOCK
37  * @interrupt: Device interrupt identifier (positive value) or
38  * DT_INFO_INVALID_INTERRUPT
39  * @type: IRQ_TYPE_* value parsed from interrupts properties or IRQ_TYPE_NONE if
40  * not present
41  * @prio: interrupt priority parsed from interrupts properties or 0 if not
42  * present
43  */
44 struct dt_node_info {
45 	unsigned int status;
46 	paddr_t reg;
47 	size_t reg_size;
48 	int clock;
49 	int reset;
50 	int interrupt;
51 	uint32_t type;
52 	uint32_t prio;
53 };
54 
55 /*
56  * DT-aware drivers
57  */
58 
59 struct dt_device_match {
60 	const char *compatible;
61 	const void *compat_data;
62 };
63 
64 /*
65  * DT_MAP_AUTO: Uses status properties from device tree to determine mapping.
66  * DT_MAP_SECURE: Force mapping for device to be secure.
67  * DT_MAP_NON_SECURE: Force mapping for device to be non-secure.
68  */
69 enum dt_map_dev_directive {
70 	DT_MAP_AUTO,
71 	DT_MAP_SECURE,
72 	DT_MAP_NON_SECURE
73 };
74 
75 /*
76  * struct dt_descriptor - Descriptor of the device tree
77  * @blob: Pointer to the device tree binary
78  * @frag_id: Used ID of fragments for device tree overlay
79  */
80 struct dt_descriptor {
81 	void *blob;
82 #ifdef _CFG_USE_DTB_OVERLAY
83 	int frag_id;
84 #endif
85 };
86 
87 extern uint8_t embedded_secure_dtb[];
88 
89 #ifdef CFG_DT
90 /*
91  * dt_getprop_as_number() - get a DT property a unsigned number
92  * @fdt: DT base address
93  * @nodeoffset: node offset
94  * @name: property string name
95  * @num: output number read
96  * Return 0 on success and a negative FDT error value on error
97  *
98  * The size of the property determines if it is read as an unsigned 32-bit
99  * or 64-bit integer.
100  */
101 int dt_getprop_as_number(const void *fdt, int nodeoffset, const char *name,
102 			 uint64_t *num);
103 
104 /*
105  * Find a driver that is suitable for the given DT node, that is, with
106  * a matching "compatible" property.
107  *
108  * @fdt: pointer to the device tree
109  * @offs: node offset
110  */
111 const struct dt_driver *dt_find_compatible_driver(const void *fdt, int offs);
112 
113 /*
114  * Map a device into secure or non-secure memory and return the base VA and
115  * the mapping size. The mapping is done with type MEM_AREA_IO_SEC or
116  * MEM_AREA_IO_NSEC, depending on the device status.
117  * If the mapping already exists, the function simply returns the @vbase and
118  * @size information.
119  *
120  * @offs is the offset of the node that describes the device in @fdt.
121  * @base receives the base virtual address corresponding to the base physical
122  * address of the "reg" property
123  * @size receives the size of the mapping
124  * @mapping what kind of mapping is done for memory.
125  *
126  * Returns 0 on success or -1 in case of error.
127  */
128 int dt_map_dev(const void *fdt, int offs, vaddr_t *base, size_t *size,
129 	       enum dt_map_dev_directive mapping);
130 
131 /*
132  * Check whether the node at @offs contains the property with propname or not.
133  *
134  * @offs is the offset of the node that describes the device in @fdt.
135  * @propname is the property that need to check
136  *
137  * Returns true on success or false if no propname.
138  */
139 bool dt_have_prop(const void *fdt, int offs, const char *propname);
140 
141 /*
142  * Modify or add "status" property to "disabled"
143  *
144  * @fdt reference to the Device Tree
145  * @node is the node offset to modify
146  *
147  * Returns 0 on success or -1 on failure
148  */
149 int dt_disable_status(void *fdt, int node);
150 
151 /*
152  * Force secure-status = "okay" and status="disabled" for the target node.
153  *
154  * @fdt reference to the Device Tree
155  * @node is the node offset to modify
156  *
157  * Returns 0 on success or -1 on failure
158  */
159 int dt_enable_secure_status(void *fdt, int node);
160 
161 /*
162  * FDT manipulation functions, not provided by <libfdt.h>
163  */
164 
165 /*
166  * Return the base address for the "reg" property of the specified node or
167  * (paddr_t)-1 in case of error
168  */
169 paddr_t fdt_reg_base_address(const void *fdt, int offs);
170 
171 /*
172  * Return the reg size for the reg property of the specified node or -1 in case
173  * of error
174  */
175 size_t fdt_reg_size(const void *fdt, int offs);
176 
177 /*
178  * Read the base address and/or reg size for the "reg" property of the
179  * specified node.
180  * @fdt: Reference to the Device Tree
181  * @offs: Offset to the node to read "reg" property from
182  * @base: Pointer to the output base address value, or NULL
183  * @size: Pointer to the output size value, or NULL
184  * Returns 0 on success and a negative FDT error value in case of failure
185  */
186 int fdt_reg_info(const void *fdt, int offs, paddr_t *base, size_t *size);
187 
188 /*
189  * Read the status and secure-status properties into a bitfield.
190  * Return -1 on failure, DT_STATUS_DISABLED if the node is disabled,
191  * otherwise return a combination of DT_STATUS_OK_NSEC and DT_STATUS_OK_SEC.
192  */
193 int fdt_get_status(const void *fdt, int offs);
194 
195 /*
196  * fdt_fill_device_info - Get generic device info from a node
197  *
198  * This function fills the generic information from a given node.
199  * Currently supports a single base register, a single clock,
200  * a single reset ID line and a single interrupt ID.
201  * Default DT_INFO_* macros are used when the relate property is not found.
202  */
203 void fdt_fill_device_info(const void *fdt, struct dt_node_info *info,
204 			  int node);
205 /*
206  * Read cells from a given property of the given node. Any number of 32-bit
207  * cells of the property can be read. Returns 0 on success, or a negative
208  * FDT error value otherwise.
209  */
210 int fdt_read_uint32_array(const void *fdt, int node, const char *prop_name,
211 			  uint32_t *array, size_t count);
212 
213 /*
214  * Read one cell from a given multi-value property of the given node.
215  * Returns 0 on success, or a negative FDT error value otherwise.
216  */
217 int fdt_read_uint32_index(const void *fdt, int node, const char *prop_name,
218 			  int index, uint32_t *value);
219 
220 /*
221  * Read one cell from a given property of the given node.
222  * Returns 0 on success, or a negative FDT error value otherwise.
223  */
224 int fdt_read_uint32(const void *fdt, int node, const char *prop_name,
225 		    uint32_t *value);
226 
227 /*
228  * Read one cell from a property of a cell or default to a given value
229  * Returns the 32bit cell value or @dflt_value on failure.
230  */
231 uint32_t fdt_read_uint32_default(const void *fdt, int node,
232 				 const char *prop_name, uint32_t dflt_value);
233 
234 /*
235  * This function fills reg node info (base & size) with an index.
236  *
237  * Returns 0 on success and a negative FDT error code on failure.
238  */
239 int fdt_get_reg_props_by_index(const void *fdt, int node, int index,
240 			       paddr_t *base, size_t *size);
241 
242 /*
243  * This function fills reg node info (base & size) with an index found by
244  * checking the reg-names node.
245  *
246  * Returns 0 on success and a negative FDT error code on failure.
247  */
248 int fdt_get_reg_props_by_name(const void *fdt, int node, const char *name,
249 			      paddr_t *base, size_t *size);
250 
251 /*
252  * Returns embedded DTB if present, then external DTB if found,
253  * then manifest DTB if found, then NULL.
254  */
255 void *get_dt(void);
256 
257 /*
258  * get_secure_dt() - returns secure DTB for drivers
259  *
260  * Returns device tree that is considered secure for drivers to use.
261  *
262  * 1. Returns embedded DTB if available,
263  * 2. Secure external DTB if available,
264  * 3. Manifest DTB if available,
265  * 4. If neither then NULL
266  */
267 void *get_secure_dt(void);
268 
269 /* Returns embedded DTB location if present, otherwise NULL */
270 void *get_embedded_dt(void);
271 
272 /* Returns true if passed DTB is same as Embedded DTB, otherwise false */
273 static inline bool is_embedded_dt(void *fdt)
274 {
275 	return fdt && fdt == get_embedded_dt();
276 }
277 
278 /* Returns DTB descriptor of the external DTB if present, otherwise NULL */
279 struct dt_descriptor *get_external_dt_desc(void);
280 
281 /*
282  * init_external_dt() - Initialize the external DTB located at given address.
283  * @phys_dt:	Physical address where the external DTB located.
284  * @dt_sz:	Maximum size of the external DTB.
285  *
286  * Initialize the external DTB.
287  *
288  * 1. Add MMU mapping of the external DTB,
289  * 2. Initialize device tree overlay
290  */
291 void init_external_dt(unsigned long phys_dt, size_t dt_sz);
292 
293 /* Returns external DTB if present, otherwise NULL */
294 void *get_external_dt(void);
295 
296 /*
297  * add_dt_path_subnode() - Add new child node into a parent node.
298  * @dt:		Pointer to a device tree descriptor which has DTB.
299  * @path:	Path to the parent node.
300  * @subnode:	Name of the child node.
301  *
302  * Returns the offset of the child node in DTB on success or a negative libfdt
303  * error number.
304  */
305 int add_dt_path_subnode(struct dt_descriptor *dt, const char *path,
306 			const char *subnode);
307 
308 /*
309  * add_res_mem_dt_node() - Create "reserved-memory" parent and child nodes.
310  * @dt:		Pointer to a device tree descriptor which has DTB.
311  * @name:	Name of the child node.
312  * @pa:		Physical address of specific reserved memory region.
313  * @size:	Size of specific reserved memory region.
314  *
315  * Returns 0 if succeeds, otherwise a negative libfdt error number.
316  */
317 int add_res_mem_dt_node(struct dt_descriptor *dt, const char *name,
318 			paddr_t pa, size_t size);
319 
320 /*
321  * init_manifest_dt() - Initialize the manifest DTB to given address.
322  * @fdt:	Physical address where the manifest DTB located.
323  * @max_size:	Maximum size of the DTB
324  *
325  * Initialize the manifest DTB to physical address
326  */
327 void init_manifest_dt(void *fdt, size_t max_size);
328 
329 /*
330  * reinit_manifest_dt() - Reinitialize the manifest DTB
331  *
332  * Reserve used physical memory, add MMU mapping of the manifest DTB, and
333  * initialize device tree overlay
334  */
335 void reinit_manifest_dt(void);
336 
337 /* Returns TOS_FW_CONFIG DTB or SP manifest DTB if present, otherwise NULL */
338 void *get_manifest_dt(void);
339 
340 #else /* !CFG_DT */
341 
342 static inline const struct dt_driver *dt_find_compatible_driver(
343 					const void *fdt __unused,
344 					int offs __unused)
345 {
346 	return NULL;
347 }
348 
349 static inline int dt_map_dev(const void *fdt __unused, int offs __unused,
350 			     vaddr_t *vbase __unused, size_t *size __unused,
351 			     enum dt_map_dev_directive mapping __unused)
352 {
353 	return -1;
354 }
355 
356 static inline paddr_t fdt_reg_base_address(const void *fdt __unused,
357 					   int offs __unused)
358 {
359 	return (paddr_t)-1;
360 }
361 
362 static inline size_t fdt_reg_size(const void *fdt __unused,
363 				  int offs __unused)
364 {
365 	return (size_t)-1;
366 }
367 
368 static inline int fdt_reg_info(const void *fdt __unused, int offs __unused,
369 			       paddr_t *base __unused, size_t *size __unused)
370 {
371 	return -1;
372 }
373 
374 static inline int fdt_get_status(const void *fdt __unused, int offs __unused)
375 {
376 	return -1;
377 }
378 
379 __noreturn
380 static inline void fdt_fill_device_info(const void *fdt __unused,
381 					struct dt_node_info *info __unused,
382 					int node __unused)
383 {
384 	panic();
385 }
386 
387 static inline int fdt_read_uint32_array(const void *fdt __unused,
388 					int node __unused,
389 					const char *prop_name __unused,
390 					uint32_t *array __unused,
391 					size_t count __unused)
392 {
393 	return -1;
394 }
395 
396 static inline int fdt_read_uint32(const void *fdt __unused,
397 				  int node __unused,
398 				  const char *prop_name __unused,
399 				  uint32_t *value __unused)
400 {
401 	return -1;
402 }
403 
404 static inline uint32_t fdt_read_uint32_default(const void *fdt __unused,
405 					       int node __unused,
406 					       const char *prop_name __unused,
407 					       uint32_t dflt_value __unused)
408 {
409 	return dflt_value;
410 }
411 
412 static inline int fdt_read_uint32_index(const void *fdt __unused,
413 					int node __unused,
414 					const char *prop_name __unused,
415 					int index __unused,
416 					uint32_t *value __unused)
417 {
418 	return -1;
419 }
420 
421 static inline int fdt_get_reg_props_by_index(const void *fdt __unused,
422 					     int node __unused,
423 					     int index __unused,
424 					     paddr_t *base __unused,
425 					     size_t *size __unused)
426 {
427 	return -1;
428 }
429 
430 static inline int fdt_get_reg_props_by_name(const void *fdt __unused,
431 					    int node __unused,
432 					    const char *name __unused,
433 					    paddr_t *base __unused,
434 					    size_t *size __unused)
435 {
436 	return -1;
437 }
438 
439 static inline int dt_getprop_as_number(const void *fdt __unused,
440 				       int nodeoffset __unused,
441 				       const char *name __unused,
442 				       uint64_t *num __unused)
443 {
444 	return -1;
445 }
446 
447 static inline void *get_dt(void)
448 {
449 	return NULL;
450 }
451 
452 static inline void *get_secure_dt(void)
453 {
454 	return NULL;
455 }
456 
457 static inline void *get_embedded_dt(void)
458 {
459 	return NULL;
460 }
461 
462 static inline bool is_embedded_dt(void *fdt __unused)
463 {
464 	return false;
465 }
466 
467 static inline struct dt_descriptor *get_external_dt_desc(void)
468 {
469 	return NULL;
470 }
471 
472 static inline void init_external_dt(unsigned long phys_dt __unused,
473 				    size_t dt_sz __unused)
474 {
475 }
476 
477 static inline void *get_external_dt(void)
478 {
479 	return NULL;
480 }
481 
482 static inline int add_dt_path_subnode(struct dt_descriptor *dt __unused,
483 				      const char *path __unused,
484 				      const char *subnode __unused)
485 {
486 	return -1;
487 }
488 
489 static inline int add_res_mem_dt_node(struct dt_descriptor *dt __unused,
490 				      const char *name __unused,
491 				      paddr_t pa __unused,
492 				      size_t size __unused)
493 {
494 	return -1;
495 }
496 
497 static inline void init_manifest_dt(void *fdt __unused,
498 				    size_t max_size __unused)
499 {
500 }
501 
502 static inline void reinit_manifest_dt(void)
503 {
504 }
505 
506 static inline void *get_manifest_dt(void)
507 {
508 	return NULL;
509 }
510 
511 #endif /* !CFG_DT */
512 
513 #ifdef CFG_DT_CACHED_NODE_INFO
514 /*
515  * Find the offset of a parent node in the parent node cache
516  * @fdt: FDT to work on
517  * @node_offset: Offset of the node we look for its parent
518  * @parent_offset: Output parent node offset upon success
519  * @return 0 on success and -1 on failure
520  */
521 int fdt_find_cached_parent_node(const void *fdt, int node_offset,
522 				int *parent_offset);
523 
524 /*
525  * Find the address/size cells value of a parent node in the parent node cache
526  * @fdt: FDT to work on
527  * @node_offset: Offset of the node we look for its parent
528  * @address_cells: Pointer to output #address-cells value upon success or NULL
529  * @size_cells: Pointer to output #size-cells value upon success or NULL
530  * @return 0 on success and -FDT_ERR_NOTFOUND on failure
531  */
532 int fdt_find_cached_parent_reg_cells(const void *fdt, int node_offset,
533 				     int *address_cells, int *size_cells);
534 /*
535  * Find the node offset from its phandle in the phandle cache
536  * @fdt: FDT to work on
537  * @phandle: Node phandle
538  * @node_offset: Pointer to output node offset upon success
539  * @return 0 on success and -FDT_ERR_NOTFOUND on failure
540  */
541 int fdt_find_cached_node_phandle(const void *fdt, uint32_t phandle,
542 				 int *node_offset);
543 #else
544 static inline int fdt_find_cached_parent_node(const void *fdt __unused,
545 					      int node_offset __unused,
546 					      int *parent_offset __unused)
547 {
548 	return -1;
549 }
550 
551 static inline int fdt_find_cached_parent_reg_cells(const void *fdt __unused,
552 						   int node_offset __unused,
553 						   int *address_cells __unused,
554 						   int *size_cells __unused)
555 {
556 	return -1;
557 }
558 
559 static inline int fdt_find_cached_node_phandle(const void *fdt __unused,
560 					       uint32_t phandle __unused,
561 					       int *node_offset __unused)
562 {
563 	return -1;
564 }
565 #endif /* CFG_DT_CACHED_NODE_INFO */
566 #endif /* __KERNEL_DT_H */
567