xref: /optee_os/core/include/crypto/crypto.h (revision b56ad90ebd7ed7f913ba88d03fcbcdac8962c7bd)
1 /* SPDX-License-Identifier: BSD-2-Clause */
2 /*
3  * Copyright (c) 2014-2017, Linaro Limited
4  */
5 
6 /*
7  * This is the Cryptographic Provider API (CP API).
8  *
9  * This defines how most crypto syscalls that implement the Cryptographic
10  * Operations API can invoke the actual providers of cryptographic algorithms
11  * (such as LibTomCrypt).
12  *
13  * To add a new provider, you need to provide an implementation of this
14  * interface.
15  *
16  * The following parameters are commonly used.
17  *
18  * @ctx: context allocated by the syscall, for later use by the algorithm
19  * @algo: algorithm identifier (TEE_ALG_*)
20  */
21 
22 #ifndef __CRYPTO_CRYPTO_H
23 #define __CRYPTO_CRYPTO_H
24 
25 #include <tee_api_types.h>
26 
27 TEE_Result crypto_init(void);
28 
29 /* Message digest functions */
30 TEE_Result crypto_hash_alloc_ctx(void **ctx, uint32_t algo);
31 TEE_Result crypto_hash_init(void *ctx);
32 TEE_Result crypto_hash_update(void *ctx, const uint8_t *data, size_t len);
33 TEE_Result crypto_hash_final(void *ctx, uint8_t *digest, size_t len);
34 void crypto_hash_free_ctx(void *ctx);
35 void crypto_hash_copy_state(void *dst_ctx, void *src_ctx);
36 
37 /* Symmetric ciphers */
38 TEE_Result crypto_cipher_alloc_ctx(void **ctx, uint32_t algo);
39 TEE_Result crypto_cipher_init(void *ctx, TEE_OperationMode mode,
40 			      const uint8_t *key1, size_t key1_len,
41 			      const uint8_t *key2, size_t key2_len,
42 			      const uint8_t *iv, size_t iv_len);
43 TEE_Result crypto_cipher_update(void *ctx, TEE_OperationMode mode,
44 				bool last_block, const uint8_t *data,
45 				size_t len, uint8_t *dst);
46 void crypto_cipher_final(void *ctx);
47 TEE_Result crypto_cipher_get_block_size(uint32_t algo, size_t *size);
48 void crypto_cipher_free_ctx(void *ctx);
49 void crypto_cipher_copy_state(void *dst_ctx, void *src_ctx);
50 
51 /* Message Authentication Code functions */
52 TEE_Result crypto_mac_alloc_ctx(void **ctx, uint32_t algo);
53 TEE_Result crypto_mac_init(void *ctx, const uint8_t *key, size_t len);
54 TEE_Result crypto_mac_update(void *ctx, const uint8_t *data, size_t len);
55 TEE_Result crypto_mac_final(void *ctx, uint8_t *digest, size_t digest_len);
56 void crypto_mac_free_ctx(void *ctx);
57 void crypto_mac_copy_state(void *dst_ctx, void *src_ctx);
58 
59 /* Authenticated encryption */
60 TEE_Result crypto_authenc_alloc_ctx(void **ctx, uint32_t algo);
61 TEE_Result crypto_authenc_init(void *ctx, TEE_OperationMode mode,
62 			       const uint8_t *key, size_t key_len,
63 			       const uint8_t *nonce, size_t nonce_len,
64 			       size_t tag_len, size_t aad_len,
65 			       size_t payload_len);
66 TEE_Result crypto_authenc_update_aad(void *ctx, TEE_OperationMode mode,
67 				     const uint8_t *data, size_t len);
68 TEE_Result crypto_authenc_update_payload(void *ctx, TEE_OperationMode mode,
69 					 const uint8_t *src_data,
70 					 size_t src_len, uint8_t *dst_data,
71 					 size_t *dst_len);
72 TEE_Result crypto_authenc_enc_final(void *ctx, const uint8_t *src_data,
73 				    size_t src_len, uint8_t *dst_data,
74 				    size_t *dst_len, uint8_t *dst_tag,
75 				    size_t *dst_tag_len);
76 TEE_Result crypto_authenc_dec_final(void *ctx, const uint8_t *src_data,
77 				    size_t src_len, uint8_t *dst_data,
78 				    size_t *dst_len, const uint8_t *tag,
79 				    size_t tag_len);
80 void crypto_authenc_final(void *ctx);
81 void crypto_authenc_free_ctx(void *ctx);
82 void crypto_authenc_copy_state(void *dst_ctx, void *src_ctx);
83 
84 /* Implementation-defined big numbers */
85 
86 /*
87  * Allocate a bignum capable of holding an unsigned integer value of
88  * up to bitsize bits
89  */
90 struct bignum *crypto_bignum_allocate(size_t size_bits);
91 TEE_Result crypto_bignum_bin2bn(const uint8_t *from, size_t fromsize,
92 				struct bignum *to);
93 size_t crypto_bignum_num_bytes(struct bignum *a);
94 size_t crypto_bignum_num_bits(struct bignum *a);
95 void crypto_bignum_bn2bin(const struct bignum *from, uint8_t *to);
96 void crypto_bignum_copy(struct bignum *to, const struct bignum *from);
97 void crypto_bignum_free(struct bignum *a);
98 void crypto_bignum_clear(struct bignum *a);
99 
100 /* return -1 if a<b, 0 if a==b, +1 if a>b */
101 int32_t crypto_bignum_compare(struct bignum *a, struct bignum *b);
102 
103 /* Asymmetric algorithms */
104 
105 struct rsa_keypair {
106 	struct bignum *e;	/* Public exponent */
107 	struct bignum *d;	/* Private exponent */
108 	struct bignum *n;	/* Modulus */
109 
110 	/* Optional CRT parameters (all NULL if unused) */
111 	struct bignum *p;	/* N = pq */
112 	struct bignum *q;
113 	struct bignum *qp;	/* 1/q mod p */
114 	struct bignum *dp;	/* d mod (p-1) */
115 	struct bignum *dq;	/* d mod (q-1) */
116 };
117 
118 struct rsa_public_key {
119 	struct bignum *e;	/* Public exponent */
120 	struct bignum *n;	/* Modulus */
121 };
122 
123 struct dsa_keypair {
124 	struct bignum *g;	/* Generator of subgroup (public) */
125 	struct bignum *p;	/* Prime number (public) */
126 	struct bignum *q;	/* Order of subgroup (public) */
127 	struct bignum *y;	/* Public key */
128 	struct bignum *x;	/* Private key */
129 };
130 
131 struct dsa_public_key {
132 	struct bignum *g;	/* Generator of subgroup (public) */
133 	struct bignum *p;	/* Prime number (public) */
134 	struct bignum *q;	/* Order of subgroup (public) */
135 	struct bignum *y;	/* Public key */
136 };
137 
138 struct dh_keypair {
139 	struct bignum *g;	/* Generator of Z_p (shared) */
140 	struct bignum *p;	/* Prime modulus (shared) */
141 	struct bignum *x;	/* Private key */
142 	struct bignum *y;	/* Public key y = g^x */
143 
144 	/*
145 	 * Optional parameters used by key generation.
146 	 * When not used, q == NULL and xbits == 0
147 	 */
148 	struct bignum *q;	/* x must be in the range [2, q-2] */
149 	uint32_t xbits;		/* Number of bits in the private key */
150 };
151 
152 struct ecc_public_key {
153 	struct bignum *x;	/* Public value x */
154 	struct bignum *y;	/* Public value y */
155 	uint32_t curve;	        /* Curve type */
156 	const struct crypto_ecc_public_ops *ops; /* Key Operations */
157 };
158 
159 struct ecc_keypair {
160 	struct bignum *d;	/* Private value */
161 	struct bignum *x;	/* Public value x */
162 	struct bignum *y;	/* Public value y */
163 	uint32_t curve;	        /* Curve type */
164 	const struct crypto_ecc_keypair_ops *ops; /* Key Operations */
165 };
166 
167 /*
168  * Key allocation functions
169  * Allocate the bignum's inside a key structure.
170  * TEE core will later use crypto_bignum_free().
171  */
172 TEE_Result crypto_acipher_alloc_rsa_keypair(struct rsa_keypair *s,
173 				size_t key_size_bits);
174 TEE_Result crypto_acipher_alloc_rsa_public_key(struct rsa_public_key *s,
175 				   size_t key_size_bits);
176 void crypto_acipher_free_rsa_public_key(struct rsa_public_key *s);
177 void crypto_acipher_free_rsa_keypair(struct rsa_keypair *s);
178 TEE_Result crypto_acipher_alloc_dsa_keypair(struct dsa_keypair *s,
179 				size_t key_size_bits);
180 TEE_Result crypto_acipher_alloc_dsa_public_key(struct dsa_public_key *s,
181 				   size_t key_size_bits);
182 TEE_Result crypto_acipher_alloc_dh_keypair(struct dh_keypair *s,
183 			       size_t key_size_bits);
184 TEE_Result crypto_acipher_alloc_ecc_public_key(struct ecc_public_key *s,
185 					       uint32_t key_type,
186 					       size_t key_size_bits);
187 TEE_Result crypto_acipher_alloc_ecc_keypair(struct ecc_keypair *s,
188 					    uint32_t key_type,
189 					    size_t key_size_bits);
190 void crypto_acipher_free_ecc_public_key(struct ecc_public_key *s);
191 
192 /*
193  * Key generation functions
194  */
195 TEE_Result crypto_acipher_gen_rsa_key(struct rsa_keypair *key, size_t key_size);
196 TEE_Result crypto_acipher_gen_dsa_key(struct dsa_keypair *key, size_t key_size);
197 TEE_Result crypto_acipher_gen_dh_key(struct dh_keypair *key, struct bignum *q,
198 				     size_t xbits, size_t key_size);
199 TEE_Result crypto_acipher_gen_ecc_key(struct ecc_keypair *key, size_t key_size);
200 
201 TEE_Result crypto_acipher_dh_shared_secret(struct dh_keypair *private_key,
202 					   struct bignum *public_key,
203 					   struct bignum *secret);
204 
205 TEE_Result crypto_acipher_rsanopad_decrypt(struct rsa_keypair *key,
206 					   const uint8_t *src, size_t src_len,
207 					   uint8_t *dst, size_t *dst_len);
208 TEE_Result crypto_acipher_rsanopad_encrypt(struct rsa_public_key *key,
209 					   const uint8_t *src, size_t src_len,
210 					   uint8_t *dst, size_t *dst_len);
211 TEE_Result crypto_acipher_rsaes_decrypt(uint32_t algo, struct rsa_keypair *key,
212 					const uint8_t *label, size_t label_len,
213 					const uint8_t *src, size_t src_len,
214 					uint8_t *dst, size_t *dst_len);
215 TEE_Result crypto_acipher_rsaes_encrypt(uint32_t algo,
216 					struct rsa_public_key *key,
217 					const uint8_t *label, size_t label_len,
218 					const uint8_t *src, size_t src_len,
219 					uint8_t *dst, size_t *dst_len);
220 /* RSA SSA sign/verify: if salt_len == -1, use default value */
221 TEE_Result crypto_acipher_rsassa_sign(uint32_t algo, struct rsa_keypair *key,
222 				      int salt_len, const uint8_t *msg,
223 				      size_t msg_len, uint8_t *sig,
224 				      size_t *sig_len);
225 TEE_Result crypto_acipher_rsassa_verify(uint32_t algo,
226 					struct rsa_public_key *key,
227 					int salt_len, const uint8_t *msg,
228 					size_t msg_len, const uint8_t *sig,
229 					size_t sig_len);
230 TEE_Result crypto_acipher_dsa_sign(uint32_t algo, struct dsa_keypair *key,
231 				   const uint8_t *msg, size_t msg_len,
232 				   uint8_t *sig, size_t *sig_len);
233 TEE_Result crypto_acipher_dsa_verify(uint32_t algo, struct dsa_public_key *key,
234 				     const uint8_t *msg, size_t msg_len,
235 				     const uint8_t *sig, size_t sig_len);
236 TEE_Result crypto_acipher_ecc_sign(uint32_t algo, struct ecc_keypair *key,
237 				   const uint8_t *msg, size_t msg_len,
238 				   uint8_t *sig, size_t *sig_len);
239 TEE_Result crypto_acipher_ecc_verify(uint32_t algo, struct ecc_public_key *key,
240 				     const uint8_t *msg, size_t msg_len,
241 				     const uint8_t *sig, size_t sig_len);
242 TEE_Result crypto_acipher_ecc_shared_secret(struct ecc_keypair *private_key,
243 					    struct ecc_public_key *public_key,
244 					    void *secret,
245 					    unsigned long *secret_len);
246 TEE_Result crypto_acipher_sm2_pke_decrypt(struct ecc_keypair *key,
247 					  const uint8_t *src, size_t src_len,
248 					  uint8_t *dst, size_t *dst_len);
249 TEE_Result crypto_acipher_sm2_pke_encrypt(struct ecc_public_key *key,
250 					  const uint8_t *src, size_t src_len,
251 					  uint8_t *dst, size_t *dst_len);
252 TEE_Result crypto_acipher_sm2_dsa_sign(uint32_t algo, struct ecc_keypair *key,
253 				       const uint8_t *msg, size_t msg_len,
254 				       uint8_t *sig, size_t *sig_len);
255 TEE_Result crypto_acipher_sm2_dsa_verify(uint32_t algo,
256 					 struct ecc_public_key *key,
257 					 const uint8_t *msg, size_t msg_len,
258 					 const uint8_t *sig, size_t sig_len);
259 
260 struct sm2_kep_parms {
261 	uint8_t *out;
262 	size_t out_len;
263 	bool is_initiator;
264 	const uint8_t *initiator_id;
265 	size_t initiator_id_len;
266 	const uint8_t *responder_id;
267 	size_t responder_id_len;
268 	const uint8_t *conf_in;
269 	size_t conf_in_len;
270 	uint8_t *conf_out;
271 	size_t conf_out_len;
272 };
273 
274 TEE_Result crypto_acipher_sm2_kep_derive(struct ecc_keypair *my_key,
275 					 struct ecc_keypair *my_eph_key,
276 					 struct ecc_public_key *peer_key,
277 					 struct ecc_public_key *peer_eph_key,
278 					 struct sm2_kep_parms *p);
279 
280 /*
281  * Verifies a SHA-256 hash, doesn't require crypto_init() to be called in
282  * advance and has as few dependencies as possible.
283  *
284  * This function is primarily used by pager and early initialization code
285  * where the complete crypto library isn't available.
286  */
287 TEE_Result hash_sha256_check(const uint8_t *hash, const uint8_t *data,
288 		size_t data_size);
289 
290 /*
291  * Computes a SHA-512/256 hash, vetted conditioner as per NIST.SP.800-90B.
292  * It doesn't require crypto_init() to be called in advance and has as few
293  * dependencies as possible.
294  *
295  * This function could be used inside interrupt context where the crypto
296  * library can't be used due to mutex handling.
297  */
298 TEE_Result hash_sha512_256_compute(uint8_t *digest, const uint8_t *data,
299 		size_t data_size);
300 
301 #define CRYPTO_RNG_SRC_IS_QUICK(sid) (!!((sid) & 1))
302 
303 /*
304  * enum crypto_rng_src - RNG entropy source
305  *
306  * Identifiers for different RNG entropy sources. The lowest bit indicates
307  * if the source is to be merely queued (bit is 1) or if it's delivered
308  * directly to the pool. The difference is that in the latter case RPC to
309  * normal world can be performed and in the former it must not.
310  */
311 enum crypto_rng_src {
312 	CRYPTO_RNG_SRC_JITTER_SESSION	= (0 << 1 | 0),
313 	CRYPTO_RNG_SRC_JITTER_RPC	= (1 << 1 | 1),
314 	CRYPTO_RNG_SRC_NONSECURE	= (1 << 1 | 0),
315 };
316 
317 /*
318  * crypto_rng_init() - initialize the RNG
319  * @data:	buffer with initial seed
320  * @dlen:	length of @data
321  */
322 TEE_Result crypto_rng_init(const void *data, size_t dlen);
323 
324 /*
325  * crypto_rng_add_event() - supply entropy to RNG from a source
326  * @sid:	Source identifier, should be unique for a specific source
327  * @pnum:	Pool number, acquired using crypto_rng_get_next_pool_num()
328  * @data:	Data associated with the event
329  * @dlen:	Length of @data
330  *
331  * @sid controls whether the event is merly queued in a ring buffer or if
332  * it's added to one of the pools directly. If CRYPTO_RNG_SRC_IS_QUICK() is
333  * true (lowest bit set) events are queue otherwise added to corresponding
334  * pool. If CRYPTO_RNG_SRC_IS_QUICK() is false, eventual queued events are
335  * added to their queues too.
336  */
337 void crypto_rng_add_event(enum crypto_rng_src sid, unsigned int *pnum,
338 			  const void *data, size_t dlen);
339 
340 /*
341  * crypto_rng_read() - read cryptograhically secure RNG
342  * @buf:	Buffer to hold the data
343  * @len:	Length of buffer.
344  *
345  * Eventual queued events are also added to their pools during this
346  * function call.
347  */
348 TEE_Result crypto_rng_read(void *buf, size_t len);
349 
350 /*
351  * crypto_aes_expand_enc_key() - Expand an AES key
352  * @key:	AES key buffer
353  * @key_len:	Size of the @key buffer in bytes
354  * @enc_key:	Expanded AES encryption key buffer
355  * @enc_keylen: Size of the @enc_key buffer in bytes
356  * @rounds:	Number of rounds to be used during encryption
357  */
358 TEE_Result crypto_aes_expand_enc_key(const void *key, size_t key_len,
359 				     void *enc_key, size_t enc_keylen,
360 				     unsigned int *rounds);
361 
362 /*
363  * crypto_aes_enc_block() - Encrypt an AES block
364  * @enc_key:	Expanded AES encryption key
365  * @enc_keylen:	Size of @enc_key in bytes
366  * @rounds:	Number of rounds
367  * @src:	Source buffer of one AES block (16 bytes)
368  * @dst:	Destination buffer of one AES block (16 bytes)
369  */
370 void crypto_aes_enc_block(const void *enc_key, size_t enc_keylen,
371 			  unsigned int rounds, const void *src, void *dst);
372 
373 #endif /* __CRYPTO_CRYPTO_H */
374