xref: /optee_os/core/include/crypto/crypto.h (revision a3ca687d03b40041ad2de66ae8cd5a29f468ba38)
1 /* SPDX-License-Identifier: BSD-2-Clause */
2 /*
3  * Copyright (c) 2014-2017, Linaro Limited
4  */
5 
6 /*
7  * This is the Cryptographic Provider API (CP API).
8  *
9  * This defines how most crypto syscalls that implement the Cryptographic
10  * Operations API can invoke the actual providers of cryptographic algorithms
11  * (such as LibTomCrypt).
12  *
13  * To add a new provider, you need to provide an implementation of this
14  * interface.
15  *
16  * The following parameters are commonly used.
17  *
18  * @ctx: context allocated by the syscall, for later use by the algorithm
19  * @algo: algorithm identifier (TEE_ALG_*)
20  */
21 
22 #ifndef __CRYPTO_CRYPTO_H
23 #define __CRYPTO_CRYPTO_H
24 
25 #include <tee_api_types.h>
26 
27 TEE_Result crypto_init(void);
28 
29 /* Message digest functions */
30 TEE_Result crypto_hash_alloc_ctx(void **ctx, uint32_t algo);
31 TEE_Result crypto_hash_init(void *ctx);
32 TEE_Result crypto_hash_update(void *ctx, const uint8_t *data, size_t len);
33 TEE_Result crypto_hash_final(void *ctx, uint8_t *digest, size_t len);
34 void crypto_hash_free_ctx(void *ctx);
35 void crypto_hash_copy_state(void *dst_ctx, void *src_ctx);
36 
37 /* Symmetric ciphers */
38 TEE_Result crypto_cipher_alloc_ctx(void **ctx, uint32_t algo);
39 TEE_Result crypto_cipher_init(void *ctx, TEE_OperationMode mode,
40 			      const uint8_t *key1, size_t key1_len,
41 			      const uint8_t *key2, size_t key2_len,
42 			      const uint8_t *iv, size_t iv_len);
43 TEE_Result crypto_cipher_update(void *ctx, TEE_OperationMode mode,
44 				bool last_block, const uint8_t *data,
45 				size_t len, uint8_t *dst);
46 void crypto_cipher_final(void *ctx);
47 TEE_Result crypto_cipher_get_block_size(uint32_t algo, size_t *size);
48 void crypto_cipher_free_ctx(void *ctx);
49 void crypto_cipher_copy_state(void *dst_ctx, void *src_ctx);
50 
51 /* Message Authentication Code functions */
52 TEE_Result crypto_mac_alloc_ctx(void **ctx, uint32_t algo);
53 TEE_Result crypto_mac_init(void *ctx, const uint8_t *key, size_t len);
54 TEE_Result crypto_mac_update(void *ctx, const uint8_t *data, size_t len);
55 TEE_Result crypto_mac_final(void *ctx, uint8_t *digest, size_t digest_len);
56 void crypto_mac_free_ctx(void *ctx);
57 void crypto_mac_copy_state(void *dst_ctx, void *src_ctx);
58 
59 /* Authenticated encryption */
60 TEE_Result crypto_authenc_alloc_ctx(void **ctx, uint32_t algo);
61 TEE_Result crypto_authenc_init(void *ctx, TEE_OperationMode mode,
62 			       const uint8_t *key, size_t key_len,
63 			       const uint8_t *nonce, size_t nonce_len,
64 			       size_t tag_len, size_t aad_len,
65 			       size_t payload_len);
66 TEE_Result crypto_authenc_update_aad(void *ctx, TEE_OperationMode mode,
67 				     const uint8_t *data, size_t len);
68 TEE_Result crypto_authenc_update_payload(void *ctx, TEE_OperationMode mode,
69 					 const uint8_t *src_data,
70 					 size_t src_len, uint8_t *dst_data,
71 					 size_t *dst_len);
72 TEE_Result crypto_authenc_enc_final(void *ctx, const uint8_t *src_data,
73 				    size_t src_len, uint8_t *dst_data,
74 				    size_t *dst_len, uint8_t *dst_tag,
75 				    size_t *dst_tag_len);
76 TEE_Result crypto_authenc_dec_final(void *ctx, const uint8_t *src_data,
77 				    size_t src_len, uint8_t *dst_data,
78 				    size_t *dst_len, const uint8_t *tag,
79 				    size_t tag_len);
80 void crypto_authenc_final(void *ctx);
81 void crypto_authenc_free_ctx(void *ctx);
82 void crypto_authenc_copy_state(void *dst_ctx, void *src_ctx);
83 
84 #if defined(CFG_NXP_SE05X)
85 TEE_Result crypto_enable_scp03(unsigned int rotate_keys);
86 #endif
87 
88 /* Implementation-defined big numbers */
89 
90 /*
91  * Allocate a bignum capable of holding an unsigned integer value of
92  * up to bitsize bits
93  */
94 struct bignum *crypto_bignum_allocate(size_t size_bits);
95 TEE_Result crypto_bignum_bin2bn(const uint8_t *from, size_t fromsize,
96 				struct bignum *to);
97 size_t crypto_bignum_num_bytes(struct bignum *a);
98 size_t crypto_bignum_num_bits(struct bignum *a);
99 void crypto_bignum_bn2bin(const struct bignum *from, uint8_t *to);
100 void crypto_bignum_copy(struct bignum *to, const struct bignum *from);
101 void crypto_bignum_free(struct bignum *a);
102 void crypto_bignum_clear(struct bignum *a);
103 
104 /* return -1 if a<b, 0 if a==b, +1 if a>b */
105 int32_t crypto_bignum_compare(struct bignum *a, struct bignum *b);
106 
107 /* Asymmetric algorithms */
108 
109 struct rsa_keypair {
110 	struct bignum *e;	/* Public exponent */
111 	struct bignum *d;	/* Private exponent */
112 	struct bignum *n;	/* Modulus */
113 
114 	/* Optional CRT parameters (all NULL if unused) */
115 	struct bignum *p;	/* N = pq */
116 	struct bignum *q;
117 	struct bignum *qp;	/* 1/q mod p */
118 	struct bignum *dp;	/* d mod (p-1) */
119 	struct bignum *dq;	/* d mod (q-1) */
120 };
121 
122 struct rsa_public_key {
123 	struct bignum *e;	/* Public exponent */
124 	struct bignum *n;	/* Modulus */
125 };
126 
127 struct dsa_keypair {
128 	struct bignum *g;	/* Generator of subgroup (public) */
129 	struct bignum *p;	/* Prime number (public) */
130 	struct bignum *q;	/* Order of subgroup (public) */
131 	struct bignum *y;	/* Public key */
132 	struct bignum *x;	/* Private key */
133 };
134 
135 struct dsa_public_key {
136 	struct bignum *g;	/* Generator of subgroup (public) */
137 	struct bignum *p;	/* Prime number (public) */
138 	struct bignum *q;	/* Order of subgroup (public) */
139 	struct bignum *y;	/* Public key */
140 };
141 
142 struct dh_keypair {
143 	struct bignum *g;	/* Generator of Z_p (shared) */
144 	struct bignum *p;	/* Prime modulus (shared) */
145 	struct bignum *x;	/* Private key */
146 	struct bignum *y;	/* Public key y = g^x */
147 
148 	/*
149 	 * Optional parameters used by key generation.
150 	 * When not used, q == NULL and xbits == 0
151 	 */
152 	struct bignum *q;	/* x must be in the range [2, q-2] */
153 	uint32_t xbits;		/* Number of bits in the private key */
154 };
155 
156 struct ecc_public_key {
157 	struct bignum *x;	/* Public value x */
158 	struct bignum *y;	/* Public value y */
159 	uint32_t curve;	        /* Curve type */
160 	const struct crypto_ecc_public_ops *ops; /* Key Operations */
161 };
162 
163 struct ecc_keypair {
164 	struct bignum *d;	/* Private value */
165 	struct bignum *x;	/* Public value x */
166 	struct bignum *y;	/* Public value y */
167 	uint32_t curve;	        /* Curve type */
168 	const struct crypto_ecc_keypair_ops *ops; /* Key Operations */
169 };
170 
171 /*
172  * Key allocation functions
173  * Allocate the bignum's inside a key structure.
174  * TEE core will later use crypto_bignum_free().
175  */
176 TEE_Result crypto_acipher_alloc_rsa_keypair(struct rsa_keypair *s,
177 				size_t key_size_bits);
178 TEE_Result crypto_acipher_alloc_rsa_public_key(struct rsa_public_key *s,
179 				   size_t key_size_bits);
180 void crypto_acipher_free_rsa_public_key(struct rsa_public_key *s);
181 void crypto_acipher_free_rsa_keypair(struct rsa_keypair *s);
182 TEE_Result crypto_acipher_alloc_dsa_keypair(struct dsa_keypair *s,
183 				size_t key_size_bits);
184 TEE_Result crypto_acipher_alloc_dsa_public_key(struct dsa_public_key *s,
185 				   size_t key_size_bits);
186 TEE_Result crypto_acipher_alloc_dh_keypair(struct dh_keypair *s,
187 			       size_t key_size_bits);
188 TEE_Result crypto_acipher_alloc_ecc_public_key(struct ecc_public_key *s,
189 					       uint32_t key_type,
190 					       size_t key_size_bits);
191 TEE_Result crypto_acipher_alloc_ecc_keypair(struct ecc_keypair *s,
192 					    uint32_t key_type,
193 					    size_t key_size_bits);
194 void crypto_acipher_free_ecc_public_key(struct ecc_public_key *s);
195 
196 /*
197  * Key generation functions
198  */
199 TEE_Result crypto_acipher_gen_rsa_key(struct rsa_keypair *key, size_t key_size);
200 TEE_Result crypto_acipher_gen_dsa_key(struct dsa_keypair *key, size_t key_size);
201 TEE_Result crypto_acipher_gen_dh_key(struct dh_keypair *key, struct bignum *q,
202 				     size_t xbits, size_t key_size);
203 TEE_Result crypto_acipher_gen_ecc_key(struct ecc_keypair *key, size_t key_size);
204 
205 TEE_Result crypto_acipher_dh_shared_secret(struct dh_keypair *private_key,
206 					   struct bignum *public_key,
207 					   struct bignum *secret);
208 
209 TEE_Result crypto_acipher_rsanopad_decrypt(struct rsa_keypair *key,
210 					   const uint8_t *src, size_t src_len,
211 					   uint8_t *dst, size_t *dst_len);
212 TEE_Result crypto_acipher_rsanopad_encrypt(struct rsa_public_key *key,
213 					   const uint8_t *src, size_t src_len,
214 					   uint8_t *dst, size_t *dst_len);
215 TEE_Result crypto_acipher_rsaes_decrypt(uint32_t algo, struct rsa_keypair *key,
216 					const uint8_t *label, size_t label_len,
217 					const uint8_t *src, size_t src_len,
218 					uint8_t *dst, size_t *dst_len);
219 TEE_Result crypto_acipher_rsaes_encrypt(uint32_t algo,
220 					struct rsa_public_key *key,
221 					const uint8_t *label, size_t label_len,
222 					const uint8_t *src, size_t src_len,
223 					uint8_t *dst, size_t *dst_len);
224 /* RSA SSA sign/verify: if salt_len == -1, use default value */
225 TEE_Result crypto_acipher_rsassa_sign(uint32_t algo, struct rsa_keypair *key,
226 				      int salt_len, const uint8_t *msg,
227 				      size_t msg_len, uint8_t *sig,
228 				      size_t *sig_len);
229 TEE_Result crypto_acipher_rsassa_verify(uint32_t algo,
230 					struct rsa_public_key *key,
231 					int salt_len, const uint8_t *msg,
232 					size_t msg_len, const uint8_t *sig,
233 					size_t sig_len);
234 TEE_Result crypto_acipher_dsa_sign(uint32_t algo, struct dsa_keypair *key,
235 				   const uint8_t *msg, size_t msg_len,
236 				   uint8_t *sig, size_t *sig_len);
237 TEE_Result crypto_acipher_dsa_verify(uint32_t algo, struct dsa_public_key *key,
238 				     const uint8_t *msg, size_t msg_len,
239 				     const uint8_t *sig, size_t sig_len);
240 TEE_Result crypto_acipher_ecc_sign(uint32_t algo, struct ecc_keypair *key,
241 				   const uint8_t *msg, size_t msg_len,
242 				   uint8_t *sig, size_t *sig_len);
243 TEE_Result crypto_acipher_ecc_verify(uint32_t algo, struct ecc_public_key *key,
244 				     const uint8_t *msg, size_t msg_len,
245 				     const uint8_t *sig, size_t sig_len);
246 TEE_Result crypto_acipher_ecc_shared_secret(struct ecc_keypair *private_key,
247 					    struct ecc_public_key *public_key,
248 					    void *secret,
249 					    unsigned long *secret_len);
250 TEE_Result crypto_acipher_sm2_pke_decrypt(struct ecc_keypair *key,
251 					  const uint8_t *src, size_t src_len,
252 					  uint8_t *dst, size_t *dst_len);
253 TEE_Result crypto_acipher_sm2_pke_encrypt(struct ecc_public_key *key,
254 					  const uint8_t *src, size_t src_len,
255 					  uint8_t *dst, size_t *dst_len);
256 
257 struct sm2_kep_parms {
258 	uint8_t *out;
259 	size_t out_len;
260 	bool is_initiator;
261 	const uint8_t *initiator_id;
262 	size_t initiator_id_len;
263 	const uint8_t *responder_id;
264 	size_t responder_id_len;
265 	const uint8_t *conf_in;
266 	size_t conf_in_len;
267 	uint8_t *conf_out;
268 	size_t conf_out_len;
269 };
270 
271 TEE_Result crypto_acipher_sm2_kep_derive(struct ecc_keypair *my_key,
272 					 struct ecc_keypair *my_eph_key,
273 					 struct ecc_public_key *peer_key,
274 					 struct ecc_public_key *peer_eph_key,
275 					 struct sm2_kep_parms *p);
276 
277 /*
278  * Verifies a SHA-256 hash, doesn't require crypto_init() to be called in
279  * advance and has as few dependencies as possible.
280  *
281  * This function is primarily used by pager and early initialization code
282  * where the complete crypto library isn't available.
283  */
284 TEE_Result hash_sha256_check(const uint8_t *hash, const uint8_t *data,
285 		size_t data_size);
286 
287 /*
288  * Computes a SHA-512/256 hash, vetted conditioner as per NIST.SP.800-90B.
289  * It doesn't require crypto_init() to be called in advance and has as few
290  * dependencies as possible.
291  *
292  * This function could be used inside interrupt context where the crypto
293  * library can't be used due to mutex handling.
294  */
295 TEE_Result hash_sha512_256_compute(uint8_t *digest, const uint8_t *data,
296 		size_t data_size);
297 
298 #define CRYPTO_RNG_SRC_IS_QUICK(sid) (!!((sid) & 1))
299 
300 /*
301  * enum crypto_rng_src - RNG entropy source
302  *
303  * Identifiers for different RNG entropy sources. The lowest bit indicates
304  * if the source is to be merely queued (bit is 1) or if it's delivered
305  * directly to the pool. The difference is that in the latter case RPC to
306  * normal world can be performed and in the former it must not.
307  */
308 enum crypto_rng_src {
309 	CRYPTO_RNG_SRC_JITTER_SESSION	= (0 << 1 | 0),
310 	CRYPTO_RNG_SRC_JITTER_RPC	= (1 << 1 | 1),
311 	CRYPTO_RNG_SRC_NONSECURE	= (1 << 1 | 0),
312 };
313 
314 /*
315  * crypto_rng_init() - initialize the RNG
316  * @data:	buffer with initial seed
317  * @dlen:	length of @data
318  */
319 TEE_Result crypto_rng_init(const void *data, size_t dlen);
320 
321 /*
322  * crypto_rng_add_event() - supply entropy to RNG from a source
323  * @sid:	Source identifier, should be unique for a specific source
324  * @pnum:	Pool number, acquired using crypto_rng_get_next_pool_num()
325  * @data:	Data associated with the event
326  * @dlen:	Length of @data
327  *
328  * @sid controls whether the event is merly queued in a ring buffer or if
329  * it's added to one of the pools directly. If CRYPTO_RNG_SRC_IS_QUICK() is
330  * true (lowest bit set) events are queue otherwise added to corresponding
331  * pool. If CRYPTO_RNG_SRC_IS_QUICK() is false, eventual queued events are
332  * added to their queues too.
333  */
334 void crypto_rng_add_event(enum crypto_rng_src sid, unsigned int *pnum,
335 			  const void *data, size_t dlen);
336 
337 /*
338  * crypto_rng_read() - read cryptograhically secure RNG
339  * @buf:	Buffer to hold the data
340  * @len:	Length of buffer.
341  *
342  * Eventual queued events are also added to their pools during this
343  * function call.
344  */
345 TEE_Result crypto_rng_read(void *buf, size_t len);
346 
347 /*
348  * crypto_aes_expand_enc_key() - Expand an AES key
349  * @key:	AES key buffer
350  * @key_len:	Size of the @key buffer in bytes
351  * @enc_key:	Expanded AES encryption key buffer
352  * @enc_keylen: Size of the @enc_key buffer in bytes
353  * @rounds:	Number of rounds to be used during encryption
354  */
355 TEE_Result crypto_aes_expand_enc_key(const void *key, size_t key_len,
356 				     void *enc_key, size_t enc_keylen,
357 				     unsigned int *rounds);
358 
359 /*
360  * crypto_aes_enc_block() - Encrypt an AES block
361  * @enc_key:	Expanded AES encryption key
362  * @enc_keylen:	Size of @enc_key in bytes
363  * @rounds:	Number of rounds
364  * @src:	Source buffer of one AES block (16 bytes)
365  * @dst:	Destination buffer of one AES block (16 bytes)
366  */
367 void crypto_aes_enc_block(const void *enc_key, size_t enc_keylen,
368 			  unsigned int rounds, const void *src, void *dst);
369 
370 #endif /* __CRYPTO_CRYPTO_H */
371