1 /* SPDX-License-Identifier: BSD-2-Clause */ 2 /* 3 * Copyright (c) 2014-2017, Linaro Limited 4 */ 5 6 /* 7 * This is the Cryptographic Provider API (CP API). 8 * 9 * This defines how most crypto syscalls that implement the Cryptographic 10 * Operations API can invoke the actual providers of cryptographic algorithms 11 * (such as LibTomCrypt). 12 * 13 * To add a new provider, you need to provide an implementation of this 14 * interface. 15 * 16 * The following parameters are commonly used. 17 * 18 * @ctx: context allocated by the syscall, for later use by the algorithm 19 * @algo: algorithm identifier (TEE_ALG_*) 20 */ 21 22 #ifndef __CRYPTO_CRYPTO_H 23 #define __CRYPTO_CRYPTO_H 24 25 #include <tee_api_types.h> 26 27 TEE_Result crypto_init(void); 28 29 /* Message digest functions */ 30 TEE_Result crypto_hash_alloc_ctx(void **ctx, uint32_t algo); 31 TEE_Result crypto_hash_init(void *ctx); 32 TEE_Result crypto_hash_update(void *ctx, const uint8_t *data, size_t len); 33 TEE_Result crypto_hash_final(void *ctx, uint8_t *digest, size_t len); 34 void crypto_hash_free_ctx(void *ctx); 35 void crypto_hash_copy_state(void *dst_ctx, void *src_ctx); 36 37 /* Symmetric ciphers */ 38 TEE_Result crypto_cipher_alloc_ctx(void **ctx, uint32_t algo); 39 TEE_Result crypto_cipher_init(void *ctx, TEE_OperationMode mode, 40 const uint8_t *key1, size_t key1_len, 41 const uint8_t *key2, size_t key2_len, 42 const uint8_t *iv, size_t iv_len); 43 TEE_Result crypto_cipher_update(void *ctx, TEE_OperationMode mode, 44 bool last_block, const uint8_t *data, 45 size_t len, uint8_t *dst); 46 void crypto_cipher_final(void *ctx); 47 TEE_Result crypto_cipher_get_block_size(uint32_t algo, size_t *size); 48 void crypto_cipher_free_ctx(void *ctx); 49 void crypto_cipher_copy_state(void *dst_ctx, void *src_ctx); 50 51 /* Message Authentication Code functions */ 52 TEE_Result crypto_mac_alloc_ctx(void **ctx, uint32_t algo); 53 TEE_Result crypto_mac_init(void *ctx, const uint8_t *key, size_t len); 54 TEE_Result crypto_mac_update(void *ctx, const uint8_t *data, size_t len); 55 TEE_Result crypto_mac_final(void *ctx, uint8_t *digest, size_t digest_len); 56 void crypto_mac_free_ctx(void *ctx); 57 void crypto_mac_copy_state(void *dst_ctx, void *src_ctx); 58 59 /* Authenticated encryption */ 60 TEE_Result crypto_authenc_alloc_ctx(void **ctx, uint32_t algo); 61 TEE_Result crypto_authenc_init(void *ctx, TEE_OperationMode mode, 62 const uint8_t *key, size_t key_len, 63 const uint8_t *nonce, size_t nonce_len, 64 size_t tag_len, size_t aad_len, 65 size_t payload_len); 66 TEE_Result crypto_authenc_update_aad(void *ctx, TEE_OperationMode mode, 67 const uint8_t *data, size_t len); 68 TEE_Result crypto_authenc_update_payload(void *ctx, TEE_OperationMode mode, 69 const uint8_t *src_data, 70 size_t src_len, uint8_t *dst_data, 71 size_t *dst_len); 72 TEE_Result crypto_authenc_enc_final(void *ctx, const uint8_t *src_data, 73 size_t src_len, uint8_t *dst_data, 74 size_t *dst_len, uint8_t *dst_tag, 75 size_t *dst_tag_len); 76 TEE_Result crypto_authenc_dec_final(void *ctx, const uint8_t *src_data, 77 size_t src_len, uint8_t *dst_data, 78 size_t *dst_len, const uint8_t *tag, 79 size_t tag_len); 80 void crypto_authenc_final(void *ctx); 81 void crypto_authenc_free_ctx(void *ctx); 82 void crypto_authenc_copy_state(void *dst_ctx, void *src_ctx); 83 84 #if defined(CFG_NXP_SE05X) 85 TEE_Result crypto_enable_scp03(unsigned int rotate_keys); 86 #endif 87 88 /* Implementation-defined big numbers */ 89 90 /* 91 * Allocate a bignum capable of holding an unsigned integer value of 92 * up to bitsize bits 93 */ 94 struct bignum *crypto_bignum_allocate(size_t size_bits); 95 TEE_Result crypto_bignum_bin2bn(const uint8_t *from, size_t fromsize, 96 struct bignum *to); 97 size_t crypto_bignum_num_bytes(struct bignum *a); 98 size_t crypto_bignum_num_bits(struct bignum *a); 99 void crypto_bignum_bn2bin(const struct bignum *from, uint8_t *to); 100 void crypto_bignum_copy(struct bignum *to, const struct bignum *from); 101 void crypto_bignum_free(struct bignum *a); 102 void crypto_bignum_clear(struct bignum *a); 103 104 /* return -1 if a<b, 0 if a==b, +1 if a>b */ 105 int32_t crypto_bignum_compare(struct bignum *a, struct bignum *b); 106 107 /* Asymmetric algorithms */ 108 109 struct rsa_keypair { 110 struct bignum *e; /* Public exponent */ 111 struct bignum *d; /* Private exponent */ 112 struct bignum *n; /* Modulus */ 113 114 /* Optional CRT parameters (all NULL if unused) */ 115 struct bignum *p; /* N = pq */ 116 struct bignum *q; 117 struct bignum *qp; /* 1/q mod p */ 118 struct bignum *dp; /* d mod (p-1) */ 119 struct bignum *dq; /* d mod (q-1) */ 120 }; 121 122 struct rsa_public_key { 123 struct bignum *e; /* Public exponent */ 124 struct bignum *n; /* Modulus */ 125 }; 126 127 struct dsa_keypair { 128 struct bignum *g; /* Generator of subgroup (public) */ 129 struct bignum *p; /* Prime number (public) */ 130 struct bignum *q; /* Order of subgroup (public) */ 131 struct bignum *y; /* Public key */ 132 struct bignum *x; /* Private key */ 133 }; 134 135 struct dsa_public_key { 136 struct bignum *g; /* Generator of subgroup (public) */ 137 struct bignum *p; /* Prime number (public) */ 138 struct bignum *q; /* Order of subgroup (public) */ 139 struct bignum *y; /* Public key */ 140 }; 141 142 struct dh_keypair { 143 struct bignum *g; /* Generator of Z_p (shared) */ 144 struct bignum *p; /* Prime modulus (shared) */ 145 struct bignum *x; /* Private key */ 146 struct bignum *y; /* Public key y = g^x */ 147 148 /* 149 * Optional parameters used by key generation. 150 * When not used, q == NULL and xbits == 0 151 */ 152 struct bignum *q; /* x must be in the range [2, q-2] */ 153 uint32_t xbits; /* Number of bits in the private key */ 154 }; 155 156 struct ecc_public_key { 157 struct bignum *x; /* Public value x */ 158 struct bignum *y; /* Public value y */ 159 uint32_t curve; /* Curve type */ 160 const struct crypto_ecc_public_ops *ops; /* Key Operations */ 161 }; 162 163 struct ecc_keypair { 164 struct bignum *d; /* Private value */ 165 struct bignum *x; /* Public value x */ 166 struct bignum *y; /* Public value y */ 167 uint32_t curve; /* Curve type */ 168 const struct crypto_ecc_keypair_ops *ops; /* Key Operations */ 169 }; 170 171 /* 172 * Key allocation functions 173 * Allocate the bignum's inside a key structure. 174 * TEE core will later use crypto_bignum_free(). 175 */ 176 TEE_Result crypto_acipher_alloc_rsa_keypair(struct rsa_keypair *s, 177 size_t key_size_bits); 178 TEE_Result crypto_acipher_alloc_rsa_public_key(struct rsa_public_key *s, 179 size_t key_size_bits); 180 void crypto_acipher_free_rsa_public_key(struct rsa_public_key *s); 181 void crypto_acipher_free_rsa_keypair(struct rsa_keypair *s); 182 TEE_Result crypto_acipher_alloc_dsa_keypair(struct dsa_keypair *s, 183 size_t key_size_bits); 184 TEE_Result crypto_acipher_alloc_dsa_public_key(struct dsa_public_key *s, 185 size_t key_size_bits); 186 TEE_Result crypto_acipher_alloc_dh_keypair(struct dh_keypair *s, 187 size_t key_size_bits); 188 TEE_Result crypto_acipher_alloc_ecc_public_key(struct ecc_public_key *s, 189 uint32_t key_type, 190 size_t key_size_bits); 191 TEE_Result crypto_acipher_alloc_ecc_keypair(struct ecc_keypair *s, 192 uint32_t key_type, 193 size_t key_size_bits); 194 void crypto_acipher_free_ecc_public_key(struct ecc_public_key *s); 195 196 /* 197 * Key generation functions 198 */ 199 TEE_Result crypto_acipher_gen_rsa_key(struct rsa_keypair *key, size_t key_size); 200 TEE_Result crypto_acipher_gen_dsa_key(struct dsa_keypair *key, size_t key_size); 201 TEE_Result crypto_acipher_gen_dh_key(struct dh_keypair *key, struct bignum *q, 202 size_t xbits, size_t key_size); 203 TEE_Result crypto_acipher_gen_ecc_key(struct ecc_keypair *key, size_t key_size); 204 205 TEE_Result crypto_acipher_dh_shared_secret(struct dh_keypair *private_key, 206 struct bignum *public_key, 207 struct bignum *secret); 208 209 TEE_Result crypto_acipher_rsanopad_decrypt(struct rsa_keypair *key, 210 const uint8_t *src, size_t src_len, 211 uint8_t *dst, size_t *dst_len); 212 TEE_Result crypto_acipher_rsanopad_encrypt(struct rsa_public_key *key, 213 const uint8_t *src, size_t src_len, 214 uint8_t *dst, size_t *dst_len); 215 TEE_Result crypto_acipher_rsaes_decrypt(uint32_t algo, struct rsa_keypair *key, 216 const uint8_t *label, size_t label_len, 217 const uint8_t *src, size_t src_len, 218 uint8_t *dst, size_t *dst_len); 219 TEE_Result crypto_acipher_rsaes_encrypt(uint32_t algo, 220 struct rsa_public_key *key, 221 const uint8_t *label, size_t label_len, 222 const uint8_t *src, size_t src_len, 223 uint8_t *dst, size_t *dst_len); 224 /* RSA SSA sign/verify: if salt_len == -1, use default value */ 225 TEE_Result crypto_acipher_rsassa_sign(uint32_t algo, struct rsa_keypair *key, 226 int salt_len, const uint8_t *msg, 227 size_t msg_len, uint8_t *sig, 228 size_t *sig_len); 229 TEE_Result crypto_acipher_rsassa_verify(uint32_t algo, 230 struct rsa_public_key *key, 231 int salt_len, const uint8_t *msg, 232 size_t msg_len, const uint8_t *sig, 233 size_t sig_len); 234 TEE_Result crypto_acipher_dsa_sign(uint32_t algo, struct dsa_keypair *key, 235 const uint8_t *msg, size_t msg_len, 236 uint8_t *sig, size_t *sig_len); 237 TEE_Result crypto_acipher_dsa_verify(uint32_t algo, struct dsa_public_key *key, 238 const uint8_t *msg, size_t msg_len, 239 const uint8_t *sig, size_t sig_len); 240 TEE_Result crypto_acipher_ecc_sign(uint32_t algo, struct ecc_keypair *key, 241 const uint8_t *msg, size_t msg_len, 242 uint8_t *sig, size_t *sig_len); 243 TEE_Result crypto_acipher_ecc_verify(uint32_t algo, struct ecc_public_key *key, 244 const uint8_t *msg, size_t msg_len, 245 const uint8_t *sig, size_t sig_len); 246 TEE_Result crypto_acipher_ecc_shared_secret(struct ecc_keypair *private_key, 247 struct ecc_public_key *public_key, 248 void *secret, 249 unsigned long *secret_len); 250 TEE_Result crypto_acipher_sm2_pke_decrypt(struct ecc_keypair *key, 251 const uint8_t *src, size_t src_len, 252 uint8_t *dst, size_t *dst_len); 253 TEE_Result crypto_acipher_sm2_pke_encrypt(struct ecc_public_key *key, 254 const uint8_t *src, size_t src_len, 255 uint8_t *dst, size_t *dst_len); 256 257 struct sm2_kep_parms { 258 uint8_t *out; 259 size_t out_len; 260 bool is_initiator; 261 const uint8_t *initiator_id; 262 size_t initiator_id_len; 263 const uint8_t *responder_id; 264 size_t responder_id_len; 265 const uint8_t *conf_in; 266 size_t conf_in_len; 267 uint8_t *conf_out; 268 size_t conf_out_len; 269 }; 270 271 TEE_Result crypto_acipher_sm2_kep_derive(struct ecc_keypair *my_key, 272 struct ecc_keypair *my_eph_key, 273 struct ecc_public_key *peer_key, 274 struct ecc_public_key *peer_eph_key, 275 struct sm2_kep_parms *p); 276 277 /* 278 * Verifies a SHA-256 hash, doesn't require crypto_init() to be called in 279 * advance and has as few dependencies as possible. 280 * 281 * This function is primarily used by pager and early initialization code 282 * where the complete crypto library isn't available. 283 */ 284 TEE_Result hash_sha256_check(const uint8_t *hash, const uint8_t *data, 285 size_t data_size); 286 287 /* 288 * Computes a SHA-512/256 hash, vetted conditioner as per NIST.SP.800-90B. 289 * It doesn't require crypto_init() to be called in advance and has as few 290 * dependencies as possible. 291 * 292 * This function could be used inside interrupt context where the crypto 293 * library can't be used due to mutex handling. 294 */ 295 TEE_Result hash_sha512_256_compute(uint8_t *digest, const uint8_t *data, 296 size_t data_size); 297 298 #define CRYPTO_RNG_SRC_IS_QUICK(sid) (!!((sid) & 1)) 299 300 /* 301 * enum crypto_rng_src - RNG entropy source 302 * 303 * Identifiers for different RNG entropy sources. The lowest bit indicates 304 * if the source is to be merely queued (bit is 1) or if it's delivered 305 * directly to the pool. The difference is that in the latter case RPC to 306 * normal world can be performed and in the former it must not. 307 */ 308 enum crypto_rng_src { 309 CRYPTO_RNG_SRC_JITTER_SESSION = (0 << 1 | 0), 310 CRYPTO_RNG_SRC_JITTER_RPC = (1 << 1 | 1), 311 CRYPTO_RNG_SRC_NONSECURE = (1 << 1 | 0), 312 }; 313 314 /* 315 * crypto_rng_init() - initialize the RNG 316 * @data: buffer with initial seed 317 * @dlen: length of @data 318 */ 319 TEE_Result crypto_rng_init(const void *data, size_t dlen); 320 321 /* 322 * crypto_rng_add_event() - supply entropy to RNG from a source 323 * @sid: Source identifier, should be unique for a specific source 324 * @pnum: Pool number, acquired using crypto_rng_get_next_pool_num() 325 * @data: Data associated with the event 326 * @dlen: Length of @data 327 * 328 * @sid controls whether the event is merly queued in a ring buffer or if 329 * it's added to one of the pools directly. If CRYPTO_RNG_SRC_IS_QUICK() is 330 * true (lowest bit set) events are queue otherwise added to corresponding 331 * pool. If CRYPTO_RNG_SRC_IS_QUICK() is false, eventual queued events are 332 * added to their queues too. 333 */ 334 void crypto_rng_add_event(enum crypto_rng_src sid, unsigned int *pnum, 335 const void *data, size_t dlen); 336 337 /* 338 * crypto_rng_read() - read cryptograhically secure RNG 339 * @buf: Buffer to hold the data 340 * @len: Length of buffer. 341 * 342 * Eventual queued events are also added to their pools during this 343 * function call. 344 */ 345 TEE_Result crypto_rng_read(void *buf, size_t len); 346 347 /* 348 * crypto_aes_expand_enc_key() - Expand an AES key 349 * @key: AES key buffer 350 * @key_len: Size of the @key buffer in bytes 351 * @enc_key: Expanded AES encryption key buffer 352 * @enc_keylen: Size of the @enc_key buffer in bytes 353 * @rounds: Number of rounds to be used during encryption 354 */ 355 TEE_Result crypto_aes_expand_enc_key(const void *key, size_t key_len, 356 void *enc_key, size_t enc_keylen, 357 unsigned int *rounds); 358 359 /* 360 * crypto_aes_enc_block() - Encrypt an AES block 361 * @enc_key: Expanded AES encryption key 362 * @enc_keylen: Size of @enc_key in bytes 363 * @rounds: Number of rounds 364 * @src: Source buffer of one AES block (16 bytes) 365 * @dst: Destination buffer of one AES block (16 bytes) 366 */ 367 void crypto_aes_enc_block(const void *enc_key, size_t enc_keylen, 368 unsigned int rounds, const void *src, void *dst); 369 370 #endif /* __CRYPTO_CRYPTO_H */ 371