1 /* SPDX-License-Identifier: BSD-2-Clause */ 2 /* 3 * Copyright (c) 2014-2017, Linaro Limited 4 */ 5 6 /* 7 * This is the Cryptographic Provider API (CP API). 8 * 9 * This defines how most crypto syscalls that implement the Cryptographic 10 * Operations API can invoke the actual providers of cryptographic algorithms 11 * (such as LibTomCrypt). 12 * 13 * To add a new provider, you need to provide an implementation of this 14 * interface. 15 * 16 * The following parameters are commonly used. 17 * 18 * @ctx: context allocated by the syscall, for later use by the algorithm 19 * @algo: algorithm identifier (TEE_ALG_*) 20 */ 21 22 #ifndef __CRYPTO_CRYPTO_H 23 #define __CRYPTO_CRYPTO_H 24 25 #include <tee_api_types.h> 26 27 TEE_Result crypto_init(void); 28 29 /* Message digest functions */ 30 TEE_Result crypto_hash_alloc_ctx(void **ctx, uint32_t algo); 31 TEE_Result crypto_hash_init(void *ctx); 32 TEE_Result crypto_hash_update(void *ctx, const uint8_t *data, size_t len); 33 TEE_Result crypto_hash_final(void *ctx, uint8_t *digest, size_t len); 34 void crypto_hash_free_ctx(void *ctx); 35 void crypto_hash_copy_state(void *dst_ctx, void *src_ctx); 36 37 /* Symmetric ciphers */ 38 TEE_Result crypto_cipher_alloc_ctx(void **ctx, uint32_t algo); 39 TEE_Result crypto_cipher_init(void *ctx, TEE_OperationMode mode, 40 const uint8_t *key1, size_t key1_len, 41 const uint8_t *key2, size_t key2_len, 42 const uint8_t *iv, size_t iv_len); 43 TEE_Result crypto_cipher_update(void *ctx, TEE_OperationMode mode, 44 bool last_block, const uint8_t *data, 45 size_t len, uint8_t *dst); 46 void crypto_cipher_final(void *ctx); 47 TEE_Result crypto_cipher_get_block_size(uint32_t algo, size_t *size); 48 void crypto_cipher_free_ctx(void *ctx); 49 void crypto_cipher_copy_state(void *dst_ctx, void *src_ctx); 50 51 /* Message Authentication Code functions */ 52 TEE_Result crypto_mac_alloc_ctx(void **ctx, uint32_t algo); 53 TEE_Result crypto_mac_init(void *ctx, const uint8_t *key, size_t len); 54 TEE_Result crypto_mac_update(void *ctx, const uint8_t *data, size_t len); 55 TEE_Result crypto_mac_final(void *ctx, uint8_t *digest, size_t digest_len); 56 void crypto_mac_free_ctx(void *ctx); 57 void crypto_mac_copy_state(void *dst_ctx, void *src_ctx); 58 59 /* Authenticated encryption */ 60 TEE_Result crypto_authenc_alloc_ctx(void **ctx, uint32_t algo); 61 TEE_Result crypto_authenc_init(void *ctx, TEE_OperationMode mode, 62 const uint8_t *key, size_t key_len, 63 const uint8_t *nonce, size_t nonce_len, 64 size_t tag_len, size_t aad_len, 65 size_t payload_len); 66 TEE_Result crypto_authenc_update_aad(void *ctx, TEE_OperationMode mode, 67 const uint8_t *data, size_t len); 68 TEE_Result crypto_authenc_update_payload(void *ctx, TEE_OperationMode mode, 69 const uint8_t *src_data, 70 size_t src_len, uint8_t *dst_data, 71 size_t *dst_len); 72 TEE_Result crypto_authenc_enc_final(void *ctx, const uint8_t *src_data, 73 size_t src_len, uint8_t *dst_data, 74 size_t *dst_len, uint8_t *dst_tag, 75 size_t *dst_tag_len); 76 TEE_Result crypto_authenc_dec_final(void *ctx, const uint8_t *src_data, 77 size_t src_len, uint8_t *dst_data, 78 size_t *dst_len, const uint8_t *tag, 79 size_t tag_len); 80 void crypto_authenc_final(void *ctx); 81 void crypto_authenc_free_ctx(void *ctx); 82 void crypto_authenc_copy_state(void *dst_ctx, void *src_ctx); 83 84 #if defined(CFG_NXP_SE05X) 85 TEE_Result crypto_enable_scp03(unsigned int rotate_keys); 86 #endif 87 88 /* Informs crypto that the data in the buffer will be removed from storage */ 89 void crypto_storage_obj_del(uint8_t *data, size_t len); 90 91 /* Implementation-defined big numbers */ 92 93 /* 94 * Allocate a bignum capable of holding an unsigned integer value of 95 * up to bitsize bits 96 */ 97 struct bignum *crypto_bignum_allocate(size_t size_bits); 98 TEE_Result crypto_bignum_bin2bn(const uint8_t *from, size_t fromsize, 99 struct bignum *to); 100 size_t crypto_bignum_num_bytes(struct bignum *a); 101 size_t crypto_bignum_num_bits(struct bignum *a); 102 void crypto_bignum_bn2bin(const struct bignum *from, uint8_t *to); 103 void crypto_bignum_copy(struct bignum *to, const struct bignum *from); 104 void crypto_bignum_free(struct bignum *a); 105 void crypto_bignum_clear(struct bignum *a); 106 107 /* return -1 if a<b, 0 if a==b, +1 if a>b */ 108 int32_t crypto_bignum_compare(struct bignum *a, struct bignum *b); 109 110 /* Asymmetric algorithms */ 111 112 struct rsa_keypair { 113 struct bignum *e; /* Public exponent */ 114 struct bignum *d; /* Private exponent */ 115 struct bignum *n; /* Modulus */ 116 117 /* Optional CRT parameters (all NULL if unused) */ 118 struct bignum *p; /* N = pq */ 119 struct bignum *q; 120 struct bignum *qp; /* 1/q mod p */ 121 struct bignum *dp; /* d mod (p-1) */ 122 struct bignum *dq; /* d mod (q-1) */ 123 }; 124 125 struct rsa_public_key { 126 struct bignum *e; /* Public exponent */ 127 struct bignum *n; /* Modulus */ 128 }; 129 130 struct dsa_keypair { 131 struct bignum *g; /* Generator of subgroup (public) */ 132 struct bignum *p; /* Prime number (public) */ 133 struct bignum *q; /* Order of subgroup (public) */ 134 struct bignum *y; /* Public key */ 135 struct bignum *x; /* Private key */ 136 }; 137 138 struct dsa_public_key { 139 struct bignum *g; /* Generator of subgroup (public) */ 140 struct bignum *p; /* Prime number (public) */ 141 struct bignum *q; /* Order of subgroup (public) */ 142 struct bignum *y; /* Public key */ 143 }; 144 145 struct dh_keypair { 146 struct bignum *g; /* Generator of Z_p (shared) */ 147 struct bignum *p; /* Prime modulus (shared) */ 148 struct bignum *x; /* Private key */ 149 struct bignum *y; /* Public key y = g^x */ 150 151 /* 152 * Optional parameters used by key generation. 153 * When not used, q == NULL and xbits == 0 154 */ 155 struct bignum *q; /* x must be in the range [2, q-2] */ 156 uint32_t xbits; /* Number of bits in the private key */ 157 }; 158 159 struct ecc_public_key { 160 struct bignum *x; /* Public value x */ 161 struct bignum *y; /* Public value y */ 162 uint32_t curve; /* Curve type */ 163 const struct crypto_ecc_public_ops *ops; /* Key Operations */ 164 }; 165 166 struct ecc_keypair { 167 struct bignum *d; /* Private value */ 168 struct bignum *x; /* Public value x */ 169 struct bignum *y; /* Public value y */ 170 uint32_t curve; /* Curve type */ 171 const struct crypto_ecc_keypair_ops *ops; /* Key Operations */ 172 }; 173 174 /* 175 * Key allocation functions 176 * Allocate the bignum's inside a key structure. 177 * TEE core will later use crypto_bignum_free(). 178 */ 179 TEE_Result crypto_acipher_alloc_rsa_keypair(struct rsa_keypair *s, 180 size_t key_size_bits); 181 TEE_Result crypto_acipher_alloc_rsa_public_key(struct rsa_public_key *s, 182 size_t key_size_bits); 183 void crypto_acipher_free_rsa_public_key(struct rsa_public_key *s); 184 void crypto_acipher_free_rsa_keypair(struct rsa_keypair *s); 185 TEE_Result crypto_acipher_alloc_dsa_keypair(struct dsa_keypair *s, 186 size_t key_size_bits); 187 TEE_Result crypto_acipher_alloc_dsa_public_key(struct dsa_public_key *s, 188 size_t key_size_bits); 189 TEE_Result crypto_acipher_alloc_dh_keypair(struct dh_keypair *s, 190 size_t key_size_bits); 191 TEE_Result crypto_acipher_alloc_ecc_public_key(struct ecc_public_key *s, 192 uint32_t key_type, 193 size_t key_size_bits); 194 TEE_Result crypto_acipher_alloc_ecc_keypair(struct ecc_keypair *s, 195 uint32_t key_type, 196 size_t key_size_bits); 197 void crypto_acipher_free_ecc_public_key(struct ecc_public_key *s); 198 199 /* 200 * Key generation functions 201 */ 202 TEE_Result crypto_acipher_gen_rsa_key(struct rsa_keypair *key, size_t key_size); 203 TEE_Result crypto_acipher_gen_dsa_key(struct dsa_keypair *key, size_t key_size); 204 TEE_Result crypto_acipher_gen_dh_key(struct dh_keypair *key, struct bignum *q, 205 size_t xbits, size_t key_size); 206 TEE_Result crypto_acipher_gen_ecc_key(struct ecc_keypair *key, size_t key_size); 207 208 TEE_Result crypto_acipher_dh_shared_secret(struct dh_keypair *private_key, 209 struct bignum *public_key, 210 struct bignum *secret); 211 212 TEE_Result crypto_acipher_rsanopad_decrypt(struct rsa_keypair *key, 213 const uint8_t *src, size_t src_len, 214 uint8_t *dst, size_t *dst_len); 215 TEE_Result crypto_acipher_rsanopad_encrypt(struct rsa_public_key *key, 216 const uint8_t *src, size_t src_len, 217 uint8_t *dst, size_t *dst_len); 218 TEE_Result crypto_acipher_rsaes_decrypt(uint32_t algo, struct rsa_keypair *key, 219 const uint8_t *label, size_t label_len, 220 const uint8_t *src, size_t src_len, 221 uint8_t *dst, size_t *dst_len); 222 TEE_Result crypto_acipher_rsaes_encrypt(uint32_t algo, 223 struct rsa_public_key *key, 224 const uint8_t *label, size_t label_len, 225 const uint8_t *src, size_t src_len, 226 uint8_t *dst, size_t *dst_len); 227 /* RSA SSA sign/verify: if salt_len == -1, use default value */ 228 TEE_Result crypto_acipher_rsassa_sign(uint32_t algo, struct rsa_keypair *key, 229 int salt_len, const uint8_t *msg, 230 size_t msg_len, uint8_t *sig, 231 size_t *sig_len); 232 TEE_Result crypto_acipher_rsassa_verify(uint32_t algo, 233 struct rsa_public_key *key, 234 int salt_len, const uint8_t *msg, 235 size_t msg_len, const uint8_t *sig, 236 size_t sig_len); 237 TEE_Result crypto_acipher_dsa_sign(uint32_t algo, struct dsa_keypair *key, 238 const uint8_t *msg, size_t msg_len, 239 uint8_t *sig, size_t *sig_len); 240 TEE_Result crypto_acipher_dsa_verify(uint32_t algo, struct dsa_public_key *key, 241 const uint8_t *msg, size_t msg_len, 242 const uint8_t *sig, size_t sig_len); 243 TEE_Result crypto_acipher_ecc_sign(uint32_t algo, struct ecc_keypair *key, 244 const uint8_t *msg, size_t msg_len, 245 uint8_t *sig, size_t *sig_len); 246 TEE_Result crypto_acipher_ecc_verify(uint32_t algo, struct ecc_public_key *key, 247 const uint8_t *msg, size_t msg_len, 248 const uint8_t *sig, size_t sig_len); 249 TEE_Result crypto_acipher_ecc_shared_secret(struct ecc_keypair *private_key, 250 struct ecc_public_key *public_key, 251 void *secret, 252 unsigned long *secret_len); 253 TEE_Result crypto_acipher_sm2_pke_decrypt(struct ecc_keypair *key, 254 const uint8_t *src, size_t src_len, 255 uint8_t *dst, size_t *dst_len); 256 TEE_Result crypto_acipher_sm2_pke_encrypt(struct ecc_public_key *key, 257 const uint8_t *src, size_t src_len, 258 uint8_t *dst, size_t *dst_len); 259 260 struct sm2_kep_parms { 261 uint8_t *out; 262 size_t out_len; 263 bool is_initiator; 264 const uint8_t *initiator_id; 265 size_t initiator_id_len; 266 const uint8_t *responder_id; 267 size_t responder_id_len; 268 const uint8_t *conf_in; 269 size_t conf_in_len; 270 uint8_t *conf_out; 271 size_t conf_out_len; 272 }; 273 274 TEE_Result crypto_acipher_sm2_kep_derive(struct ecc_keypair *my_key, 275 struct ecc_keypair *my_eph_key, 276 struct ecc_public_key *peer_key, 277 struct ecc_public_key *peer_eph_key, 278 struct sm2_kep_parms *p); 279 280 /* 281 * Verifies a SHA-256 hash, doesn't require crypto_init() to be called in 282 * advance and has as few dependencies as possible. 283 * 284 * This function is primarily used by pager and early initialization code 285 * where the complete crypto library isn't available. 286 */ 287 TEE_Result hash_sha256_check(const uint8_t *hash, const uint8_t *data, 288 size_t data_size); 289 290 /* 291 * Computes a SHA-512/256 hash, vetted conditioner as per NIST.SP.800-90B. 292 * It doesn't require crypto_init() to be called in advance and has as few 293 * dependencies as possible. 294 * 295 * This function could be used inside interrupt context where the crypto 296 * library can't be used due to mutex handling. 297 */ 298 TEE_Result hash_sha512_256_compute(uint8_t *digest, const uint8_t *data, 299 size_t data_size); 300 301 #define CRYPTO_RNG_SRC_IS_QUICK(sid) (!!((sid) & 1)) 302 303 /* 304 * enum crypto_rng_src - RNG entropy source 305 * 306 * Identifiers for different RNG entropy sources. The lowest bit indicates 307 * if the source is to be merely queued (bit is 1) or if it's delivered 308 * directly to the pool. The difference is that in the latter case RPC to 309 * normal world can be performed and in the former it must not. 310 */ 311 enum crypto_rng_src { 312 CRYPTO_RNG_SRC_JITTER_SESSION = (0 << 1 | 0), 313 CRYPTO_RNG_SRC_JITTER_RPC = (1 << 1 | 1), 314 CRYPTO_RNG_SRC_NONSECURE = (1 << 1 | 0), 315 }; 316 317 /* 318 * crypto_rng_init() - initialize the RNG 319 * @data: buffer with initial seed 320 * @dlen: length of @data 321 */ 322 TEE_Result crypto_rng_init(const void *data, size_t dlen); 323 324 /* 325 * crypto_rng_add_event() - supply entropy to RNG from a source 326 * @sid: Source identifier, should be unique for a specific source 327 * @pnum: Pool number, acquired using crypto_rng_get_next_pool_num() 328 * @data: Data associated with the event 329 * @dlen: Length of @data 330 * 331 * @sid controls whether the event is merly queued in a ring buffer or if 332 * it's added to one of the pools directly. If CRYPTO_RNG_SRC_IS_QUICK() is 333 * true (lowest bit set) events are queue otherwise added to corresponding 334 * pool. If CRYPTO_RNG_SRC_IS_QUICK() is false, eventual queued events are 335 * added to their queues too. 336 */ 337 void crypto_rng_add_event(enum crypto_rng_src sid, unsigned int *pnum, 338 const void *data, size_t dlen); 339 340 /* 341 * crypto_rng_read() - read cryptograhically secure RNG 342 * @buf: Buffer to hold the data 343 * @len: Length of buffer. 344 * 345 * Eventual queued events are also added to their pools during this 346 * function call. 347 */ 348 TEE_Result crypto_rng_read(void *buf, size_t len); 349 350 /* 351 * crypto_aes_expand_enc_key() - Expand an AES key 352 * @key: AES key buffer 353 * @key_len: Size of the @key buffer in bytes 354 * @enc_key: Expanded AES encryption key buffer 355 * @enc_keylen: Size of the @enc_key buffer in bytes 356 * @rounds: Number of rounds to be used during encryption 357 */ 358 TEE_Result crypto_aes_expand_enc_key(const void *key, size_t key_len, 359 void *enc_key, size_t enc_keylen, 360 unsigned int *rounds); 361 362 /* 363 * crypto_aes_enc_block() - Encrypt an AES block 364 * @enc_key: Expanded AES encryption key 365 * @enc_keylen: Size of @enc_key in bytes 366 * @rounds: Number of rounds 367 * @src: Source buffer of one AES block (16 bytes) 368 * @dst: Destination buffer of one AES block (16 bytes) 369 */ 370 void crypto_aes_enc_block(const void *enc_key, size_t enc_keylen, 371 unsigned int rounds, const void *src, void *dst); 372 373 #endif /* __CRYPTO_CRYPTO_H */ 374