1 /* SPDX-License-Identifier: BSD-2-Clause */ 2 /* 3 * Copyright (c) 2014-2017, Linaro Limited 4 */ 5 6 /* 7 * This is the Cryptographic Provider API (CP API). 8 * 9 * This defines how most crypto syscalls that implement the Cryptographic 10 * Operations API can invoke the actual providers of cryptographic algorithms 11 * (such as LibTomCrypt). 12 * 13 * To add a new provider, you need to provide an implementation of this 14 * interface. 15 * 16 * The following parameters are commonly used. 17 * 18 * @ctx: context allocated by the syscall, for later use by the algorithm 19 * @algo: algorithm identifier (TEE_ALG_*) 20 */ 21 22 #ifndef __CRYPTO_CRYPTO_H 23 #define __CRYPTO_CRYPTO_H 24 25 #include <tee_api_types.h> 26 27 TEE_Result crypto_init(void); 28 29 /* Message digest functions */ 30 TEE_Result crypto_hash_alloc_ctx(void **ctx, uint32_t algo); 31 TEE_Result crypto_hash_init(void *ctx); 32 TEE_Result crypto_hash_update(void *ctx, const uint8_t *data, size_t len); 33 TEE_Result crypto_hash_final(void *ctx, uint8_t *digest, size_t len); 34 void crypto_hash_free_ctx(void *ctx); 35 void crypto_hash_copy_state(void *dst_ctx, void *src_ctx); 36 37 /* Symmetric ciphers */ 38 TEE_Result crypto_cipher_alloc_ctx(void **ctx, uint32_t algo); 39 TEE_Result crypto_cipher_init(void *ctx, uint32_t algo, TEE_OperationMode mode, 40 const uint8_t *key1, size_t key1_len, 41 const uint8_t *key2, size_t key2_len, 42 const uint8_t *iv, size_t iv_len); 43 TEE_Result crypto_cipher_update(void *ctx, uint32_t algo, 44 TEE_OperationMode mode, bool last_block, 45 const uint8_t *data, size_t len, uint8_t *dst); 46 void crypto_cipher_final(void *ctx, uint32_t algo); 47 TEE_Result crypto_cipher_get_block_size(uint32_t algo, size_t *size); 48 void crypto_cipher_free_ctx(void *ctx, uint32_t algo); 49 void crypto_cipher_copy_state(void *dst_ctx, void *src_ctx, uint32_t algo); 50 51 /* Message Authentication Code functions */ 52 TEE_Result crypto_mac_alloc_ctx(void **ctx, uint32_t algo); 53 TEE_Result crypto_mac_init(void *ctx, uint32_t algo, const uint8_t *key, 54 size_t len); 55 TEE_Result crypto_mac_update(void *ctx, uint32_t algo, const uint8_t *data, 56 size_t len); 57 TEE_Result crypto_mac_final(void *ctx, uint32_t algo, uint8_t *digest, 58 size_t digest_len); 59 void crypto_mac_free_ctx(void *ctx, uint32_t algo); 60 void crypto_mac_copy_state(void *dst_ctx, void *src_ctx, uint32_t algo); 61 62 /* Authenticated encryption */ 63 TEE_Result crypto_authenc_alloc_ctx(void **ctx, uint32_t algo); 64 TEE_Result crypto_authenc_init(void *ctx, uint32_t algo, TEE_OperationMode mode, 65 const uint8_t *key, size_t key_len, 66 const uint8_t *nonce, size_t nonce_len, 67 size_t tag_len, size_t aad_len, 68 size_t payload_len); 69 TEE_Result crypto_authenc_update_aad(void *ctx, uint32_t algo, 70 TEE_OperationMode mode, 71 const uint8_t *data, size_t len); 72 TEE_Result crypto_authenc_update_payload(void *ctx, uint32_t algo, 73 TEE_OperationMode mode, 74 const uint8_t *src_data, 75 size_t src_len, uint8_t *dst_data, 76 size_t *dst_len); 77 TEE_Result crypto_authenc_enc_final(void *ctx, uint32_t algo, 78 const uint8_t *src_data, size_t src_len, 79 uint8_t *dst_data, size_t *dst_len, 80 uint8_t *dst_tag, size_t *dst_tag_len); 81 TEE_Result crypto_authenc_dec_final(void *ctx, uint32_t algo, 82 const uint8_t *src_data, size_t src_len, 83 uint8_t *dst_data, size_t *dst_len, 84 const uint8_t *tag, size_t tag_len); 85 void crypto_authenc_final(void *ctx, uint32_t algo); 86 void crypto_authenc_free_ctx(void *ctx, uint32_t algo); 87 void crypto_authenc_copy_state(void *dst_ctx, void *src_ctx, uint32_t algo); 88 89 /* Implementation-defined big numbers */ 90 91 /* 92 * Allocate a bignum capable of holding an unsigned integer value of 93 * up to bitsize bits 94 */ 95 struct bignum *crypto_bignum_allocate(size_t size_bits); 96 TEE_Result crypto_bignum_bin2bn(const uint8_t *from, size_t fromsize, 97 struct bignum *to); 98 size_t crypto_bignum_num_bytes(struct bignum *a); 99 size_t crypto_bignum_num_bits(struct bignum *a); 100 void crypto_bignum_bn2bin(const struct bignum *from, uint8_t *to); 101 void crypto_bignum_copy(struct bignum *to, const struct bignum *from); 102 void crypto_bignum_free(struct bignum *a); 103 void crypto_bignum_clear(struct bignum *a); 104 105 /* return -1 if a<b, 0 if a==b, +1 if a>b */ 106 int32_t crypto_bignum_compare(struct bignum *a, struct bignum *b); 107 108 /* Asymmetric algorithms */ 109 110 struct rsa_keypair { 111 struct bignum *e; /* Public exponent */ 112 struct bignum *d; /* Private exponent */ 113 struct bignum *n; /* Modulus */ 114 115 /* Optional CRT parameters (all NULL if unused) */ 116 struct bignum *p; /* N = pq */ 117 struct bignum *q; 118 struct bignum *qp; /* 1/q mod p */ 119 struct bignum *dp; /* d mod (p-1) */ 120 struct bignum *dq; /* d mod (q-1) */ 121 }; 122 123 struct rsa_public_key { 124 struct bignum *e; /* Public exponent */ 125 struct bignum *n; /* Modulus */ 126 }; 127 128 struct dsa_keypair { 129 struct bignum *g; /* Generator of subgroup (public) */ 130 struct bignum *p; /* Prime number (public) */ 131 struct bignum *q; /* Order of subgroup (public) */ 132 struct bignum *y; /* Public key */ 133 struct bignum *x; /* Private key */ 134 }; 135 136 struct dsa_public_key { 137 struct bignum *g; /* Generator of subgroup (public) */ 138 struct bignum *p; /* Prime number (public) */ 139 struct bignum *q; /* Order of subgroup (public) */ 140 struct bignum *y; /* Public key */ 141 }; 142 143 struct dh_keypair { 144 struct bignum *g; /* Generator of Z_p (shared) */ 145 struct bignum *p; /* Prime modulus (shared) */ 146 struct bignum *x; /* Private key */ 147 struct bignum *y; /* Public key y = g^x */ 148 149 /* 150 * Optional parameters used by key generation. 151 * When not used, q == NULL and xbits == 0 152 */ 153 struct bignum *q; /* x must be in the range [2, q-2] */ 154 uint32_t xbits; /* Number of bits in the private key */ 155 }; 156 157 struct ecc_public_key { 158 struct bignum *x; /* Public value x */ 159 struct bignum *y; /* Public value y */ 160 uint32_t curve; /* Curve type */ 161 }; 162 163 struct ecc_keypair { 164 struct bignum *d; /* Private value */ 165 struct bignum *x; /* Public value x */ 166 struct bignum *y; /* Public value y */ 167 uint32_t curve; /* Curve type */ 168 }; 169 170 /* 171 * Key allocation functions 172 * Allocate the bignum's inside a key structure. 173 * TEE core will later use crypto_bignum_free(). 174 */ 175 TEE_Result crypto_acipher_alloc_rsa_keypair(struct rsa_keypair *s, 176 size_t key_size_bits); 177 TEE_Result crypto_acipher_alloc_rsa_public_key(struct rsa_public_key *s, 178 size_t key_size_bits); 179 void crypto_acipher_free_rsa_public_key(struct rsa_public_key *s); 180 TEE_Result crypto_acipher_alloc_dsa_keypair(struct dsa_keypair *s, 181 size_t key_size_bits); 182 TEE_Result crypto_acipher_alloc_dsa_public_key(struct dsa_public_key *s, 183 size_t key_size_bits); 184 TEE_Result crypto_acipher_alloc_dh_keypair(struct dh_keypair *s, 185 size_t key_size_bits); 186 TEE_Result crypto_acipher_alloc_ecc_public_key(struct ecc_public_key *s, 187 size_t key_size_bits); 188 TEE_Result crypto_acipher_alloc_ecc_keypair(struct ecc_keypair *s, 189 size_t key_size_bits); 190 void crypto_acipher_free_ecc_public_key(struct ecc_public_key *s); 191 192 /* 193 * Key generation functions 194 */ 195 TEE_Result crypto_acipher_gen_rsa_key(struct rsa_keypair *key, size_t key_size); 196 TEE_Result crypto_acipher_gen_dsa_key(struct dsa_keypair *key, size_t key_size); 197 TEE_Result crypto_acipher_gen_dh_key(struct dh_keypair *key, struct bignum *q, 198 size_t xbits); 199 TEE_Result crypto_acipher_gen_ecc_key(struct ecc_keypair *key); 200 201 TEE_Result crypto_acipher_dh_shared_secret(struct dh_keypair *private_key, 202 struct bignum *public_key, 203 struct bignum *secret); 204 205 TEE_Result crypto_acipher_rsanopad_decrypt(struct rsa_keypair *key, 206 const uint8_t *src, size_t src_len, 207 uint8_t *dst, size_t *dst_len); 208 TEE_Result crypto_acipher_rsanopad_encrypt(struct rsa_public_key *key, 209 const uint8_t *src, size_t src_len, 210 uint8_t *dst, size_t *dst_len); 211 TEE_Result crypto_acipher_rsaes_decrypt(uint32_t algo, struct rsa_keypair *key, 212 const uint8_t *label, size_t label_len, 213 const uint8_t *src, size_t src_len, 214 uint8_t *dst, size_t *dst_len); 215 TEE_Result crypto_acipher_rsaes_encrypt(uint32_t algo, 216 struct rsa_public_key *key, 217 const uint8_t *label, size_t label_len, 218 const uint8_t *src, size_t src_len, 219 uint8_t *dst, size_t *dst_len); 220 /* RSA SSA sign/verify: if salt_len == -1, use default value */ 221 TEE_Result crypto_acipher_rsassa_sign(uint32_t algo, struct rsa_keypair *key, 222 int salt_len, const uint8_t *msg, 223 size_t msg_len, uint8_t *sig, 224 size_t *sig_len); 225 TEE_Result crypto_acipher_rsassa_verify(uint32_t algo, 226 struct rsa_public_key *key, 227 int salt_len, const uint8_t *msg, 228 size_t msg_len, const uint8_t *sig, 229 size_t sig_len); 230 TEE_Result crypto_acipher_dsa_sign(uint32_t algo, struct dsa_keypair *key, 231 const uint8_t *msg, size_t msg_len, 232 uint8_t *sig, size_t *sig_len); 233 TEE_Result crypto_acipher_dsa_verify(uint32_t algo, struct dsa_public_key *key, 234 const uint8_t *msg, size_t msg_len, 235 const uint8_t *sig, size_t sig_len); 236 TEE_Result crypto_acipher_ecc_sign(uint32_t algo, struct ecc_keypair *key, 237 const uint8_t *msg, size_t msg_len, 238 uint8_t *sig, size_t *sig_len); 239 TEE_Result crypto_acipher_ecc_verify(uint32_t algo, struct ecc_public_key *key, 240 const uint8_t *msg, size_t msg_len, 241 const uint8_t *sig, size_t sig_len); 242 TEE_Result crypto_acipher_ecc_shared_secret(struct ecc_keypair *private_key, 243 struct ecc_public_key *public_key, 244 void *secret, 245 unsigned long *secret_len); 246 247 /* 248 * Verifies a SHA-256 hash, doesn't require crypto_init() to be called in 249 * advance and has as few dependencies as possible. 250 * 251 * This function is primarily used by pager and early initialization code 252 * where the complete crypto library isn't available. 253 */ 254 TEE_Result hash_sha256_check(const uint8_t *hash, const uint8_t *data, 255 size_t data_size); 256 257 /* 258 * Computes a SHA-512/256 hash, vetted conditioner as per NIST.SP.800-90B. 259 * It doesn't require crypto_init() to be called in advance and has as few 260 * dependencies as possible. 261 * 262 * This function could be used inside interrupt context where the crypto 263 * library can't be used due to mutex handling. 264 */ 265 TEE_Result hash_sha512_256_compute(uint8_t *digest, const uint8_t *data, 266 size_t data_size); 267 268 #define CRYPTO_RNG_SRC_IS_QUICK(sid) (!!((sid) & 1)) 269 270 /* 271 * enum crypto_rng_src - RNG entropy source 272 * 273 * Identifiers for different RNG entropy sources. The lowest bit indicates 274 * if the source is to be merely queued (bit is 1) or if it's delivered 275 * directly to the pool. The difference is that in the latter case RPC to 276 * normal world can be performed and in the former it must not. 277 */ 278 enum crypto_rng_src { 279 CRYPTO_RNG_SRC_JITTER_SESSION = (0 << 1 | 0), 280 CRYPTO_RNG_SRC_JITTER_RPC = (1 << 1 | 1), 281 CRYPTO_RNG_SRC_NONSECURE = (1 << 1 | 0), 282 }; 283 284 /* 285 * crypto_rng_init() - initialize the RNG 286 * @data: buffer with initial seed 287 * @dlen: length of @data 288 */ 289 TEE_Result crypto_rng_init(const void *data, size_t dlen); 290 291 /* 292 * crypto_rng_add_event() - supply entropy to RNG from a source 293 * @sid: Source identifier, should be unique for a specific source 294 * @pnum: Pool number, acquired using crypto_rng_get_next_pool_num() 295 * @data: Data associated with the event 296 * @dlen: Length of @data 297 * 298 * @sid controls whether the event is merly queued in a ring buffer or if 299 * it's added to one of the pools directly. If CRYPTO_RNG_SRC_IS_QUICK() is 300 * true (lowest bit set) events are queue otherwise added to corresponding 301 * pool. If CRYPTO_RNG_SRC_IS_QUICK() is false, eventual queued events are 302 * added to their queues too. 303 */ 304 void crypto_rng_add_event(enum crypto_rng_src sid, unsigned int *pnum, 305 const void *data, size_t dlen); 306 307 /* 308 * crypto_rng_read() - read cryptograhically secure RNG 309 * @buf: Buffer to hold the data 310 * @len: Length of buffer. 311 * 312 * Eventual queued events are also added to their pools during this 313 * function call. 314 */ 315 TEE_Result crypto_rng_read(void *buf, size_t len); 316 317 /* 318 * crypto_aes_expand_enc_key() - Expand an AES key 319 * @key: AES key buffer 320 * @key_len: Size of the the @key buffer in bytes 321 * @enc_key: Expanded AES encryption key buffer 322 * @enc_keylen: Size of the @enc_key buffer in bytes 323 * @rounds: Number of rounds to be used during encryption 324 */ 325 TEE_Result crypto_aes_expand_enc_key(const void *key, size_t key_len, 326 void *enc_key, size_t enc_keylen, 327 unsigned int *rounds); 328 329 /* 330 * crypto_aes_enc_block() - Encrypt an AES block 331 * @enc_key: Expanded AES encryption key 332 * @enc_keylen: Size of @enc_key in bytes 333 * @rounds: Number of rounds 334 * @src: Source buffer of one AES block (16 bytes) 335 * @dst: Destination buffer of one AES block (16 bytes) 336 */ 337 void crypto_aes_enc_block(const void *enc_key, size_t enc_keylen, 338 unsigned int rounds, const void *src, void *dst); 339 340 #endif /* __CRYPTO_CRYPTO_H */ 341