xref: /optee_os/core/include/crypto/crypto.h (revision 6b3a371c9038ec0db2bccdf69c25e27b6383ff69)
1 /* SPDX-License-Identifier: BSD-2-Clause */
2 /*
3  * Copyright (c) 2014-2017, Linaro Limited
4  */
5 
6 /*
7  * This is the Cryptographic Provider API (CP API).
8  *
9  * This defines how most crypto syscalls that implement the Cryptographic
10  * Operations API can invoke the actual providers of cryptographic algorithms
11  * (such as LibTomCrypt).
12  *
13  * To add a new provider, you need to provide an implementation of this
14  * interface.
15  *
16  * The following parameters are commonly used.
17  *
18  * @ctx: context allocated by the syscall, for later use by the algorithm
19  * @algo: algorithm identifier (TEE_ALG_*)
20  */
21 
22 #ifndef __CRYPTO_CRYPTO_H
23 #define __CRYPTO_CRYPTO_H
24 
25 #include <tee_api_types.h>
26 
27 TEE_Result crypto_init(void);
28 
29 /* Message digest functions */
30 TEE_Result crypto_hash_alloc_ctx(void **ctx, uint32_t algo);
31 TEE_Result crypto_hash_init(void *ctx);
32 TEE_Result crypto_hash_update(void *ctx, const uint8_t *data, size_t len);
33 TEE_Result crypto_hash_final(void *ctx, uint8_t *digest, size_t len);
34 void crypto_hash_free_ctx(void *ctx);
35 void crypto_hash_copy_state(void *dst_ctx, void *src_ctx);
36 
37 /* Symmetric ciphers */
38 TEE_Result crypto_cipher_alloc_ctx(void **ctx, uint32_t algo);
39 TEE_Result crypto_cipher_init(void *ctx, uint32_t algo, TEE_OperationMode mode,
40 			      const uint8_t *key1, size_t key1_len,
41 			      const uint8_t *key2, size_t key2_len,
42 			      const uint8_t *iv, size_t iv_len);
43 TEE_Result crypto_cipher_update(void *ctx, uint32_t algo,
44 				TEE_OperationMode mode, bool last_block,
45 				const uint8_t *data, size_t len, uint8_t *dst);
46 void crypto_cipher_final(void *ctx, uint32_t algo);
47 TEE_Result crypto_cipher_get_block_size(uint32_t algo, size_t *size);
48 void crypto_cipher_free_ctx(void *ctx, uint32_t algo);
49 void crypto_cipher_copy_state(void *dst_ctx, void *src_ctx, uint32_t algo);
50 
51 /* Message Authentication Code functions */
52 TEE_Result crypto_mac_alloc_ctx(void **ctx, uint32_t algo);
53 TEE_Result crypto_mac_init(void *ctx, uint32_t algo, const uint8_t *key,
54 			   size_t len);
55 TEE_Result crypto_mac_update(void *ctx, uint32_t algo, const uint8_t *data,
56 			     size_t len);
57 TEE_Result crypto_mac_final(void *ctx, uint32_t algo, uint8_t *digest,
58 			    size_t digest_len);
59 void crypto_mac_free_ctx(void *ctx, uint32_t algo);
60 void crypto_mac_copy_state(void *dst_ctx, void *src_ctx, uint32_t algo);
61 
62 /* Authenticated encryption */
63 TEE_Result crypto_authenc_alloc_ctx(void **ctx, uint32_t algo);
64 TEE_Result crypto_authenc_init(void *ctx, uint32_t algo, TEE_OperationMode mode,
65 			       const uint8_t *key, size_t key_len,
66 			       const uint8_t *nonce, size_t nonce_len,
67 			       size_t tag_len, size_t aad_len,
68 			       size_t payload_len);
69 TEE_Result crypto_authenc_update_aad(void *ctx, uint32_t algo,
70 				     TEE_OperationMode mode,
71 				     const uint8_t *data, size_t len);
72 TEE_Result crypto_authenc_update_payload(void *ctx, uint32_t algo,
73 					 TEE_OperationMode mode,
74 					 const uint8_t *src_data,
75 					 size_t src_len, uint8_t *dst_data,
76 					 size_t *dst_len);
77 TEE_Result crypto_authenc_enc_final(void *ctx, uint32_t algo,
78 				    const uint8_t *src_data, size_t src_len,
79 				    uint8_t *dst_data, size_t *dst_len,
80 				    uint8_t *dst_tag, size_t *dst_tag_len);
81 TEE_Result crypto_authenc_dec_final(void *ctx, uint32_t algo,
82 				    const uint8_t *src_data, size_t src_len,
83 				    uint8_t *dst_data, size_t *dst_len,
84 				    const uint8_t *tag, size_t tag_len);
85 void crypto_authenc_final(void *ctx, uint32_t algo);
86 void crypto_authenc_free_ctx(void *ctx, uint32_t algo);
87 void crypto_authenc_copy_state(void *dst_ctx, void *src_ctx, uint32_t algo);
88 
89 /* Implementation-defined big numbers */
90 
91 /*
92  * Allocate a bignum capable of holding an unsigned integer value of
93  * up to bitsize bits
94  */
95 struct bignum *crypto_bignum_allocate(size_t size_bits);
96 TEE_Result crypto_bignum_bin2bn(const uint8_t *from, size_t fromsize,
97 				struct bignum *to);
98 size_t crypto_bignum_num_bytes(struct bignum *a);
99 size_t crypto_bignum_num_bits(struct bignum *a);
100 void crypto_bignum_bn2bin(const struct bignum *from, uint8_t *to);
101 void crypto_bignum_copy(struct bignum *to, const struct bignum *from);
102 void crypto_bignum_free(struct bignum *a);
103 void crypto_bignum_clear(struct bignum *a);
104 
105 /* return -1 if a<b, 0 if a==b, +1 if a>b */
106 int32_t crypto_bignum_compare(struct bignum *a, struct bignum *b);
107 
108 /* Asymmetric algorithms */
109 
110 struct rsa_keypair {
111 	struct bignum *e;	/* Public exponent */
112 	struct bignum *d;	/* Private exponent */
113 	struct bignum *n;	/* Modulus */
114 
115 	/* Optional CRT parameters (all NULL if unused) */
116 	struct bignum *p;	/* N = pq */
117 	struct bignum *q;
118 	struct bignum *qp;	/* 1/q mod p */
119 	struct bignum *dp;	/* d mod (p-1) */
120 	struct bignum *dq;	/* d mod (q-1) */
121 };
122 
123 struct rsa_public_key {
124 	struct bignum *e;	/* Public exponent */
125 	struct bignum *n;	/* Modulus */
126 };
127 
128 struct dsa_keypair {
129 	struct bignum *g;	/* Generator of subgroup (public) */
130 	struct bignum *p;	/* Prime number (public) */
131 	struct bignum *q;	/* Order of subgroup (public) */
132 	struct bignum *y;	/* Public key */
133 	struct bignum *x;	/* Private key */
134 };
135 
136 struct dsa_public_key {
137 	struct bignum *g;	/* Generator of subgroup (public) */
138 	struct bignum *p;	/* Prime number (public) */
139 	struct bignum *q;	/* Order of subgroup (public) */
140 	struct bignum *y;	/* Public key */
141 };
142 
143 struct dh_keypair {
144 	struct bignum *g;	/* Generator of Z_p (shared) */
145 	struct bignum *p;	/* Prime modulus (shared) */
146 	struct bignum *x;	/* Private key */
147 	struct bignum *y;	/* Public key y = g^x */
148 
149 	/*
150 	 * Optional parameters used by key generation.
151 	 * When not used, q == NULL and xbits == 0
152 	 */
153 	struct bignum *q;	/* x must be in the range [2, q-2] */
154 	uint32_t xbits;		/* Number of bits in the private key */
155 };
156 
157 struct ecc_public_key {
158 	struct bignum *x;	/* Public value x */
159 	struct bignum *y;	/* Public value y */
160 	uint32_t curve;	        /* Curve type */
161 };
162 
163 struct ecc_keypair {
164 	struct bignum *d;	/* Private value */
165 	struct bignum *x;	/* Public value x */
166 	struct bignum *y;	/* Public value y */
167 	uint32_t curve;	        /* Curve type */
168 };
169 
170 /*
171  * Key allocation functions
172  * Allocate the bignum's inside a key structure.
173  * TEE core will later use crypto_bignum_free().
174  */
175 TEE_Result crypto_acipher_alloc_rsa_keypair(struct rsa_keypair *s,
176 				size_t key_size_bits);
177 TEE_Result crypto_acipher_alloc_rsa_public_key(struct rsa_public_key *s,
178 				   size_t key_size_bits);
179 void crypto_acipher_free_rsa_public_key(struct rsa_public_key *s);
180 TEE_Result crypto_acipher_alloc_dsa_keypair(struct dsa_keypair *s,
181 				size_t key_size_bits);
182 TEE_Result crypto_acipher_alloc_dsa_public_key(struct dsa_public_key *s,
183 				   size_t key_size_bits);
184 TEE_Result crypto_acipher_alloc_dh_keypair(struct dh_keypair *s,
185 			       size_t key_size_bits);
186 TEE_Result crypto_acipher_alloc_ecc_public_key(struct ecc_public_key *s,
187 				   size_t key_size_bits);
188 TEE_Result crypto_acipher_alloc_ecc_keypair(struct ecc_keypair *s,
189 				size_t key_size_bits);
190 void crypto_acipher_free_ecc_public_key(struct ecc_public_key *s);
191 
192 /*
193  * Key generation functions
194  */
195 TEE_Result crypto_acipher_gen_rsa_key(struct rsa_keypair *key, size_t key_size);
196 TEE_Result crypto_acipher_gen_dsa_key(struct dsa_keypair *key, size_t key_size);
197 TEE_Result crypto_acipher_gen_dh_key(struct dh_keypair *key, struct bignum *q,
198 				     size_t xbits);
199 TEE_Result crypto_acipher_gen_ecc_key(struct ecc_keypair *key);
200 
201 TEE_Result crypto_acipher_dh_shared_secret(struct dh_keypair *private_key,
202 					   struct bignum *public_key,
203 					   struct bignum *secret);
204 
205 TEE_Result crypto_acipher_rsanopad_decrypt(struct rsa_keypair *key,
206 					   const uint8_t *src, size_t src_len,
207 					   uint8_t *dst, size_t *dst_len);
208 TEE_Result crypto_acipher_rsanopad_encrypt(struct rsa_public_key *key,
209 					   const uint8_t *src, size_t src_len,
210 					   uint8_t *dst, size_t *dst_len);
211 TEE_Result crypto_acipher_rsaes_decrypt(uint32_t algo, struct rsa_keypair *key,
212 					const uint8_t *label, size_t label_len,
213 					const uint8_t *src, size_t src_len,
214 					uint8_t *dst, size_t *dst_len);
215 TEE_Result crypto_acipher_rsaes_encrypt(uint32_t algo,
216 					struct rsa_public_key *key,
217 					const uint8_t *label, size_t label_len,
218 					const uint8_t *src, size_t src_len,
219 					uint8_t *dst, size_t *dst_len);
220 /* RSA SSA sign/verify: if salt_len == -1, use default value */
221 TEE_Result crypto_acipher_rsassa_sign(uint32_t algo, struct rsa_keypair *key,
222 				      int salt_len, const uint8_t *msg,
223 				      size_t msg_len, uint8_t *sig,
224 				      size_t *sig_len);
225 TEE_Result crypto_acipher_rsassa_verify(uint32_t algo,
226 					struct rsa_public_key *key,
227 					int salt_len, const uint8_t *msg,
228 					size_t msg_len, const uint8_t *sig,
229 					size_t sig_len);
230 TEE_Result crypto_acipher_dsa_sign(uint32_t algo, struct dsa_keypair *key,
231 				   const uint8_t *msg, size_t msg_len,
232 				   uint8_t *sig, size_t *sig_len);
233 TEE_Result crypto_acipher_dsa_verify(uint32_t algo, struct dsa_public_key *key,
234 				     const uint8_t *msg, size_t msg_len,
235 				     const uint8_t *sig, size_t sig_len);
236 TEE_Result crypto_acipher_ecc_sign(uint32_t algo, struct ecc_keypair *key,
237 				   const uint8_t *msg, size_t msg_len,
238 				   uint8_t *sig, size_t *sig_len);
239 TEE_Result crypto_acipher_ecc_verify(uint32_t algo, struct ecc_public_key *key,
240 				     const uint8_t *msg, size_t msg_len,
241 				     const uint8_t *sig, size_t sig_len);
242 TEE_Result crypto_acipher_ecc_shared_secret(struct ecc_keypair *private_key,
243 					    struct ecc_public_key *public_key,
244 					    void *secret,
245 					    unsigned long *secret_len);
246 
247 /*
248  * Verifies a SHA-256 hash, doesn't require crypto_init() to be called in
249  * advance and has as few dependencies as possible.
250  *
251  * This function is primarily used by pager and early initialization code
252  * where the complete crypto library isn't available.
253  */
254 TEE_Result hash_sha256_check(const uint8_t *hash, const uint8_t *data,
255 		size_t data_size);
256 
257 /*
258  * Computes a SHA-512/256 hash, vetted conditioner as per NIST.SP.800-90B.
259  * It doesn't require crypto_init() to be called in advance and has as few
260  * dependencies as possible.
261  *
262  * This function could be used inside interrupt context where the crypto
263  * library can't be used due to mutex handling.
264  */
265 TEE_Result hash_sha512_256_compute(uint8_t *digest, const uint8_t *data,
266 		size_t data_size);
267 
268 #define CRYPTO_RNG_SRC_IS_QUICK(sid) (!!((sid) & 1))
269 
270 /*
271  * enum crypto_rng_src - RNG entropy source
272  *
273  * Identifiers for different RNG entropy sources. The lowest bit indicates
274  * if the source is to be merely queued (bit is 1) or if it's delivered
275  * directly to the pool. The difference is that in the latter case RPC to
276  * normal world can be performed and in the former it must not.
277  */
278 enum crypto_rng_src {
279 	CRYPTO_RNG_SRC_JITTER_SESSION	= (0 << 1 | 0),
280 	CRYPTO_RNG_SRC_JITTER_RPC	= (1 << 1 | 1),
281 	CRYPTO_RNG_SRC_NONSECURE	= (1 << 1 | 0),
282 };
283 
284 /*
285  * crypto_rng_init() - initialize the RNG
286  * @data:	buffer with initial seed
287  * @dlen:	length of @data
288  */
289 TEE_Result crypto_rng_init(const void *data, size_t dlen);
290 
291 /*
292  * crypto_rng_add_event() - supply entropy to RNG from a source
293  * @sid:	Source identifier, should be unique for a specific source
294  * @pnum:	Pool number, acquired using crypto_rng_get_next_pool_num()
295  * @data:	Data associated with the event
296  * @dlen:	Length of @data
297  *
298  * @sid controls whether the event is merly queued in a ring buffer or if
299  * it's added to one of the pools directly. If CRYPTO_RNG_SRC_IS_QUICK() is
300  * true (lowest bit set) events are queue otherwise added to corresponding
301  * pool. If CRYPTO_RNG_SRC_IS_QUICK() is false, eventual queued events are
302  * added to their queues too.
303  */
304 void crypto_rng_add_event(enum crypto_rng_src sid, unsigned int *pnum,
305 			  const void *data, size_t dlen);
306 
307 /*
308  * crypto_rng_read() - read cryptograhically secure RNG
309  * @buf:	Buffer to hold the data
310  * @len:	Length of buffer.
311  *
312  * Eventual queued events are also added to their pools during this
313  * function call.
314  */
315 TEE_Result crypto_rng_read(void *buf, size_t len);
316 
317 /*
318  * crypto_aes_expand_enc_key() - Expand an AES key
319  * @key:	AES key buffer
320  * @key_len:	Size of the the @key buffer in bytes
321  * @enc_key:	Expanded AES encryption key buffer
322  * @enc_keylen: Size of the @enc_key buffer in bytes
323  * @rounds:	Number of rounds to be used during encryption
324  */
325 TEE_Result crypto_aes_expand_enc_key(const void *key, size_t key_len,
326 				     void *enc_key, size_t enc_keylen,
327 				     unsigned int *rounds);
328 
329 /*
330  * crypto_aes_enc_block() - Encrypt an AES block
331  * @enc_key:	Expanded AES encryption key
332  * @enc_keylen:	Size of @enc_key in bytes
333  * @rounds:	Number of rounds
334  * @src:	Source buffer of one AES block (16 bytes)
335  * @dst:	Destination buffer of one AES block (16 bytes)
336  */
337 void crypto_aes_enc_block(const void *enc_key, size_t enc_keylen,
338 			  unsigned int rounds, const void *src, void *dst);
339 
340 #endif /* __CRYPTO_CRYPTO_H */
341