1 /* SPDX-License-Identifier: BSD-2-Clause */ 2 /* 3 * Copyright (c) 2014-2017, Linaro Limited 4 */ 5 6 /* 7 * This is the Cryptographic Provider API (CP API). 8 * 9 * This defines how most crypto syscalls that implement the Cryptographic 10 * Operations API can invoke the actual providers of cryptographic algorithms 11 * (such as LibTomCrypt). 12 * 13 * To add a new provider, you need to provide an implementation of this 14 * interface. 15 * 16 * The following parameters are commonly used. 17 * 18 * @ctx: context allocated by the syscall, for later use by the algorithm 19 * @algo: algorithm identifier (TEE_ALG_*) 20 */ 21 22 #ifndef __CRYPTO_CRYPTO_H 23 #define __CRYPTO_CRYPTO_H 24 25 #include <tee_api_types.h> 26 27 TEE_Result crypto_init(void); 28 29 /* Message digest functions */ 30 TEE_Result crypto_hash_alloc_ctx(void **ctx, uint32_t algo); 31 TEE_Result crypto_hash_init(void *ctx); 32 TEE_Result crypto_hash_update(void *ctx, const uint8_t *data, size_t len); 33 TEE_Result crypto_hash_final(void *ctx, uint8_t *digest, size_t len); 34 void crypto_hash_free_ctx(void *ctx); 35 void crypto_hash_copy_state(void *dst_ctx, void *src_ctx); 36 37 /* Symmetric ciphers */ 38 TEE_Result crypto_cipher_alloc_ctx(void **ctx, uint32_t algo); 39 TEE_Result crypto_cipher_init(void *ctx, TEE_OperationMode mode, 40 const uint8_t *key1, size_t key1_len, 41 const uint8_t *key2, size_t key2_len, 42 const uint8_t *iv, size_t iv_len); 43 TEE_Result crypto_cipher_update(void *ctx, TEE_OperationMode mode, 44 bool last_block, const uint8_t *data, 45 size_t len, uint8_t *dst); 46 void crypto_cipher_final(void *ctx); 47 TEE_Result crypto_cipher_get_block_size(uint32_t algo, size_t *size); 48 void crypto_cipher_free_ctx(void *ctx); 49 void crypto_cipher_copy_state(void *dst_ctx, void *src_ctx); 50 51 /* Message Authentication Code functions */ 52 TEE_Result crypto_mac_alloc_ctx(void **ctx, uint32_t algo); 53 TEE_Result crypto_mac_init(void *ctx, const uint8_t *key, size_t len); 54 TEE_Result crypto_mac_update(void *ctx, const uint8_t *data, size_t len); 55 TEE_Result crypto_mac_final(void *ctx, uint8_t *digest, size_t digest_len); 56 void crypto_mac_free_ctx(void *ctx); 57 void crypto_mac_copy_state(void *dst_ctx, void *src_ctx); 58 59 /* Authenticated encryption */ 60 TEE_Result crypto_authenc_alloc_ctx(void **ctx, uint32_t algo); 61 TEE_Result crypto_authenc_init(void *ctx, TEE_OperationMode mode, 62 const uint8_t *key, size_t key_len, 63 const uint8_t *nonce, size_t nonce_len, 64 size_t tag_len, size_t aad_len, 65 size_t payload_len); 66 TEE_Result crypto_authenc_update_aad(void *ctx, TEE_OperationMode mode, 67 const uint8_t *data, size_t len); 68 TEE_Result crypto_authenc_update_payload(void *ctx, TEE_OperationMode mode, 69 const uint8_t *src_data, 70 size_t src_len, uint8_t *dst_data, 71 size_t *dst_len); 72 TEE_Result crypto_authenc_enc_final(void *ctx, const uint8_t *src_data, 73 size_t src_len, uint8_t *dst_data, 74 size_t *dst_len, uint8_t *dst_tag, 75 size_t *dst_tag_len); 76 TEE_Result crypto_authenc_dec_final(void *ctx, const uint8_t *src_data, 77 size_t src_len, uint8_t *dst_data, 78 size_t *dst_len, const uint8_t *tag, 79 size_t tag_len); 80 void crypto_authenc_final(void *ctx); 81 void crypto_authenc_free_ctx(void *ctx); 82 void crypto_authenc_copy_state(void *dst_ctx, void *src_ctx); 83 84 /* Implementation-defined big numbers */ 85 86 /* 87 * Allocate a bignum capable of holding an unsigned integer value of 88 * up to bitsize bits 89 */ 90 struct bignum *crypto_bignum_allocate(size_t size_bits); 91 TEE_Result crypto_bignum_bin2bn(const uint8_t *from, size_t fromsize, 92 struct bignum *to); 93 size_t crypto_bignum_num_bytes(struct bignum *a); 94 size_t crypto_bignum_num_bits(struct bignum *a); 95 void crypto_bignum_bn2bin(const struct bignum *from, uint8_t *to); 96 void crypto_bignum_copy(struct bignum *to, const struct bignum *from); 97 void crypto_bignum_free(struct bignum *a); 98 void crypto_bignum_clear(struct bignum *a); 99 100 /* return -1 if a<b, 0 if a==b, +1 if a>b */ 101 int32_t crypto_bignum_compare(struct bignum *a, struct bignum *b); 102 103 /* Asymmetric algorithms */ 104 105 struct rsa_keypair { 106 struct bignum *e; /* Public exponent */ 107 struct bignum *d; /* Private exponent */ 108 struct bignum *n; /* Modulus */ 109 110 /* Optional CRT parameters (all NULL if unused) */ 111 struct bignum *p; /* N = pq */ 112 struct bignum *q; 113 struct bignum *qp; /* 1/q mod p */ 114 struct bignum *dp; /* d mod (p-1) */ 115 struct bignum *dq; /* d mod (q-1) */ 116 }; 117 118 struct rsa_public_key { 119 struct bignum *e; /* Public exponent */ 120 struct bignum *n; /* Modulus */ 121 }; 122 123 struct dsa_keypair { 124 struct bignum *g; /* Generator of subgroup (public) */ 125 struct bignum *p; /* Prime number (public) */ 126 struct bignum *q; /* Order of subgroup (public) */ 127 struct bignum *y; /* Public key */ 128 struct bignum *x; /* Private key */ 129 }; 130 131 struct dsa_public_key { 132 struct bignum *g; /* Generator of subgroup (public) */ 133 struct bignum *p; /* Prime number (public) */ 134 struct bignum *q; /* Order of subgroup (public) */ 135 struct bignum *y; /* Public key */ 136 }; 137 138 struct dh_keypair { 139 struct bignum *g; /* Generator of Z_p (shared) */ 140 struct bignum *p; /* Prime modulus (shared) */ 141 struct bignum *x; /* Private key */ 142 struct bignum *y; /* Public key y = g^x */ 143 144 /* 145 * Optional parameters used by key generation. 146 * When not used, q == NULL and xbits == 0 147 */ 148 struct bignum *q; /* x must be in the range [2, q-2] */ 149 uint32_t xbits; /* Number of bits in the private key */ 150 }; 151 152 struct ecc_public_key { 153 struct bignum *x; /* Public value x */ 154 struct bignum *y; /* Public value y */ 155 uint32_t curve; /* Curve type */ 156 }; 157 158 struct ecc_keypair { 159 struct bignum *d; /* Private value */ 160 struct bignum *x; /* Public value x */ 161 struct bignum *y; /* Public value y */ 162 uint32_t curve; /* Curve type */ 163 }; 164 165 /* 166 * Key allocation functions 167 * Allocate the bignum's inside a key structure. 168 * TEE core will later use crypto_bignum_free(). 169 */ 170 TEE_Result crypto_acipher_alloc_rsa_keypair(struct rsa_keypair *s, 171 size_t key_size_bits); 172 TEE_Result crypto_acipher_alloc_rsa_public_key(struct rsa_public_key *s, 173 size_t key_size_bits); 174 void crypto_acipher_free_rsa_public_key(struct rsa_public_key *s); 175 TEE_Result crypto_acipher_alloc_dsa_keypair(struct dsa_keypair *s, 176 size_t key_size_bits); 177 TEE_Result crypto_acipher_alloc_dsa_public_key(struct dsa_public_key *s, 178 size_t key_size_bits); 179 TEE_Result crypto_acipher_alloc_dh_keypair(struct dh_keypair *s, 180 size_t key_size_bits); 181 TEE_Result crypto_acipher_alloc_ecc_public_key(struct ecc_public_key *s, 182 size_t key_size_bits); 183 TEE_Result crypto_acipher_alloc_ecc_keypair(struct ecc_keypair *s, 184 size_t key_size_bits); 185 void crypto_acipher_free_ecc_public_key(struct ecc_public_key *s); 186 187 /* 188 * Key generation functions 189 */ 190 TEE_Result crypto_acipher_gen_rsa_key(struct rsa_keypair *key, size_t key_size); 191 TEE_Result crypto_acipher_gen_dsa_key(struct dsa_keypair *key, size_t key_size); 192 TEE_Result crypto_acipher_gen_dh_key(struct dh_keypair *key, struct bignum *q, 193 size_t xbits, size_t key_size); 194 TEE_Result crypto_acipher_gen_ecc_key(struct ecc_keypair *key, size_t key_size); 195 196 TEE_Result crypto_acipher_dh_shared_secret(struct dh_keypair *private_key, 197 struct bignum *public_key, 198 struct bignum *secret); 199 200 TEE_Result crypto_acipher_rsanopad_decrypt(struct rsa_keypair *key, 201 const uint8_t *src, size_t src_len, 202 uint8_t *dst, size_t *dst_len); 203 TEE_Result crypto_acipher_rsanopad_encrypt(struct rsa_public_key *key, 204 const uint8_t *src, size_t src_len, 205 uint8_t *dst, size_t *dst_len); 206 TEE_Result crypto_acipher_rsaes_decrypt(uint32_t algo, struct rsa_keypair *key, 207 const uint8_t *label, size_t label_len, 208 const uint8_t *src, size_t src_len, 209 uint8_t *dst, size_t *dst_len); 210 TEE_Result crypto_acipher_rsaes_encrypt(uint32_t algo, 211 struct rsa_public_key *key, 212 const uint8_t *label, size_t label_len, 213 const uint8_t *src, size_t src_len, 214 uint8_t *dst, size_t *dst_len); 215 /* RSA SSA sign/verify: if salt_len == -1, use default value */ 216 TEE_Result crypto_acipher_rsassa_sign(uint32_t algo, struct rsa_keypair *key, 217 int salt_len, const uint8_t *msg, 218 size_t msg_len, uint8_t *sig, 219 size_t *sig_len); 220 TEE_Result crypto_acipher_rsassa_verify(uint32_t algo, 221 struct rsa_public_key *key, 222 int salt_len, const uint8_t *msg, 223 size_t msg_len, const uint8_t *sig, 224 size_t sig_len); 225 TEE_Result crypto_acipher_dsa_sign(uint32_t algo, struct dsa_keypair *key, 226 const uint8_t *msg, size_t msg_len, 227 uint8_t *sig, size_t *sig_len); 228 TEE_Result crypto_acipher_dsa_verify(uint32_t algo, struct dsa_public_key *key, 229 const uint8_t *msg, size_t msg_len, 230 const uint8_t *sig, size_t sig_len); 231 TEE_Result crypto_acipher_ecc_sign(uint32_t algo, struct ecc_keypair *key, 232 const uint8_t *msg, size_t msg_len, 233 uint8_t *sig, size_t *sig_len); 234 TEE_Result crypto_acipher_ecc_verify(uint32_t algo, struct ecc_public_key *key, 235 const uint8_t *msg, size_t msg_len, 236 const uint8_t *sig, size_t sig_len); 237 TEE_Result crypto_acipher_ecc_shared_secret(struct ecc_keypair *private_key, 238 struct ecc_public_key *public_key, 239 void *secret, 240 unsigned long *secret_len); 241 TEE_Result crypto_acipher_sm2_pke_decrypt(struct ecc_keypair *key, 242 const uint8_t *src, size_t src_len, 243 uint8_t *dst, size_t *dst_len); 244 TEE_Result crypto_acipher_sm2_pke_encrypt(struct ecc_public_key *key, 245 const uint8_t *src, size_t src_len, 246 uint8_t *dst, size_t *dst_len); 247 TEE_Result crypto_acipher_sm2_dsa_sign(uint32_t algo, struct ecc_keypair *key, 248 const uint8_t *msg, size_t msg_len, 249 uint8_t *sig, size_t *sig_len); 250 TEE_Result crypto_acipher_sm2_dsa_verify(uint32_t algo, 251 struct ecc_public_key *key, 252 const uint8_t *msg, size_t msg_len, 253 const uint8_t *sig, size_t sig_len); 254 255 struct sm2_kep_parms { 256 uint8_t *out; 257 size_t out_len; 258 bool is_initiator; 259 const uint8_t *initiator_id; 260 size_t initiator_id_len; 261 const uint8_t *responder_id; 262 size_t responder_id_len; 263 const uint8_t *conf_in; 264 size_t conf_in_len; 265 uint8_t *conf_out; 266 size_t conf_out_len; 267 }; 268 269 TEE_Result crypto_acipher_sm2_kep_derive(struct ecc_keypair *my_key, 270 struct ecc_keypair *my_eph_key, 271 struct ecc_public_key *peer_key, 272 struct ecc_public_key *peer_eph_key, 273 struct sm2_kep_parms *p); 274 275 /* 276 * Verifies a SHA-256 hash, doesn't require crypto_init() to be called in 277 * advance and has as few dependencies as possible. 278 * 279 * This function is primarily used by pager and early initialization code 280 * where the complete crypto library isn't available. 281 */ 282 TEE_Result hash_sha256_check(const uint8_t *hash, const uint8_t *data, 283 size_t data_size); 284 285 /* 286 * Computes a SHA-512/256 hash, vetted conditioner as per NIST.SP.800-90B. 287 * It doesn't require crypto_init() to be called in advance and has as few 288 * dependencies as possible. 289 * 290 * This function could be used inside interrupt context where the crypto 291 * library can't be used due to mutex handling. 292 */ 293 TEE_Result hash_sha512_256_compute(uint8_t *digest, const uint8_t *data, 294 size_t data_size); 295 296 #define CRYPTO_RNG_SRC_IS_QUICK(sid) (!!((sid) & 1)) 297 298 /* 299 * enum crypto_rng_src - RNG entropy source 300 * 301 * Identifiers for different RNG entropy sources. The lowest bit indicates 302 * if the source is to be merely queued (bit is 1) or if it's delivered 303 * directly to the pool. The difference is that in the latter case RPC to 304 * normal world can be performed and in the former it must not. 305 */ 306 enum crypto_rng_src { 307 CRYPTO_RNG_SRC_JITTER_SESSION = (0 << 1 | 0), 308 CRYPTO_RNG_SRC_JITTER_RPC = (1 << 1 | 1), 309 CRYPTO_RNG_SRC_NONSECURE = (1 << 1 | 0), 310 }; 311 312 /* 313 * crypto_rng_init() - initialize the RNG 314 * @data: buffer with initial seed 315 * @dlen: length of @data 316 */ 317 TEE_Result crypto_rng_init(const void *data, size_t dlen); 318 319 /* 320 * crypto_rng_add_event() - supply entropy to RNG from a source 321 * @sid: Source identifier, should be unique for a specific source 322 * @pnum: Pool number, acquired using crypto_rng_get_next_pool_num() 323 * @data: Data associated with the event 324 * @dlen: Length of @data 325 * 326 * @sid controls whether the event is merly queued in a ring buffer or if 327 * it's added to one of the pools directly. If CRYPTO_RNG_SRC_IS_QUICK() is 328 * true (lowest bit set) events are queue otherwise added to corresponding 329 * pool. If CRYPTO_RNG_SRC_IS_QUICK() is false, eventual queued events are 330 * added to their queues too. 331 */ 332 void crypto_rng_add_event(enum crypto_rng_src sid, unsigned int *pnum, 333 const void *data, size_t dlen); 334 335 /* 336 * crypto_rng_read() - read cryptograhically secure RNG 337 * @buf: Buffer to hold the data 338 * @len: Length of buffer. 339 * 340 * Eventual queued events are also added to their pools during this 341 * function call. 342 */ 343 TEE_Result crypto_rng_read(void *buf, size_t len); 344 345 /* 346 * crypto_aes_expand_enc_key() - Expand an AES key 347 * @key: AES key buffer 348 * @key_len: Size of the the @key buffer in bytes 349 * @enc_key: Expanded AES encryption key buffer 350 * @enc_keylen: Size of the @enc_key buffer in bytes 351 * @rounds: Number of rounds to be used during encryption 352 */ 353 TEE_Result crypto_aes_expand_enc_key(const void *key, size_t key_len, 354 void *enc_key, size_t enc_keylen, 355 unsigned int *rounds); 356 357 /* 358 * crypto_aes_enc_block() - Encrypt an AES block 359 * @enc_key: Expanded AES encryption key 360 * @enc_keylen: Size of @enc_key in bytes 361 * @rounds: Number of rounds 362 * @src: Source buffer of one AES block (16 bytes) 363 * @dst: Destination buffer of one AES block (16 bytes) 364 */ 365 void crypto_aes_enc_block(const void *enc_key, size_t enc_keylen, 366 unsigned int rounds, const void *src, void *dst); 367 368 #endif /* __CRYPTO_CRYPTO_H */ 369