1 /* SPDX-License-Identifier: BSD-2-Clause */ 2 /* 3 * Copyright (c) 2014-2017, Linaro Limited 4 */ 5 6 /* 7 * This is the Cryptographic Provider API (CP API). 8 * 9 * This defines how most crypto syscalls that implement the Cryptographic 10 * Operations API can invoke the actual providers of cryptographic algorithms 11 * (such as LibTomCrypt). 12 * 13 * To add a new provider, you need to provide an implementation of this 14 * interface. 15 * 16 * The following parameters are commonly used. 17 * 18 * @ctx: context allocated by the syscall, for later use by the algorithm 19 * @algo: algorithm identifier (TEE_ALG_*) 20 */ 21 22 #ifndef __CRYPTO_CRYPTO_H 23 #define __CRYPTO_CRYPTO_H 24 25 #include <tee_api_types.h> 26 27 TEE_Result crypto_init(void); 28 29 /* Message digest functions */ 30 TEE_Result crypto_hash_alloc_ctx(void **ctx, uint32_t algo); 31 TEE_Result crypto_hash_init(void *ctx); 32 TEE_Result crypto_hash_update(void *ctx, const uint8_t *data, size_t len); 33 TEE_Result crypto_hash_final(void *ctx, uint8_t *digest, size_t len); 34 void crypto_hash_free_ctx(void *ctx); 35 void crypto_hash_copy_state(void *dst_ctx, void *src_ctx); 36 37 /* Symmetric ciphers */ 38 TEE_Result crypto_cipher_alloc_ctx(void **ctx, uint32_t algo); 39 TEE_Result crypto_cipher_init(void *ctx, TEE_OperationMode mode, 40 const uint8_t *key1, size_t key1_len, 41 const uint8_t *key2, size_t key2_len, 42 const uint8_t *iv, size_t iv_len); 43 TEE_Result crypto_cipher_update(void *ctx, TEE_OperationMode mode, 44 bool last_block, const uint8_t *data, 45 size_t len, uint8_t *dst); 46 void crypto_cipher_final(void *ctx); 47 TEE_Result crypto_cipher_get_block_size(uint32_t algo, size_t *size); 48 void crypto_cipher_free_ctx(void *ctx); 49 void crypto_cipher_copy_state(void *dst_ctx, void *src_ctx); 50 51 /* Message Authentication Code functions */ 52 TEE_Result crypto_mac_alloc_ctx(void **ctx, uint32_t algo); 53 TEE_Result crypto_mac_init(void *ctx, const uint8_t *key, size_t len); 54 TEE_Result crypto_mac_update(void *ctx, const uint8_t *data, size_t len); 55 TEE_Result crypto_mac_final(void *ctx, uint8_t *digest, size_t digest_len); 56 void crypto_mac_free_ctx(void *ctx); 57 void crypto_mac_copy_state(void *dst_ctx, void *src_ctx); 58 59 /* Authenticated encryption */ 60 TEE_Result crypto_authenc_alloc_ctx(void **ctx, uint32_t algo); 61 TEE_Result crypto_authenc_init(void *ctx, TEE_OperationMode mode, 62 const uint8_t *key, size_t key_len, 63 const uint8_t *nonce, size_t nonce_len, 64 size_t tag_len, size_t aad_len, 65 size_t payload_len); 66 TEE_Result crypto_authenc_update_aad(void *ctx, TEE_OperationMode mode, 67 const uint8_t *data, size_t len); 68 TEE_Result crypto_authenc_update_payload(void *ctx, TEE_OperationMode mode, 69 const uint8_t *src_data, 70 size_t src_len, uint8_t *dst_data, 71 size_t *dst_len); 72 TEE_Result crypto_authenc_enc_final(void *ctx, const uint8_t *src_data, 73 size_t src_len, uint8_t *dst_data, 74 size_t *dst_len, uint8_t *dst_tag, 75 size_t *dst_tag_len); 76 TEE_Result crypto_authenc_dec_final(void *ctx, const uint8_t *src_data, 77 size_t src_len, uint8_t *dst_data, 78 size_t *dst_len, const uint8_t *tag, 79 size_t tag_len); 80 void crypto_authenc_final(void *ctx); 81 void crypto_authenc_free_ctx(void *ctx); 82 void crypto_authenc_copy_state(void *dst_ctx, void *src_ctx); 83 84 /* Informs crypto that the data in the buffer will be removed from storage */ 85 void crypto_storage_obj_del(uint8_t *data, size_t len); 86 87 /* Implementation-defined big numbers */ 88 89 /* 90 * Allocate a bignum capable of holding an unsigned integer value of 91 * up to bitsize bits 92 */ 93 struct bignum *crypto_bignum_allocate(size_t size_bits); 94 TEE_Result crypto_bignum_bin2bn(const uint8_t *from, size_t fromsize, 95 struct bignum *to); 96 size_t crypto_bignum_num_bytes(struct bignum *a); 97 size_t crypto_bignum_num_bits(struct bignum *a); 98 void crypto_bignum_bn2bin(const struct bignum *from, uint8_t *to); 99 void crypto_bignum_copy(struct bignum *to, const struct bignum *from); 100 void crypto_bignum_free(struct bignum *a); 101 void crypto_bignum_clear(struct bignum *a); 102 103 /* return -1 if a<b, 0 if a==b, +1 if a>b */ 104 int32_t crypto_bignum_compare(struct bignum *a, struct bignum *b); 105 106 /* Asymmetric algorithms */ 107 108 struct rsa_keypair { 109 struct bignum *e; /* Public exponent */ 110 struct bignum *d; /* Private exponent */ 111 struct bignum *n; /* Modulus */ 112 113 /* Optional CRT parameters (all NULL if unused) */ 114 struct bignum *p; /* N = pq */ 115 struct bignum *q; 116 struct bignum *qp; /* 1/q mod p */ 117 struct bignum *dp; /* d mod (p-1) */ 118 struct bignum *dq; /* d mod (q-1) */ 119 }; 120 121 struct rsa_public_key { 122 struct bignum *e; /* Public exponent */ 123 struct bignum *n; /* Modulus */ 124 }; 125 126 struct dsa_keypair { 127 struct bignum *g; /* Generator of subgroup (public) */ 128 struct bignum *p; /* Prime number (public) */ 129 struct bignum *q; /* Order of subgroup (public) */ 130 struct bignum *y; /* Public key */ 131 struct bignum *x; /* Private key */ 132 }; 133 134 struct dsa_public_key { 135 struct bignum *g; /* Generator of subgroup (public) */ 136 struct bignum *p; /* Prime number (public) */ 137 struct bignum *q; /* Order of subgroup (public) */ 138 struct bignum *y; /* Public key */ 139 }; 140 141 struct dh_keypair { 142 struct bignum *g; /* Generator of Z_p (shared) */ 143 struct bignum *p; /* Prime modulus (shared) */ 144 struct bignum *x; /* Private key */ 145 struct bignum *y; /* Public key y = g^x */ 146 147 /* 148 * Optional parameters used by key generation. 149 * When not used, q == NULL and xbits == 0 150 */ 151 struct bignum *q; /* x must be in the range [2, q-2] */ 152 uint32_t xbits; /* Number of bits in the private key */ 153 }; 154 155 struct ecc_public_key { 156 struct bignum *x; /* Public value x */ 157 struct bignum *y; /* Public value y */ 158 uint32_t curve; /* Curve type */ 159 const struct crypto_ecc_public_ops *ops; /* Key Operations */ 160 }; 161 162 struct ecc_keypair { 163 struct bignum *d; /* Private value */ 164 struct bignum *x; /* Public value x */ 165 struct bignum *y; /* Public value y */ 166 uint32_t curve; /* Curve type */ 167 const struct crypto_ecc_keypair_ops *ops; /* Key Operations */ 168 }; 169 170 struct x25519_keypair { 171 uint8_t *priv; /* Private value */ 172 uint8_t *pub; /* Public value */ 173 }; 174 175 struct ed25519_keypair { 176 uint8_t *priv; 177 uint8_t *pub; 178 uint32_t curve; 179 }; 180 181 /* 182 * Key allocation functions 183 * Allocate the bignum's inside a key structure. 184 * TEE core will later use crypto_bignum_free(). 185 */ 186 TEE_Result crypto_acipher_alloc_rsa_keypair(struct rsa_keypair *s, 187 size_t key_size_bits); 188 TEE_Result crypto_acipher_alloc_rsa_public_key(struct rsa_public_key *s, 189 size_t key_size_bits); 190 void crypto_acipher_free_rsa_public_key(struct rsa_public_key *s); 191 void crypto_acipher_free_rsa_keypair(struct rsa_keypair *s); 192 TEE_Result crypto_acipher_alloc_dsa_keypair(struct dsa_keypair *s, 193 size_t key_size_bits); 194 TEE_Result crypto_acipher_alloc_dsa_public_key(struct dsa_public_key *s, 195 size_t key_size_bits); 196 TEE_Result crypto_acipher_alloc_dh_keypair(struct dh_keypair *s, 197 size_t key_size_bits); 198 TEE_Result crypto_acipher_alloc_ecc_public_key(struct ecc_public_key *s, 199 uint32_t key_type, 200 size_t key_size_bits); 201 TEE_Result crypto_acipher_alloc_ecc_keypair(struct ecc_keypair *s, 202 uint32_t key_type, 203 size_t key_size_bits); 204 void crypto_acipher_free_ecc_public_key(struct ecc_public_key *s); 205 TEE_Result crypto_acipher_alloc_x25519_keypair(struct x25519_keypair *s, 206 size_t key_size_bits); 207 TEE_Result crypto_acipher_alloc_ed25519_keypair(struct ed25519_keypair *s, 208 size_t key_size_bits); 209 210 /* 211 * Key generation functions 212 */ 213 TEE_Result crypto_acipher_gen_rsa_key(struct rsa_keypair *key, size_t key_size); 214 TEE_Result crypto_acipher_gen_dsa_key(struct dsa_keypair *key, size_t key_size); 215 TEE_Result crypto_acipher_gen_dh_key(struct dh_keypair *key, struct bignum *q, 216 size_t xbits, size_t key_size); 217 TEE_Result crypto_acipher_gen_ecc_key(struct ecc_keypair *key, size_t key_size); 218 TEE_Result crypto_acipher_gen_x25519_key(struct x25519_keypair *key, 219 size_t key_size); 220 TEE_Result crypto_acipher_gen_ed25519_key(struct ed25519_keypair *key, 221 size_t key_size); 222 TEE_Result crypto_acipher_ed25519_sign(struct ed25519_keypair *key, 223 const uint8_t *msg, size_t msg_len, 224 uint8_t *sig, size_t *sig_len); 225 TEE_Result crypto_acipher_ed25519ctx_sign(struct ed25519_keypair *key, 226 const uint8_t *msg, size_t msg_len, 227 uint8_t *sig, size_t *sig_len, 228 bool ph_flag, 229 const uint8_t *ctx, size_t ctxlen); 230 TEE_Result crypto_acipher_ed25519_verify(struct ed25519_keypair *key, 231 const uint8_t *msg, size_t msg_len, 232 const uint8_t *sig, size_t sig_len); 233 TEE_Result crypto_acipher_ed25519ctx_verify(struct ed25519_keypair *key, 234 const uint8_t *msg, size_t msg_len, 235 const uint8_t *sig, size_t sig_len, 236 bool ph_flag, 237 const uint8_t *ctx, size_t ctxlen); 238 239 TEE_Result crypto_acipher_dh_shared_secret(struct dh_keypair *private_key, 240 struct bignum *public_key, 241 struct bignum *secret); 242 243 TEE_Result crypto_acipher_rsanopad_decrypt(struct rsa_keypair *key, 244 const uint8_t *src, size_t src_len, 245 uint8_t *dst, size_t *dst_len); 246 TEE_Result crypto_acipher_rsanopad_encrypt(struct rsa_public_key *key, 247 const uint8_t *src, size_t src_len, 248 uint8_t *dst, size_t *dst_len); 249 TEE_Result crypto_acipher_rsaes_decrypt(uint32_t algo, struct rsa_keypair *key, 250 const uint8_t *label, size_t label_len, 251 const uint8_t *src, size_t src_len, 252 uint8_t *dst, size_t *dst_len); 253 TEE_Result crypto_acipher_rsaes_encrypt(uint32_t algo, 254 struct rsa_public_key *key, 255 const uint8_t *label, size_t label_len, 256 const uint8_t *src, size_t src_len, 257 uint8_t *dst, size_t *dst_len); 258 /* RSA SSA sign/verify: if salt_len == -1, use default value */ 259 TEE_Result crypto_acipher_rsassa_sign(uint32_t algo, struct rsa_keypair *key, 260 int salt_len, const uint8_t *msg, 261 size_t msg_len, uint8_t *sig, 262 size_t *sig_len); 263 TEE_Result crypto_acipher_rsassa_verify(uint32_t algo, 264 struct rsa_public_key *key, 265 int salt_len, const uint8_t *msg, 266 size_t msg_len, const uint8_t *sig, 267 size_t sig_len); 268 TEE_Result crypto_acipher_dsa_sign(uint32_t algo, struct dsa_keypair *key, 269 const uint8_t *msg, size_t msg_len, 270 uint8_t *sig, size_t *sig_len); 271 TEE_Result crypto_acipher_dsa_verify(uint32_t algo, struct dsa_public_key *key, 272 const uint8_t *msg, size_t msg_len, 273 const uint8_t *sig, size_t sig_len); 274 TEE_Result crypto_acipher_ecc_sign(uint32_t algo, struct ecc_keypair *key, 275 const uint8_t *msg, size_t msg_len, 276 uint8_t *sig, size_t *sig_len); 277 TEE_Result crypto_acipher_ecc_verify(uint32_t algo, struct ecc_public_key *key, 278 const uint8_t *msg, size_t msg_len, 279 const uint8_t *sig, size_t sig_len); 280 TEE_Result crypto_acipher_ecc_shared_secret(struct ecc_keypair *private_key, 281 struct ecc_public_key *public_key, 282 void *secret, 283 unsigned long *secret_len); 284 TEE_Result crypto_acipher_sm2_pke_decrypt(struct ecc_keypair *key, 285 const uint8_t *src, size_t src_len, 286 uint8_t *dst, size_t *dst_len); 287 TEE_Result crypto_acipher_sm2_pke_encrypt(struct ecc_public_key *key, 288 const uint8_t *src, size_t src_len, 289 uint8_t *dst, size_t *dst_len); 290 TEE_Result crypto_acipher_x25519_shared_secret(struct x25519_keypair 291 *private_key, 292 void *public_key, void *secret, 293 unsigned long *secret_len); 294 295 struct sm2_kep_parms { 296 uint8_t *out; 297 size_t out_len; 298 bool is_initiator; 299 const uint8_t *initiator_id; 300 size_t initiator_id_len; 301 const uint8_t *responder_id; 302 size_t responder_id_len; 303 const uint8_t *conf_in; 304 size_t conf_in_len; 305 uint8_t *conf_out; 306 size_t conf_out_len; 307 }; 308 309 TEE_Result crypto_acipher_sm2_kep_derive(struct ecc_keypair *my_key, 310 struct ecc_keypair *my_eph_key, 311 struct ecc_public_key *peer_key, 312 struct ecc_public_key *peer_eph_key, 313 struct sm2_kep_parms *p); 314 315 /* 316 * Verifies a SHA-256 hash, doesn't require crypto_init() to be called in 317 * advance and has as few dependencies as possible. 318 * 319 * This function is primarily used by pager and early initialization code 320 * where the complete crypto library isn't available. 321 */ 322 TEE_Result hash_sha256_check(const uint8_t *hash, const uint8_t *data, 323 size_t data_size); 324 325 /* 326 * Computes a SHA-512/256 hash, vetted conditioner as per NIST.SP.800-90B. 327 * It doesn't require crypto_init() to be called in advance and has as few 328 * dependencies as possible. 329 * 330 * This function could be used inside interrupt context where the crypto 331 * library can't be used due to mutex handling. 332 */ 333 TEE_Result hash_sha512_256_compute(uint8_t *digest, const uint8_t *data, 334 size_t data_size); 335 336 #define CRYPTO_RNG_SRC_IS_QUICK(sid) (!!((sid) & 1)) 337 338 /* 339 * enum crypto_rng_src - RNG entropy source 340 * 341 * Identifiers for different RNG entropy sources. The lowest bit indicates 342 * if the source is to be merely queued (bit is 1) or if it's delivered 343 * directly to the pool. The difference is that in the latter case RPC to 344 * normal world can be performed and in the former it must not. 345 */ 346 enum crypto_rng_src { 347 CRYPTO_RNG_SRC_JITTER_SESSION = (0 << 1 | 0), 348 CRYPTO_RNG_SRC_JITTER_RPC = (1 << 1 | 1), 349 CRYPTO_RNG_SRC_NONSECURE = (1 << 1 | 0), 350 }; 351 352 /* 353 * crypto_rng_init() - initialize the RNG 354 * @data: buffer with initial seed 355 * @dlen: length of @data 356 */ 357 TEE_Result crypto_rng_init(const void *data, size_t dlen); 358 359 /* 360 * crypto_rng_add_event() - supply entropy to RNG from a source 361 * @sid: Source identifier, should be unique for a specific source 362 * @pnum: Pool number, acquired using crypto_rng_get_next_pool_num() 363 * @data: Data associated with the event 364 * @dlen: Length of @data 365 * 366 * @sid controls whether the event is merly queued in a ring buffer or if 367 * it's added to one of the pools directly. If CRYPTO_RNG_SRC_IS_QUICK() is 368 * true (lowest bit set) events are queue otherwise added to corresponding 369 * pool. If CRYPTO_RNG_SRC_IS_QUICK() is false, eventual queued events are 370 * added to their queues too. 371 */ 372 void crypto_rng_add_event(enum crypto_rng_src sid, unsigned int *pnum, 373 const void *data, size_t dlen); 374 375 /* 376 * crypto_rng_read() - read cryptograhically secure RNG 377 * @buf: Buffer to hold the data 378 * @len: Length of buffer. 379 * 380 * Eventual queued events are also added to their pools during this 381 * function call. 382 */ 383 TEE_Result crypto_rng_read(void *buf, size_t len); 384 385 /* 386 * crypto_aes_expand_enc_key() - Expand an AES key 387 * @key: AES key buffer 388 * @key_len: Size of the @key buffer in bytes 389 * @enc_key: Expanded AES encryption key buffer 390 * @enc_keylen: Size of the @enc_key buffer in bytes 391 * @rounds: Number of rounds to be used during encryption 392 */ 393 TEE_Result crypto_aes_expand_enc_key(const void *key, size_t key_len, 394 void *enc_key, size_t enc_keylen, 395 unsigned int *rounds); 396 397 /* 398 * crypto_aes_enc_block() - Encrypt an AES block 399 * @enc_key: Expanded AES encryption key 400 * @enc_keylen: Size of @enc_key in bytes 401 * @rounds: Number of rounds 402 * @src: Source buffer of one AES block (16 bytes) 403 * @dst: Destination buffer of one AES block (16 bytes) 404 */ 405 void crypto_aes_enc_block(const void *enc_key, size_t enc_keylen, 406 unsigned int rounds, const void *src, void *dst); 407 408 #endif /* __CRYPTO_CRYPTO_H */ 409