xref: /optee_os/core/include/crypto/crypto.h (revision 039e02df2716a0ed886b56e1e07b7ac1d8597228)
1 /* SPDX-License-Identifier: BSD-2-Clause */
2 /*
3  * Copyright (c) 2014-2017, Linaro Limited
4  */
5 
6 /*
7  * This is the Cryptographic Provider API (CP API).
8  *
9  * This defines how most crypto syscalls that implement the Cryptographic
10  * Operations API can invoke the actual providers of cryptographic algorithms
11  * (such as LibTomCrypt).
12  *
13  * To add a new provider, you need to provide an implementation of this
14  * interface.
15  *
16  * The following parameters are commonly used.
17  *
18  * @ctx: context allocated by the syscall, for later use by the algorithm
19  * @algo: algorithm identifier (TEE_ALG_*)
20  */
21 
22 #ifndef __CRYPTO_CRYPTO_H
23 #define __CRYPTO_CRYPTO_H
24 
25 #include <tee_api_types.h>
26 
27 TEE_Result crypto_init(void);
28 
29 /* Message digest functions */
30 TEE_Result crypto_hash_alloc_ctx(void **ctx, uint32_t algo);
31 TEE_Result crypto_hash_init(void *ctx);
32 TEE_Result crypto_hash_update(void *ctx, const uint8_t *data, size_t len);
33 TEE_Result crypto_hash_final(void *ctx, uint8_t *digest, size_t len);
34 void crypto_hash_free_ctx(void *ctx);
35 void crypto_hash_copy_state(void *dst_ctx, void *src_ctx);
36 
37 /* Symmetric ciphers */
38 TEE_Result crypto_cipher_alloc_ctx(void **ctx, uint32_t algo);
39 TEE_Result crypto_cipher_init(void *ctx, TEE_OperationMode mode,
40 			      const uint8_t *key1, size_t key1_len,
41 			      const uint8_t *key2, size_t key2_len,
42 			      const uint8_t *iv, size_t iv_len);
43 TEE_Result crypto_cipher_update(void *ctx, TEE_OperationMode mode,
44 				bool last_block, const uint8_t *data,
45 				size_t len, uint8_t *dst);
46 void crypto_cipher_final(void *ctx);
47 TEE_Result crypto_cipher_get_block_size(uint32_t algo, size_t *size);
48 void crypto_cipher_free_ctx(void *ctx);
49 void crypto_cipher_copy_state(void *dst_ctx, void *src_ctx);
50 
51 /* Message Authentication Code functions */
52 TEE_Result crypto_mac_alloc_ctx(void **ctx, uint32_t algo);
53 TEE_Result crypto_mac_init(void *ctx, const uint8_t *key, size_t len);
54 TEE_Result crypto_mac_update(void *ctx, const uint8_t *data, size_t len);
55 TEE_Result crypto_mac_final(void *ctx, uint8_t *digest, size_t digest_len);
56 void crypto_mac_free_ctx(void *ctx);
57 void crypto_mac_copy_state(void *dst_ctx, void *src_ctx);
58 
59 /* Authenticated encryption */
60 TEE_Result crypto_authenc_alloc_ctx(void **ctx, uint32_t algo);
61 TEE_Result crypto_authenc_init(void *ctx, TEE_OperationMode mode,
62 			       const uint8_t *key, size_t key_len,
63 			       const uint8_t *nonce, size_t nonce_len,
64 			       size_t tag_len, size_t aad_len,
65 			       size_t payload_len);
66 TEE_Result crypto_authenc_update_aad(void *ctx, TEE_OperationMode mode,
67 				     const uint8_t *data, size_t len);
68 TEE_Result crypto_authenc_update_payload(void *ctx, TEE_OperationMode mode,
69 					 const uint8_t *src_data,
70 					 size_t src_len, uint8_t *dst_data,
71 					 size_t *dst_len);
72 TEE_Result crypto_authenc_enc_final(void *ctx, const uint8_t *src_data,
73 				    size_t src_len, uint8_t *dst_data,
74 				    size_t *dst_len, uint8_t *dst_tag,
75 				    size_t *dst_tag_len);
76 TEE_Result crypto_authenc_dec_final(void *ctx, const uint8_t *src_data,
77 				    size_t src_len, uint8_t *dst_data,
78 				    size_t *dst_len, const uint8_t *tag,
79 				    size_t tag_len);
80 void crypto_authenc_final(void *ctx);
81 void crypto_authenc_free_ctx(void *ctx);
82 void crypto_authenc_copy_state(void *dst_ctx, void *src_ctx);
83 
84 /* Informs crypto that the data in the buffer will be removed from storage */
85 void crypto_storage_obj_del(uint8_t *data, size_t len);
86 
87 /* Implementation-defined big numbers */
88 
89 /*
90  * Allocate a bignum capable of holding an unsigned integer value of
91  * up to bitsize bits
92  */
93 struct bignum *crypto_bignum_allocate(size_t size_bits);
94 TEE_Result crypto_bignum_bin2bn(const uint8_t *from, size_t fromsize,
95 				struct bignum *to);
96 size_t crypto_bignum_num_bytes(struct bignum *a);
97 size_t crypto_bignum_num_bits(struct bignum *a);
98 void crypto_bignum_bn2bin(const struct bignum *from, uint8_t *to);
99 void crypto_bignum_copy(struct bignum *to, const struct bignum *from);
100 void crypto_bignum_free(struct bignum *a);
101 void crypto_bignum_clear(struct bignum *a);
102 
103 /* return -1 if a<b, 0 if a==b, +1 if a>b */
104 int32_t crypto_bignum_compare(struct bignum *a, struct bignum *b);
105 
106 /* Asymmetric algorithms */
107 
108 struct rsa_keypair {
109 	struct bignum *e;	/* Public exponent */
110 	struct bignum *d;	/* Private exponent */
111 	struct bignum *n;	/* Modulus */
112 
113 	/* Optional CRT parameters (all NULL if unused) */
114 	struct bignum *p;	/* N = pq */
115 	struct bignum *q;
116 	struct bignum *qp;	/* 1/q mod p */
117 	struct bignum *dp;	/* d mod (p-1) */
118 	struct bignum *dq;	/* d mod (q-1) */
119 };
120 
121 struct rsa_public_key {
122 	struct bignum *e;	/* Public exponent */
123 	struct bignum *n;	/* Modulus */
124 };
125 
126 struct dsa_keypair {
127 	struct bignum *g;	/* Generator of subgroup (public) */
128 	struct bignum *p;	/* Prime number (public) */
129 	struct bignum *q;	/* Order of subgroup (public) */
130 	struct bignum *y;	/* Public key */
131 	struct bignum *x;	/* Private key */
132 };
133 
134 struct dsa_public_key {
135 	struct bignum *g;	/* Generator of subgroup (public) */
136 	struct bignum *p;	/* Prime number (public) */
137 	struct bignum *q;	/* Order of subgroup (public) */
138 	struct bignum *y;	/* Public key */
139 };
140 
141 struct dh_keypair {
142 	struct bignum *g;	/* Generator of Z_p (shared) */
143 	struct bignum *p;	/* Prime modulus (shared) */
144 	struct bignum *x;	/* Private key */
145 	struct bignum *y;	/* Public key y = g^x */
146 
147 	/*
148 	 * Optional parameters used by key generation.
149 	 * When not used, q == NULL and xbits == 0
150 	 */
151 	struct bignum *q;	/* x must be in the range [2, q-2] */
152 	uint32_t xbits;		/* Number of bits in the private key */
153 };
154 
155 struct ecc_public_key {
156 	struct bignum *x;	/* Public value x */
157 	struct bignum *y;	/* Public value y */
158 	uint32_t curve;	        /* Curve type */
159 	const struct crypto_ecc_public_ops *ops; /* Key Operations */
160 };
161 
162 struct ecc_keypair {
163 	struct bignum *d;	/* Private value */
164 	struct bignum *x;	/* Public value x */
165 	struct bignum *y;	/* Public value y */
166 	uint32_t curve;	        /* Curve type */
167 	const struct crypto_ecc_keypair_ops *ops; /* Key Operations */
168 };
169 
170 struct x25519_keypair {
171 	uint8_t *priv;	/* Private value */
172 	uint8_t *pub;	/* Public value */
173 };
174 
175 /*
176  * Key allocation functions
177  * Allocate the bignum's inside a key structure.
178  * TEE core will later use crypto_bignum_free().
179  */
180 TEE_Result crypto_acipher_alloc_rsa_keypair(struct rsa_keypair *s,
181 				size_t key_size_bits);
182 TEE_Result crypto_acipher_alloc_rsa_public_key(struct rsa_public_key *s,
183 				   size_t key_size_bits);
184 void crypto_acipher_free_rsa_public_key(struct rsa_public_key *s);
185 void crypto_acipher_free_rsa_keypair(struct rsa_keypair *s);
186 TEE_Result crypto_acipher_alloc_dsa_keypair(struct dsa_keypair *s,
187 				size_t key_size_bits);
188 TEE_Result crypto_acipher_alloc_dsa_public_key(struct dsa_public_key *s,
189 				   size_t key_size_bits);
190 TEE_Result crypto_acipher_alloc_dh_keypair(struct dh_keypair *s,
191 			       size_t key_size_bits);
192 TEE_Result crypto_acipher_alloc_ecc_public_key(struct ecc_public_key *s,
193 					       uint32_t key_type,
194 					       size_t key_size_bits);
195 TEE_Result crypto_acipher_alloc_ecc_keypair(struct ecc_keypair *s,
196 					    uint32_t key_type,
197 					    size_t key_size_bits);
198 void crypto_acipher_free_ecc_public_key(struct ecc_public_key *s);
199 TEE_Result crypto_acipher_alloc_x25519_keypair(struct x25519_keypair *s,
200 					       size_t key_size_bits);
201 
202 /*
203  * Key generation functions
204  */
205 TEE_Result crypto_acipher_gen_rsa_key(struct rsa_keypair *key, size_t key_size);
206 TEE_Result crypto_acipher_gen_dsa_key(struct dsa_keypair *key, size_t key_size);
207 TEE_Result crypto_acipher_gen_dh_key(struct dh_keypair *key, struct bignum *q,
208 				     size_t xbits, size_t key_size);
209 TEE_Result crypto_acipher_gen_ecc_key(struct ecc_keypair *key, size_t key_size);
210 TEE_Result crypto_acipher_gen_x25519_key(struct x25519_keypair *key,
211 					 size_t key_size);
212 
213 TEE_Result crypto_acipher_dh_shared_secret(struct dh_keypair *private_key,
214 					   struct bignum *public_key,
215 					   struct bignum *secret);
216 
217 TEE_Result crypto_acipher_rsanopad_decrypt(struct rsa_keypair *key,
218 					   const uint8_t *src, size_t src_len,
219 					   uint8_t *dst, size_t *dst_len);
220 TEE_Result crypto_acipher_rsanopad_encrypt(struct rsa_public_key *key,
221 					   const uint8_t *src, size_t src_len,
222 					   uint8_t *dst, size_t *dst_len);
223 TEE_Result crypto_acipher_rsaes_decrypt(uint32_t algo, struct rsa_keypair *key,
224 					const uint8_t *label, size_t label_len,
225 					const uint8_t *src, size_t src_len,
226 					uint8_t *dst, size_t *dst_len);
227 TEE_Result crypto_acipher_rsaes_encrypt(uint32_t algo,
228 					struct rsa_public_key *key,
229 					const uint8_t *label, size_t label_len,
230 					const uint8_t *src, size_t src_len,
231 					uint8_t *dst, size_t *dst_len);
232 /* RSA SSA sign/verify: if salt_len == -1, use default value */
233 TEE_Result crypto_acipher_rsassa_sign(uint32_t algo, struct rsa_keypair *key,
234 				      int salt_len, const uint8_t *msg,
235 				      size_t msg_len, uint8_t *sig,
236 				      size_t *sig_len);
237 TEE_Result crypto_acipher_rsassa_verify(uint32_t algo,
238 					struct rsa_public_key *key,
239 					int salt_len, const uint8_t *msg,
240 					size_t msg_len, const uint8_t *sig,
241 					size_t sig_len);
242 TEE_Result crypto_acipher_dsa_sign(uint32_t algo, struct dsa_keypair *key,
243 				   const uint8_t *msg, size_t msg_len,
244 				   uint8_t *sig, size_t *sig_len);
245 TEE_Result crypto_acipher_dsa_verify(uint32_t algo, struct dsa_public_key *key,
246 				     const uint8_t *msg, size_t msg_len,
247 				     const uint8_t *sig, size_t sig_len);
248 TEE_Result crypto_acipher_ecc_sign(uint32_t algo, struct ecc_keypair *key,
249 				   const uint8_t *msg, size_t msg_len,
250 				   uint8_t *sig, size_t *sig_len);
251 TEE_Result crypto_acipher_ecc_verify(uint32_t algo, struct ecc_public_key *key,
252 				     const uint8_t *msg, size_t msg_len,
253 				     const uint8_t *sig, size_t sig_len);
254 TEE_Result crypto_acipher_ecc_shared_secret(struct ecc_keypair *private_key,
255 					    struct ecc_public_key *public_key,
256 					    void *secret,
257 					    unsigned long *secret_len);
258 TEE_Result crypto_acipher_sm2_pke_decrypt(struct ecc_keypair *key,
259 					  const uint8_t *src, size_t src_len,
260 					  uint8_t *dst, size_t *dst_len);
261 TEE_Result crypto_acipher_sm2_pke_encrypt(struct ecc_public_key *key,
262 					  const uint8_t *src, size_t src_len,
263 					  uint8_t *dst, size_t *dst_len);
264 TEE_Result crypto_acipher_x25519_shared_secret(struct x25519_keypair
265 					       *private_key,
266 					       void *public_key, void *secret,
267 					       unsigned long *secret_len);
268 
269 struct sm2_kep_parms {
270 	uint8_t *out;
271 	size_t out_len;
272 	bool is_initiator;
273 	const uint8_t *initiator_id;
274 	size_t initiator_id_len;
275 	const uint8_t *responder_id;
276 	size_t responder_id_len;
277 	const uint8_t *conf_in;
278 	size_t conf_in_len;
279 	uint8_t *conf_out;
280 	size_t conf_out_len;
281 };
282 
283 TEE_Result crypto_acipher_sm2_kep_derive(struct ecc_keypair *my_key,
284 					 struct ecc_keypair *my_eph_key,
285 					 struct ecc_public_key *peer_key,
286 					 struct ecc_public_key *peer_eph_key,
287 					 struct sm2_kep_parms *p);
288 
289 /*
290  * Verifies a SHA-256 hash, doesn't require crypto_init() to be called in
291  * advance and has as few dependencies as possible.
292  *
293  * This function is primarily used by pager and early initialization code
294  * where the complete crypto library isn't available.
295  */
296 TEE_Result hash_sha256_check(const uint8_t *hash, const uint8_t *data,
297 		size_t data_size);
298 
299 /*
300  * Computes a SHA-512/256 hash, vetted conditioner as per NIST.SP.800-90B.
301  * It doesn't require crypto_init() to be called in advance and has as few
302  * dependencies as possible.
303  *
304  * This function could be used inside interrupt context where the crypto
305  * library can't be used due to mutex handling.
306  */
307 TEE_Result hash_sha512_256_compute(uint8_t *digest, const uint8_t *data,
308 		size_t data_size);
309 
310 #define CRYPTO_RNG_SRC_IS_QUICK(sid) (!!((sid) & 1))
311 
312 /*
313  * enum crypto_rng_src - RNG entropy source
314  *
315  * Identifiers for different RNG entropy sources. The lowest bit indicates
316  * if the source is to be merely queued (bit is 1) or if it's delivered
317  * directly to the pool. The difference is that in the latter case RPC to
318  * normal world can be performed and in the former it must not.
319  */
320 enum crypto_rng_src {
321 	CRYPTO_RNG_SRC_JITTER_SESSION	= (0 << 1 | 0),
322 	CRYPTO_RNG_SRC_JITTER_RPC	= (1 << 1 | 1),
323 	CRYPTO_RNG_SRC_NONSECURE	= (1 << 1 | 0),
324 };
325 
326 /*
327  * crypto_rng_init() - initialize the RNG
328  * @data:	buffer with initial seed
329  * @dlen:	length of @data
330  */
331 TEE_Result crypto_rng_init(const void *data, size_t dlen);
332 
333 /*
334  * crypto_rng_add_event() - supply entropy to RNG from a source
335  * @sid:	Source identifier, should be unique for a specific source
336  * @pnum:	Pool number, acquired using crypto_rng_get_next_pool_num()
337  * @data:	Data associated with the event
338  * @dlen:	Length of @data
339  *
340  * @sid controls whether the event is merly queued in a ring buffer or if
341  * it's added to one of the pools directly. If CRYPTO_RNG_SRC_IS_QUICK() is
342  * true (lowest bit set) events are queue otherwise added to corresponding
343  * pool. If CRYPTO_RNG_SRC_IS_QUICK() is false, eventual queued events are
344  * added to their queues too.
345  */
346 void crypto_rng_add_event(enum crypto_rng_src sid, unsigned int *pnum,
347 			  const void *data, size_t dlen);
348 
349 /*
350  * crypto_rng_read() - read cryptograhically secure RNG
351  * @buf:	Buffer to hold the data
352  * @len:	Length of buffer.
353  *
354  * Eventual queued events are also added to their pools during this
355  * function call.
356  */
357 TEE_Result crypto_rng_read(void *buf, size_t len);
358 
359 /*
360  * crypto_aes_expand_enc_key() - Expand an AES key
361  * @key:	AES key buffer
362  * @key_len:	Size of the @key buffer in bytes
363  * @enc_key:	Expanded AES encryption key buffer
364  * @enc_keylen: Size of the @enc_key buffer in bytes
365  * @rounds:	Number of rounds to be used during encryption
366  */
367 TEE_Result crypto_aes_expand_enc_key(const void *key, size_t key_len,
368 				     void *enc_key, size_t enc_keylen,
369 				     unsigned int *rounds);
370 
371 /*
372  * crypto_aes_enc_block() - Encrypt an AES block
373  * @enc_key:	Expanded AES encryption key
374  * @enc_keylen:	Size of @enc_key in bytes
375  * @rounds:	Number of rounds
376  * @src:	Source buffer of one AES block (16 bytes)
377  * @dst:	Destination buffer of one AES block (16 bytes)
378  */
379 void crypto_aes_enc_block(const void *enc_key, size_t enc_keylen,
380 			  unsigned int rounds, const void *src, void *dst);
381 
382 #endif /* __CRYPTO_CRYPTO_H */
383