1 /* SPDX-License-Identifier: BSD-2-Clause */ 2 /* 3 * Copyright (c) 2014-2017, Linaro Limited 4 */ 5 6 /* 7 * This is the Cryptographic Provider API (CP API). 8 * 9 * This defines how most crypto syscalls that implement the Cryptographic 10 * Operations API can invoke the actual providers of cryptographic algorithms 11 * (such as LibTomCrypt). 12 * 13 * To add a new provider, you need to provide an implementation of this 14 * interface. 15 * 16 * The following parameters are commonly used. 17 * 18 * @ctx: context allocated by the syscall, for later use by the algorithm 19 * @algo: algorithm identifier (TEE_ALG_*) 20 */ 21 22 #ifndef __CRYPTO_CRYPTO_H 23 #define __CRYPTO_CRYPTO_H 24 25 #include <tee_api_types.h> 26 27 TEE_Result crypto_init(void); 28 29 /* Message digest functions */ 30 TEE_Result crypto_hash_alloc_ctx(void **ctx, uint32_t algo); 31 TEE_Result crypto_hash_init(void *ctx); 32 TEE_Result crypto_hash_update(void *ctx, const uint8_t *data, size_t len); 33 TEE_Result crypto_hash_final(void *ctx, uint8_t *digest, size_t len); 34 void crypto_hash_free_ctx(void *ctx); 35 void crypto_hash_copy_state(void *dst_ctx, void *src_ctx); 36 37 /* Symmetric ciphers */ 38 TEE_Result crypto_cipher_alloc_ctx(void **ctx, uint32_t algo); 39 TEE_Result crypto_cipher_init(void *ctx, TEE_OperationMode mode, 40 const uint8_t *key1, size_t key1_len, 41 const uint8_t *key2, size_t key2_len, 42 const uint8_t *iv, size_t iv_len); 43 TEE_Result crypto_cipher_update(void *ctx, TEE_OperationMode mode, 44 bool last_block, const uint8_t *data, 45 size_t len, uint8_t *dst); 46 void crypto_cipher_final(void *ctx); 47 TEE_Result crypto_cipher_get_block_size(uint32_t algo, size_t *size); 48 void crypto_cipher_free_ctx(void *ctx); 49 void crypto_cipher_copy_state(void *dst_ctx, void *src_ctx); 50 51 /* Message Authentication Code functions */ 52 TEE_Result crypto_mac_alloc_ctx(void **ctx, uint32_t algo); 53 TEE_Result crypto_mac_init(void *ctx, const uint8_t *key, size_t len); 54 TEE_Result crypto_mac_update(void *ctx, const uint8_t *data, size_t len); 55 TEE_Result crypto_mac_final(void *ctx, uint8_t *digest, size_t digest_len); 56 void crypto_mac_free_ctx(void *ctx); 57 void crypto_mac_copy_state(void *dst_ctx, void *src_ctx); 58 59 /* Authenticated encryption */ 60 TEE_Result crypto_authenc_alloc_ctx(void **ctx, uint32_t algo); 61 TEE_Result crypto_authenc_init(void *ctx, TEE_OperationMode mode, 62 const uint8_t *key, size_t key_len, 63 const uint8_t *nonce, size_t nonce_len, 64 size_t tag_len, size_t aad_len, 65 size_t payload_len); 66 TEE_Result crypto_authenc_update_aad(void *ctx, TEE_OperationMode mode, 67 const uint8_t *data, size_t len); 68 TEE_Result crypto_authenc_update_payload(void *ctx, TEE_OperationMode mode, 69 const uint8_t *src_data, 70 size_t src_len, uint8_t *dst_data, 71 size_t *dst_len); 72 TEE_Result crypto_authenc_enc_final(void *ctx, const uint8_t *src_data, 73 size_t src_len, uint8_t *dst_data, 74 size_t *dst_len, uint8_t *dst_tag, 75 size_t *dst_tag_len); 76 TEE_Result crypto_authenc_dec_final(void *ctx, const uint8_t *src_data, 77 size_t src_len, uint8_t *dst_data, 78 size_t *dst_len, const uint8_t *tag, 79 size_t tag_len); 80 void crypto_authenc_final(void *ctx); 81 void crypto_authenc_free_ctx(void *ctx); 82 void crypto_authenc_copy_state(void *dst_ctx, void *src_ctx); 83 84 /* Informs crypto that the data in the buffer will be removed from storage */ 85 void crypto_storage_obj_del(uint8_t *data, size_t len); 86 87 /* Implementation-defined big numbers */ 88 89 /* 90 * Allocate a bignum capable of holding an unsigned integer value of 91 * up to bitsize bits 92 */ 93 struct bignum *crypto_bignum_allocate(size_t size_bits); 94 TEE_Result crypto_bignum_bin2bn(const uint8_t *from, size_t fromsize, 95 struct bignum *to); 96 size_t crypto_bignum_num_bytes(struct bignum *a); 97 size_t crypto_bignum_num_bits(struct bignum *a); 98 void crypto_bignum_bn2bin(const struct bignum *from, uint8_t *to); 99 void crypto_bignum_copy(struct bignum *to, const struct bignum *from); 100 void crypto_bignum_free(struct bignum *a); 101 void crypto_bignum_clear(struct bignum *a); 102 103 /* return -1 if a<b, 0 if a==b, +1 if a>b */ 104 int32_t crypto_bignum_compare(struct bignum *a, struct bignum *b); 105 106 /* Asymmetric algorithms */ 107 108 struct rsa_keypair { 109 struct bignum *e; /* Public exponent */ 110 struct bignum *d; /* Private exponent */ 111 struct bignum *n; /* Modulus */ 112 113 /* Optional CRT parameters (all NULL if unused) */ 114 struct bignum *p; /* N = pq */ 115 struct bignum *q; 116 struct bignum *qp; /* 1/q mod p */ 117 struct bignum *dp; /* d mod (p-1) */ 118 struct bignum *dq; /* d mod (q-1) */ 119 }; 120 121 struct rsa_public_key { 122 struct bignum *e; /* Public exponent */ 123 struct bignum *n; /* Modulus */ 124 }; 125 126 struct dsa_keypair { 127 struct bignum *g; /* Generator of subgroup (public) */ 128 struct bignum *p; /* Prime number (public) */ 129 struct bignum *q; /* Order of subgroup (public) */ 130 struct bignum *y; /* Public key */ 131 struct bignum *x; /* Private key */ 132 }; 133 134 struct dsa_public_key { 135 struct bignum *g; /* Generator of subgroup (public) */ 136 struct bignum *p; /* Prime number (public) */ 137 struct bignum *q; /* Order of subgroup (public) */ 138 struct bignum *y; /* Public key */ 139 }; 140 141 struct dh_keypair { 142 struct bignum *g; /* Generator of Z_p (shared) */ 143 struct bignum *p; /* Prime modulus (shared) */ 144 struct bignum *x; /* Private key */ 145 struct bignum *y; /* Public key y = g^x */ 146 147 /* 148 * Optional parameters used by key generation. 149 * When not used, q == NULL and xbits == 0 150 */ 151 struct bignum *q; /* x must be in the range [2, q-2] */ 152 uint32_t xbits; /* Number of bits in the private key */ 153 }; 154 155 struct ecc_public_key { 156 struct bignum *x; /* Public value x */ 157 struct bignum *y; /* Public value y */ 158 uint32_t curve; /* Curve type */ 159 const struct crypto_ecc_public_ops *ops; /* Key Operations */ 160 }; 161 162 struct ecc_keypair { 163 struct bignum *d; /* Private value */ 164 struct bignum *x; /* Public value x */ 165 struct bignum *y; /* Public value y */ 166 uint32_t curve; /* Curve type */ 167 const struct crypto_ecc_keypair_ops *ops; /* Key Operations */ 168 }; 169 170 struct x25519_keypair { 171 uint8_t *priv; /* Private value */ 172 uint8_t *pub; /* Public value */ 173 }; 174 175 /* 176 * Key allocation functions 177 * Allocate the bignum's inside a key structure. 178 * TEE core will later use crypto_bignum_free(). 179 */ 180 TEE_Result crypto_acipher_alloc_rsa_keypair(struct rsa_keypair *s, 181 size_t key_size_bits); 182 TEE_Result crypto_acipher_alloc_rsa_public_key(struct rsa_public_key *s, 183 size_t key_size_bits); 184 void crypto_acipher_free_rsa_public_key(struct rsa_public_key *s); 185 void crypto_acipher_free_rsa_keypair(struct rsa_keypair *s); 186 TEE_Result crypto_acipher_alloc_dsa_keypair(struct dsa_keypair *s, 187 size_t key_size_bits); 188 TEE_Result crypto_acipher_alloc_dsa_public_key(struct dsa_public_key *s, 189 size_t key_size_bits); 190 TEE_Result crypto_acipher_alloc_dh_keypair(struct dh_keypair *s, 191 size_t key_size_bits); 192 TEE_Result crypto_acipher_alloc_ecc_public_key(struct ecc_public_key *s, 193 uint32_t key_type, 194 size_t key_size_bits); 195 TEE_Result crypto_acipher_alloc_ecc_keypair(struct ecc_keypair *s, 196 uint32_t key_type, 197 size_t key_size_bits); 198 void crypto_acipher_free_ecc_public_key(struct ecc_public_key *s); 199 TEE_Result crypto_acipher_alloc_x25519_keypair(struct x25519_keypair *s, 200 size_t key_size_bits); 201 202 /* 203 * Key generation functions 204 */ 205 TEE_Result crypto_acipher_gen_rsa_key(struct rsa_keypair *key, size_t key_size); 206 TEE_Result crypto_acipher_gen_dsa_key(struct dsa_keypair *key, size_t key_size); 207 TEE_Result crypto_acipher_gen_dh_key(struct dh_keypair *key, struct bignum *q, 208 size_t xbits, size_t key_size); 209 TEE_Result crypto_acipher_gen_ecc_key(struct ecc_keypair *key, size_t key_size); 210 TEE_Result crypto_acipher_gen_x25519_key(struct x25519_keypair *key, 211 size_t key_size); 212 213 TEE_Result crypto_acipher_dh_shared_secret(struct dh_keypair *private_key, 214 struct bignum *public_key, 215 struct bignum *secret); 216 217 TEE_Result crypto_acipher_rsanopad_decrypt(struct rsa_keypair *key, 218 const uint8_t *src, size_t src_len, 219 uint8_t *dst, size_t *dst_len); 220 TEE_Result crypto_acipher_rsanopad_encrypt(struct rsa_public_key *key, 221 const uint8_t *src, size_t src_len, 222 uint8_t *dst, size_t *dst_len); 223 TEE_Result crypto_acipher_rsaes_decrypt(uint32_t algo, struct rsa_keypair *key, 224 const uint8_t *label, size_t label_len, 225 const uint8_t *src, size_t src_len, 226 uint8_t *dst, size_t *dst_len); 227 TEE_Result crypto_acipher_rsaes_encrypt(uint32_t algo, 228 struct rsa_public_key *key, 229 const uint8_t *label, size_t label_len, 230 const uint8_t *src, size_t src_len, 231 uint8_t *dst, size_t *dst_len); 232 /* RSA SSA sign/verify: if salt_len == -1, use default value */ 233 TEE_Result crypto_acipher_rsassa_sign(uint32_t algo, struct rsa_keypair *key, 234 int salt_len, const uint8_t *msg, 235 size_t msg_len, uint8_t *sig, 236 size_t *sig_len); 237 TEE_Result crypto_acipher_rsassa_verify(uint32_t algo, 238 struct rsa_public_key *key, 239 int salt_len, const uint8_t *msg, 240 size_t msg_len, const uint8_t *sig, 241 size_t sig_len); 242 TEE_Result crypto_acipher_dsa_sign(uint32_t algo, struct dsa_keypair *key, 243 const uint8_t *msg, size_t msg_len, 244 uint8_t *sig, size_t *sig_len); 245 TEE_Result crypto_acipher_dsa_verify(uint32_t algo, struct dsa_public_key *key, 246 const uint8_t *msg, size_t msg_len, 247 const uint8_t *sig, size_t sig_len); 248 TEE_Result crypto_acipher_ecc_sign(uint32_t algo, struct ecc_keypair *key, 249 const uint8_t *msg, size_t msg_len, 250 uint8_t *sig, size_t *sig_len); 251 TEE_Result crypto_acipher_ecc_verify(uint32_t algo, struct ecc_public_key *key, 252 const uint8_t *msg, size_t msg_len, 253 const uint8_t *sig, size_t sig_len); 254 TEE_Result crypto_acipher_ecc_shared_secret(struct ecc_keypair *private_key, 255 struct ecc_public_key *public_key, 256 void *secret, 257 unsigned long *secret_len); 258 TEE_Result crypto_acipher_sm2_pke_decrypt(struct ecc_keypair *key, 259 const uint8_t *src, size_t src_len, 260 uint8_t *dst, size_t *dst_len); 261 TEE_Result crypto_acipher_sm2_pke_encrypt(struct ecc_public_key *key, 262 const uint8_t *src, size_t src_len, 263 uint8_t *dst, size_t *dst_len); 264 TEE_Result crypto_acipher_x25519_shared_secret(struct x25519_keypair 265 *private_key, 266 void *public_key, void *secret, 267 unsigned long *secret_len); 268 269 struct sm2_kep_parms { 270 uint8_t *out; 271 size_t out_len; 272 bool is_initiator; 273 const uint8_t *initiator_id; 274 size_t initiator_id_len; 275 const uint8_t *responder_id; 276 size_t responder_id_len; 277 const uint8_t *conf_in; 278 size_t conf_in_len; 279 uint8_t *conf_out; 280 size_t conf_out_len; 281 }; 282 283 TEE_Result crypto_acipher_sm2_kep_derive(struct ecc_keypair *my_key, 284 struct ecc_keypair *my_eph_key, 285 struct ecc_public_key *peer_key, 286 struct ecc_public_key *peer_eph_key, 287 struct sm2_kep_parms *p); 288 289 /* 290 * Verifies a SHA-256 hash, doesn't require crypto_init() to be called in 291 * advance and has as few dependencies as possible. 292 * 293 * This function is primarily used by pager and early initialization code 294 * where the complete crypto library isn't available. 295 */ 296 TEE_Result hash_sha256_check(const uint8_t *hash, const uint8_t *data, 297 size_t data_size); 298 299 /* 300 * Computes a SHA-512/256 hash, vetted conditioner as per NIST.SP.800-90B. 301 * It doesn't require crypto_init() to be called in advance and has as few 302 * dependencies as possible. 303 * 304 * This function could be used inside interrupt context where the crypto 305 * library can't be used due to mutex handling. 306 */ 307 TEE_Result hash_sha512_256_compute(uint8_t *digest, const uint8_t *data, 308 size_t data_size); 309 310 #define CRYPTO_RNG_SRC_IS_QUICK(sid) (!!((sid) & 1)) 311 312 /* 313 * enum crypto_rng_src - RNG entropy source 314 * 315 * Identifiers for different RNG entropy sources. The lowest bit indicates 316 * if the source is to be merely queued (bit is 1) or if it's delivered 317 * directly to the pool. The difference is that in the latter case RPC to 318 * normal world can be performed and in the former it must not. 319 */ 320 enum crypto_rng_src { 321 CRYPTO_RNG_SRC_JITTER_SESSION = (0 << 1 | 0), 322 CRYPTO_RNG_SRC_JITTER_RPC = (1 << 1 | 1), 323 CRYPTO_RNG_SRC_NONSECURE = (1 << 1 | 0), 324 }; 325 326 /* 327 * crypto_rng_init() - initialize the RNG 328 * @data: buffer with initial seed 329 * @dlen: length of @data 330 */ 331 TEE_Result crypto_rng_init(const void *data, size_t dlen); 332 333 /* 334 * crypto_rng_add_event() - supply entropy to RNG from a source 335 * @sid: Source identifier, should be unique for a specific source 336 * @pnum: Pool number, acquired using crypto_rng_get_next_pool_num() 337 * @data: Data associated with the event 338 * @dlen: Length of @data 339 * 340 * @sid controls whether the event is merly queued in a ring buffer or if 341 * it's added to one of the pools directly. If CRYPTO_RNG_SRC_IS_QUICK() is 342 * true (lowest bit set) events are queue otherwise added to corresponding 343 * pool. If CRYPTO_RNG_SRC_IS_QUICK() is false, eventual queued events are 344 * added to their queues too. 345 */ 346 void crypto_rng_add_event(enum crypto_rng_src sid, unsigned int *pnum, 347 const void *data, size_t dlen); 348 349 /* 350 * crypto_rng_read() - read cryptograhically secure RNG 351 * @buf: Buffer to hold the data 352 * @len: Length of buffer. 353 * 354 * Eventual queued events are also added to their pools during this 355 * function call. 356 */ 357 TEE_Result crypto_rng_read(void *buf, size_t len); 358 359 /* 360 * crypto_aes_expand_enc_key() - Expand an AES key 361 * @key: AES key buffer 362 * @key_len: Size of the @key buffer in bytes 363 * @enc_key: Expanded AES encryption key buffer 364 * @enc_keylen: Size of the @enc_key buffer in bytes 365 * @rounds: Number of rounds to be used during encryption 366 */ 367 TEE_Result crypto_aes_expand_enc_key(const void *key, size_t key_len, 368 void *enc_key, size_t enc_keylen, 369 unsigned int *rounds); 370 371 /* 372 * crypto_aes_enc_block() - Encrypt an AES block 373 * @enc_key: Expanded AES encryption key 374 * @enc_keylen: Size of @enc_key in bytes 375 * @rounds: Number of rounds 376 * @src: Source buffer of one AES block (16 bytes) 377 * @dst: Destination buffer of one AES block (16 bytes) 378 */ 379 void crypto_aes_enc_block(const void *enc_key, size_t enc_keylen, 380 unsigned int rounds, const void *src, void *dst); 381 382 #endif /* __CRYPTO_CRYPTO_H */ 383