xref: /optee_os/core/drivers/stm32_tamp.c (revision e7f979ef22e24e62bc30960917d7c9ca35f46e2d)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2021-2025, STMicroelectronics
4  */
5 
6 #include <crypto/crypto.h>
7 #include <drivers/clk.h>
8 #include <drivers/clk_dt.h>
9 #include <drivers/gpio.h>
10 #include <drivers/stm32_gpio.h>
11 #include <drivers/stm32_rif.h>
12 #include <drivers/stm32_rtc.h>
13 #include <drivers/stm32mp_dt_bindings.h>
14 #include <io.h>
15 #include <kernel/dt.h>
16 #include <kernel/dt_driver.h>
17 #include <kernel/interrupt.h>
18 #include <libfdt.h>
19 #include <mm/core_memprot.h>
20 #include <stdbool.h>
21 #include <stm32_util.h>
22 
23 /* STM32 Registers */
24 #define _TAMP_CR1			0x00U
25 #define _TAMP_CR2			0x04U
26 #define _TAMP_CR3			0x08U
27 #define _TAMP_FLTCR			0x0CU
28 #define _TAMP_ATCR1			0x10U
29 #define _TAMP_ATSEEDR			0x14U
30 #define _TAMP_ATOR			0x18U
31 #define _TAMP_ATCR2			0x1CU
32 #define _TAMP_SECCFGR			0x20U
33 #define _TAMP_SMCR			0x20U
34 #define _TAMP_PRIVCFGR			0x24U
35 #define _TAMP_IER			0x2CU
36 #define _TAMP_SR			0x30U
37 #define _TAMP_MISR			0x34U
38 #define _TAMP_SMISR			0x38U
39 #define _TAMP_SCR			0x3CU
40 #define _TAMP_COUNTR			0x40U
41 #define _TAMP_COUNT2R			0x44U
42 #define _TAMP_OR			0x50U
43 #define _TAMP_ERCFGR			0X54U
44 #define _TAMP_BKPRIFR(x)		(0x70U + 0x4U * ((x) - 1U))
45 #define _TAMP_CIDCFGR(x)		(0x80U + 0x4U * (x))
46 #define _TAMP_BKPxR(x)			(0x100U + 0x4U * ((x) - 1U))
47 #define _TAMP_HWCFGR2			0x3ECU
48 #define _TAMP_HWCFGR1			0x3F0U
49 #define _TAMP_VERR			0x3F4U
50 #define _TAMP_IPIDR			0x3F8U
51 #define _TAMP_SIDR			0x3FCU
52 
53 /* _TAMP_SECCFGR bit fields */
54 #define _TAMP_SECCFGR_BKPRWSEC_MASK	GENMASK_32(7, 0)
55 #define _TAMP_SECCFGR_BKPRWSEC_SHIFT	0U
56 #define _TAMP_SECCFGR_CNT2SEC		BIT(14)
57 #define _TAMP_SECCFGR_CNT2SEC_SHIFT	14U
58 #define _TAMP_SECCFGR_CNT1SEC		BIT(15)
59 #define _TAMP_SECCFGR_CNT1SEC_SHIFT	15U
60 #define _TAMP_SECCFGR_BKPWSEC_MASK	GENMASK_32(23, 16)
61 #define _TAMP_SECCFGR_BKPWSEC_SHIFT	16U
62 #define _TAMP_SECCFGR_BHKLOCK		BIT(30)
63 #define _TAMP_SECCFGR_TAMPSEC		BIT(31)
64 #define _TAMP_SECCFGR_TAMPSEC_SHIFT	31U
65 #define _TAMP_SECCFGR_BUT_BKP_MASK	(GENMASK_32(31, 30) | \
66 					 GENMASK_32(15, 14))
67 #define _TAMP_SECCFGR_RIF_TAMP_SEC	BIT(0)
68 #define _TAMP_SECCFGR_RIF_COUNT_1	BIT(1)
69 #define _TAMP_SECCFGR_RIF_COUNT_2	BIT(2)
70 
71 /* _TAMP_SMCR bit fields */
72 #define _TAMP_SMCR_BKPRWDPROT_MASK	GENMASK_32(7, 0)
73 #define _TAMP_SMCR_BKPRWDPROT_SHIFT	0U
74 #define _TAMP_SMCR_BKPWDPROT_MASK	GENMASK_32(23, 16)
75 #define _TAMP_SMCR_BKPWDPROT_SHIFT	16U
76 #define _TAMP_SMCR_DPROT		BIT(31)
77 /*
78  * _TAMP_PRIVCFGR bit fields
79  */
80 #define _TAMP_PRIVCFG_CNT2PRIV		BIT(14)
81 #define _TAMP_PRIVCFG_CNT1PRIV		BIT(15)
82 #define _TAMP_PRIVCFG_BKPRWPRIV		BIT(29)
83 #define _TAMP_PRIVCFG_BKPWPRIV		BIT(30)
84 #define _TAMP_PRIVCFG_TAMPPRIV		BIT(31)
85 #define _TAMP_PRIVCFGR_MASK		(GENMASK_32(31, 29) | \
86 					 GENMASK_32(15, 14))
87 #define _TAMP_PRIVCFGR_RIF_TAMP_PRIV	BIT(0)
88 #define _TAMP_PRIVCFGR_RIF_R1		BIT(1)
89 #define _TAMP_PRIVCFGR_RIF_R2		BIT(2)
90 
91 /* _TAMP_PRIVCFGR bit fields */
92 #define _TAMP_PRIVCFG_CNT2PRIV		BIT(14)
93 #define _TAMP_PRIVCFG_CNT1PRIV		BIT(15)
94 #define _TAMP_PRIVCFG_BKPRWPRIV		BIT(29)
95 #define _TAMP_PRIVCFG_BKPWPRIV		BIT(30)
96 #define _TAMP_PRIVCFG_TAMPPRIV		BIT(31)
97 #define _TAMP_PRIVCFGR_MASK		(GENMASK_32(31, 29) | \
98 					 GENMASK_32(15, 14))
99 
100 /*_TAMP_CR1 bit fields */
101 #define _TAMP_CR1_ITAMP(id)		BIT((id) - INT_TAMP1 + U(16))
102 #define _TAMP_CR1_ETAMP(id)		BIT((id) - EXT_TAMP1)
103 
104 /* _TAMP_CR2 bit fields */
105 #define _TAMP_CR2_ETAMPTRG(id)		BIT((id) - EXT_TAMP1 + U(24))
106 #define _TAMP_CR2_BKERASE		BIT(23)
107 #define _TAMP_CR2_BKBLOCK		BIT(22)
108 #define _TAMP_CR2_ETAMPMSK_MAX_ID	3U
109 #define _TAMP_CR2_ETAMPMSK(id)		BIT((id) - EXT_TAMP1 + U(16))
110 #define _TAMP_CR2_ETAMPNOER(id)		BIT((id) - EXT_TAMP1)
111 
112 /* _TAMP_CR3 bit fields */
113 #define _TAMP_CR3_ITAMPNOER_ALL		GENMASK_32(12, 0)
114 #define _TAMP_CR3_ITAMPNOER(id)		BIT((id) - INT_TAMP1)
115 
116 /* _TAMP_FLTCR bit fields */
117 #define _TAMP_FLTCR_TAMPFREQ_MASK	GENMASK_32(2, 0)
118 #define _TAMP_FLTCR_TAMPFREQ_SHIFT	0U
119 #define _TAMP_FLTCR_TAMPFLT_MASK	GENMASK_32(4, 3)
120 #define _TAMP_FLTCR_TAMPFLT_SHIFT	U(3)
121 #define _TAMP_FLTCR_TAMPPRCH_MASK	GENMASK_32(6, 5)
122 #define _TAMP_FLTCR_TAMPPRCH_SHIFT	5U
123 #define _TAMP_FLTCR_TAMPPUDIS		BIT(7)
124 
125 /* _TAMP_ATCR bit fields */
126 #define _TAMP_ATCR1_ATCKSEL_MASK	GENMASK_32(19, 16)
127 #define _TAMP_ATCR1_ATCKSEL_SHIFT	16U
128 #define _TAMP_ATCR1_ATPER_MASK		GENMASK_32(26, 24)
129 #define _TAMP_ATCR1_ATPER_SHIFT		24U
130 #define _TAMP_ATCR1_ATOSHARE		BIT(30)
131 #define _TAMP_ATCR1_FLTEN		BIT(31)
132 #define _TAMP_ATCR1_COMMON_MASK		GENMASK_32(31, 16)
133 #define _TAMP_ATCR1_ETAMPAM(id)		BIT((id) - EXT_TAMP1)
134 #define _TAMP_ATCR1_ATOSEL_MASK(id) \
135 	({ \
136 		typeof(id) _id = (id); \
137 		GENMASK_32(((_id) - EXT_TAMP1 + 1) * 2 + 7, \
138 			   ((_id) - EXT_TAMP1) * 2 + 8); \
139 	})
140 
141 #define _TAMP_ATCR1_ATOSEL(id, od) \
142 	SHIFT_U32((od) - OUT_TAMP1, ((id) - EXT_TAMP1) * 2 + 8)
143 
144 /* _TAMP_ATCR2 bit fields */
145 #define _TAMP_ATCR2_ATOSEL_MASK(id) \
146 	({ \
147 		typeof(id) _id = (id); \
148 		GENMASK_32(((_id) - EXT_TAMP1 + 1) * 3 + 7, \
149 			   ((_id) - EXT_TAMP1) * 3 + 8); \
150 	})
151 
152 #define _TAMP_ATCR2_ATOSEL(id, od) \
153 	SHIFT_U32((od) - OUT_TAMP1, ((id) - EXT_TAMP1) * 3 + 8)
154 
155 /* _TAMP_ATOR bit fields */
156 #define _TAMP_PRNG			GENMASK_32(7, 0)
157 #define _TAMP_SEEDF			BIT(14)
158 #define _TAMP_INITS			BIT(15)
159 
160 /* _TAMP_IER bit fields */
161 #define _TAMP_IER_ITAMP(id)		BIT((id) - INT_TAMP1 + U(16))
162 #define _TAMP_IER_ETAMP(id)		BIT((id) - EXT_TAMP1)
163 
164 /* _TAMP_SR bit fields */
165 #define _TAMP_SR_ETAMPXF_MASK		GENMASK_32(7, 0)
166 #define _TAMP_SR_ITAMPXF_MASK		GENMASK_32(31, 16)
167 #define _TAMP_SR_ITAMP(id)		BIT((id) - INT_TAMP1 + U(16))
168 #define _TAMP_SR_ETAMP(id)		BIT((id) - EXT_TAMP1)
169 
170 /* _TAMP_SCR bit fields */
171 #define _TAMP_SCR_ITAMP(id)		BIT((id) - INT_TAMP1 + U(16))
172 #define _TAMP_SCR_ETAMP(id)		BIT((id) - EXT_TAMP1)
173 
174 /* _TAMP_OR bit fields */
175 #define _TAMP_OR_STM32MP13_IN1RMP_PF10	0U
176 #define _TAMP_OR_STM32MP13_IN1RMP_PC13	BIT(0)
177 #define _TAMP_OR_STM32MP13_IN2RMP_PA6	0U
178 #define _TAMP_OR_STM32MP13_IN2RMP_PI1	BIT(1)
179 #define _TAMP_OR_STM32MP13_IN3RMP_PC0	0U
180 #define _TAMP_OR_STM32MP13_IN3RMP_PI2	BIT(2)
181 #define _TAMP_OR_STM32MP13_IN4RMP_PG8	0U
182 #define _TAMP_OR_STM32MP13_IN4RMP_PI3	BIT(3)
183 
184 /* For STM32MP15x, _TAMP_CFGR is _TAMP_OR */
185 #define _TAMP_OR_STM32MP15_OUT3RMP_PI8	0U
186 #define _TAMP_OR_STM32MP15_OUT3RMP_PC13	BIT(0)
187 
188 #define _TAMP_STM32MP21_OR_IN1RMP_PC4	0U
189 #define _TAMP_STM32MP21_OR_IN1RMP_PI8	BIT(0)
190 
191 #define _TAMP_OR_STM32MP25_IN1RMP_PC4	0U
192 #define _TAMP_OR_STM32MP25_IN1RMP_PI8	BIT(0)
193 #define _TAMP_OR_STM32MP25_IN3RMP_PC3	0U
194 #define _TAMP_OR_STM32MP25_IN3RMP_PZ2	BIT(1)
195 #define _TAMP_OR_STM32MP25_IN5RMP_PF6	0U
196 #define _TAMP_OR_STM32MP25_IN5RMP_PZ4	BIT(2)
197 
198 /* _TAMP_HWCFGR2 bit fields */
199 #define _TAMP_HWCFGR2_TZ		GENMASK_32(11, 8)
200 #define _TAMP_HWCFGR2_OR		GENMASK_32(7, 0)
201 
202 /* _TAMP_HWCFGR1 bit fields */
203 #define _TAMP_HWCFGR1_BKPREG		GENMASK_32(7, 0)
204 #define _TAMP_HWCFGR1_TAMPER_SHIFT	8U
205 #define _TAMP_HWCFGR1_TAMPER		GENMASK_32(11, 8)
206 #define _TAMP_HWCFGR1_ACTIVE		GENMASK_32(15, 12)
207 #define _TAMP_HWCFGR1_INTERN		GENMASK_32(31, 16)
208 #define _TAMP_HWCFGR1_ITAMP_MAX_ID	16U
209 #define _TAMP_HWCFGR1_ITAMP(id)		BIT((id) - INT_TAMP1 + 16U)
210 
211 /* _TAMP_VERR bit fields */
212 #define _TAMP_VERR_MINREV		GENMASK_32(3, 0)
213 #define _TAMP_VERR_MAJREV		GENMASK_32(7, 4)
214 
215 /*
216  * CIDCFGR register bitfields
217  */
218 #define _TAMP_CIDCFGR_SCID_MASK		GENMASK_32(6, 4)
219 #define _TAMP_CIDCFGR_CONF_MASK		(_CIDCFGR_CFEN |	 \
220 					 _CIDCFGR_SEMEN |	 \
221 					 _TAMP_CIDCFGR_SCID_MASK)
222 
223 /* _TAMP_BKPRIFR */
224 #define _TAMP_BKPRIFR_1_MASK		GENMASK_32(7, 0)
225 #define _TAMP_BKPRIFR_2_MASK		GENMASK_32(7, 0)
226 #define _TAMP_BKPRIFR_3_MASK		(GENMASK_32(23, 16) | GENMASK_32(7, 0))
227 #define _TAMP_BKPRIFR_ZONE3_RIF2_SHIFT	16U
228 
229 /*
230  * RIF miscellaneous
231  */
232 #define TAMP_NB_BKPR_ZONES		3U
233 #define TAMP_RIF_RESOURCES		3U
234 #define TAMP_RIF_OFFSET_CNT		4U
235 
236 /*
237  * Compatibility capabilities
238  * TAMP_HAS_REGISTER_SECCFGR - Supports SECCFGR, otherwise supports SMCR
239  * register
240  * TAMP_HAS_REGISTER_PRIVCFG - Supports PRIVCFGR configuration register
241  * TAMP_HAS_RIF_SUPPORT - Supports RIF
242  */
243 #define TAMP_HAS_REGISTER_SECCFGR	BIT(0)
244 #define TAMP_HAS_REGISTER_PRIVCFGR	BIT(1)
245 #define TAMP_HAS_REGISTER_ERCFGR	BIT(2)
246 #define TAMP_HAS_REGISTER_ATCR2		BIT(3)
247 #define TAMP_HAS_REGISTER_CR3		BIT(4)
248 #define TAMP_HAS_CR2_SECRET_STATUS	BIT(5)
249 #define TAMP_SIZE_ATCR1_ATCKSEL_IS_4	BIT(7)
250 #define TAMP_HAS_RIF_SUPPORT		BIT(31)
251 
252 /* Tamper event modes */
253 #define TAMP_ERASE			0x0U
254 #define TAMP_NOERASE			BIT(1)
255 #define TAMP_NO_EVT_MASK		0x0U
256 #define TAMP_EVT_MASK			BIT(2)
257 #define TAMP_MODE_MASK			GENMASK_32(15, 0)
258 
259 /* Callback return bitmask values */
260 #define TAMP_CB_ACK			BIT(0)
261 #define TAMP_CB_RESET			BIT(1)
262 #define TAMP_CB_ACK_AND_RESET		(TAMP_CB_RESET | TAMP_CB_ACK)
263 
264 #define SEED_TIMEOUT_US			1000U
265 
266 /* Define TAMPER modes from DT */
267 #define TAMP_TRIG_ON			BIT(16)
268 #define TAMP_ACTIVE			BIT(17)
269 #define TAMP_IN_DT			BIT(18)
270 
271 enum stm32_tamp_id {
272 	INT_TAMP1 = 0,
273 	INT_TAMP2,
274 	INT_TAMP3,
275 	INT_TAMP4,
276 	INT_TAMP5,
277 	INT_TAMP6,
278 	INT_TAMP7,
279 	INT_TAMP8,
280 	INT_TAMP9,
281 	INT_TAMP10,
282 	INT_TAMP11,
283 	INT_TAMP12,
284 	INT_TAMP13,
285 	INT_TAMP14,
286 	INT_TAMP15,
287 	INT_TAMP16,
288 
289 	EXT_TAMP1,
290 	EXT_TAMP2,
291 	EXT_TAMP3,
292 	EXT_TAMP4,
293 	EXT_TAMP5,
294 	EXT_TAMP6,
295 	EXT_TAMP7,
296 	EXT_TAMP8,
297 
298 	LAST_TAMP,
299 	INVALID_TAMP = 0xFFFF,
300 };
301 
302 enum stm32_tamp_out_id {
303 	OUT_TAMP1 = LAST_TAMP,
304 	OUT_TAMP2,
305 	OUT_TAMP3,
306 	OUT_TAMP4,
307 	OUT_TAMP5,
308 	OUT_TAMP6,
309 	OUT_TAMP7,
310 	OUT_TAMP8,
311 	INVALID_OUT_TAMP = INVALID_TAMP
312 };
313 
314 /**
315  * struct stm32_tamp_pin_map - Tamper pin map
316  *
317  * @id: Identifier of the tamper
318  * @conf: Internal mux configuration of the pin present in the TAMP block
319  * @bank: GPIO pin bank
320  * @pin: GPIO number in the bank
321  * @out: True if pin is used for tamper output
322  */
323 struct stm32_tamp_pin_map {
324 	uint32_t id;
325 	uint32_t conf;
326 	uint8_t bank;
327 	uint8_t pin;
328 	bool out;
329 };
330 
331 /**
332  * struct stm32_tamp_tamper_data - Tamper data
333  *
334  * @id: Identifier of the tamper
335  * @out_id: Identifier of the output tamper, tamper in active mode
336  * @mode: Mode of the tamper
337  * @func: Tamper callback in case of tamper event
338  */
339 struct stm32_tamp_tamper_data {
340 	uint32_t id;
341 	uint32_t out_id;
342 	uint32_t mode;
343 	uint32_t (*func)(int id);
344 };
345 
346 /**
347  * struct stm32_tamp_compat - TAMP compatible data
348  *
349  * @ext_tamp: List of available external tampers
350  * @int_tamp: List of available internal tampers
351  * @pin_map: List of hardware mapped of pins supporting tamper event detection
352  * @nb_monotonic_counter: Number of monotic counter supported
353  * @ext_tamp_size: Size of @ext_tamp
354  * @int_tamp_size: Size of @int_tamp
355  * @pin_map_size: Size of pin_map
356  * @tags: Bit flags TAMP_HAS_* for compatibility management
357  */
358 struct stm32_tamp_compat {
359 	struct stm32_tamp_tamper_data *ext_tamp;
360 	struct stm32_tamp_tamper_data *int_tamp;
361 	const struct stm32_tamp_pin_map *pin_map;
362 	int nb_monotonic_counter;
363 	uint32_t ext_tamp_size;
364 	uint32_t int_tamp_size;
365 	uint32_t pin_map_size;
366 	uint32_t tags;
367 };
368 
369 /*
370  * struct stm32_bkpregs_conf - Backup registers zone bounds
371  * @zone1_end - Number of backup registers in zone 1
372  * @zone2_end - Number of backup registers in zone 2 + zone 1
373  * @rif_offsets - RIF offsets used for CID compartments
374  *
375  * TAMP backup registers access permissions
376  *
377  * Zone 1: read/write in secure state, no access in non-secure state
378  * Zone 2: read/write in secure state, read-only in non-secure state
379  * Zone 3: read/write in secure state, read/write in non-secure state
380  *
381  * Protection zone 1
382  * If zone1_end == 0 no backup register are in zone 1.
383  * Otherwise backup registers from TAMP_BKP0R to TAMP_BKP<x>R are in zone 1,
384  * with <x> = (@zone1_end - 1).
385  *
386  * Protection zone 2
387  * If zone2_end == 0 no backup register are in zone 2 and zone 1.
388  * Otherwise backup registers from TAMP_BKP<y>R to TAMP_BKP<z>R are in zone 2,
389  * with <y> = @zone1_end and <z> = (@zone2_end - 1).
390  *
391  * Protection zone 3
392  * Backup registers from TAMP_BKP<t>R to last backup register are in zone 3,
393  * with <t> = (@zone2_end - 1).
394  *
395  * When RIF is supported, each zone can be subdivided to restrain accesses to
396  * some CIDs.
397  */
398 struct stm32_bkpregs_conf {
399 	uint32_t zone1_end;
400 	uint32_t zone2_end;
401 	uint32_t *rif_offsets;
402 };
403 
404 /**
405  * struct stm32_tamp_platdata - TAMP platform data
406  * @base: IOMEM base address
407  * @bkpregs_conf: TAMP backup register configuration reference
408  * @compat: Reference to compat data passed at driver initialization
409  * @conf_data: RIF configuration data
410  * @clock: TAMP clock
411  * @itr: TAMP interrupt handler
412  * @nb_rif_resources: Number of RIF resources
413  * @passive_conf: Passive tampers configuration
414  * @active_conf: Active tampers configuration
415  * @pins_conf: Configuration of mapped pins for tampers
416  * @out_pins: Output pins for passive tampers
417  * @is_wakeup_source: True if a tamper event is a wakeup source
418  * @is_tdcid: True if current processor is TDCID
419  */
420 struct stm32_tamp_platdata {
421 	struct io_pa_va base;
422 	struct stm32_bkpregs_conf bkpregs_conf;
423 	struct stm32_tamp_compat *compat;
424 	struct rif_conf_data *conf_data;
425 	struct clk *clock;
426 	struct itr_handler *itr;
427 	unsigned int nb_rif_resources;
428 	uint32_t passive_conf;
429 	uint32_t active_conf;
430 	uint32_t pins_conf;
431 	uint32_t out_pins;
432 	bool is_wakeup_source;
433 	bool is_tdcid;
434 };
435 
436 /**
437  * struct stm32_tamp_instance - TAMP instance data
438  * @pdata: TAMP platform data
439  * @hwconf1: Copy of TAMP HWCONF1 register content
440  * @hwconf2: Copy of TAMP HWCONF2 register content
441  */
442 struct stm32_tamp_instance {
443 	struct stm32_tamp_platdata pdata;
444 	uint32_t hwconf1;
445 	uint32_t hwconf2;
446 };
447 
448 #define GPIO_BANK(port)	 ((port) - 'A')
449 
450 #if defined(CFG_STM32MP13)
451 static const char * const itamper_name[] = {
452 	[INT_TAMP1] = "Backup domain voltage threshold monitoring",
453 	[INT_TAMP2] = "Temperature monitoring",
454 	[INT_TAMP3] = "LSE monitoring",
455 	[INT_TAMP4] = "HSE monitoring",
456 	[INT_TAMP5] = "RTC Calendar overflow",
457 	[INT_TAMP6] = "JTAG SWD access",
458 	[INT_TAMP7] = "ADC2 analog watchdog monitoring 1",
459 	[INT_TAMP8] = "Monotonic counter 1",
460 	[INT_TAMP9] = "Cryptographic perpipheral fault",
461 	[INT_TAMP10] = "Monotonic counter 2",
462 	[INT_TAMP11] = "IWDG1 reset",
463 	[INT_TAMP12] = "ADC2 analog watchdog monitoring 2",
464 	[INT_TAMP13] = "ADC2 analog watchdog monitoring 3",
465 };
466 
467 static struct stm32_tamp_tamper_data int_tamp_mp13[] = {
468 	{ .id = INT_TAMP1 }, { .id = INT_TAMP2 }, { .id = INT_TAMP3 },
469 	{ .id = INT_TAMP4 }, { .id = INT_TAMP5 }, { .id = INT_TAMP6 },
470 	{ .id = INT_TAMP7 }, { .id = INT_TAMP8 }, { .id = INT_TAMP9 },
471 	{ .id = INT_TAMP10 }, { .id = INT_TAMP11 },
472 	{ .id = INT_TAMP12 }, { .id = INT_TAMP13 },
473 };
474 
475 static struct stm32_tamp_tamper_data ext_tamp_mp13[] = {
476 	{ .id = EXT_TAMP1 }, { .id = EXT_TAMP2 }, { .id = EXT_TAMP3 },
477 	{ .id = EXT_TAMP4 }, { .id = EXT_TAMP5 }, { .id = EXT_TAMP6 },
478 	{ .id = EXT_TAMP7 }, { .id = EXT_TAMP8 },
479 };
480 
481 static const struct stm32_tamp_pin_map pin_map_mp13[] = {
482 	{
483 		.id = EXT_TAMP1, .bank = GPIO_BANK('C'), .pin = 13,
484 		.out = false, .conf = _TAMP_OR_STM32MP13_IN1RMP_PC13,
485 	},
486 	{
487 		.id = EXT_TAMP1, .bank = GPIO_BANK('F'), .pin = 10,
488 		.out = false, .conf = _TAMP_OR_STM32MP13_IN1RMP_PF10,
489 	},
490 	{
491 		.id = EXT_TAMP2, .bank = GPIO_BANK('A'), .pin = 6,
492 		.out = false, .conf = _TAMP_OR_STM32MP13_IN2RMP_PA6,
493 	},
494 	{
495 		.id = EXT_TAMP2, .bank = GPIO_BANK('I'), .pin = 1,
496 		.out = false, .conf = _TAMP_OR_STM32MP13_IN2RMP_PI1,
497 	},
498 	{
499 		.id = EXT_TAMP3, .bank = GPIO_BANK('C'), .pin = 0,
500 		.out = false, .conf = _TAMP_OR_STM32MP13_IN3RMP_PC0,
501 	},
502 	{
503 		.id = EXT_TAMP3, .bank = GPIO_BANK('I'), .pin = 2,
504 		.out = false, .conf = _TAMP_OR_STM32MP13_IN3RMP_PI2,
505 	},
506 	{
507 		.id = EXT_TAMP4, .bank = GPIO_BANK('G'), .pin = 8,
508 		.out = false, .conf = _TAMP_OR_STM32MP13_IN4RMP_PG8,
509 	},
510 	{
511 		.id = EXT_TAMP4, .bank = GPIO_BANK('I'), .pin = 3,
512 		.out = false, .conf = _TAMP_OR_STM32MP13_IN4RMP_PI3,
513 	},
514 };
515 #endif
516 
517 #if defined(CFG_STM32MP15)
518 static const char * const itamper_name[] = {
519 	[INT_TAMP1] = "RTC power domain",
520 	[INT_TAMP2] = "Temperature monitoring",
521 	[INT_TAMP3] = "LSE monitoring",
522 	[INT_TAMP5] = "RTC Calendar overflow",
523 	[INT_TAMP8] = "Monotonic counter",
524 };
525 DECLARE_KEEP_PAGER(itamper_name);
526 
527 static struct stm32_tamp_tamper_data int_tamp_mp15[] = {
528 	{ .id = INT_TAMP1 }, { .id = INT_TAMP2 }, { .id = INT_TAMP3 },
529 	{ .id = INT_TAMP4 }, { .id = INT_TAMP5 }, { .id = INT_TAMP8 },
530 };
531 
532 static struct stm32_tamp_tamper_data ext_tamp_mp15[] = {
533 	{ .id = EXT_TAMP1 }, { .id = EXT_TAMP2 }, { .id = EXT_TAMP3 },
534 };
535 
536 static const struct stm32_tamp_pin_map pin_map_mp15[] = {
537 	{
538 		.id = EXT_TAMP1, .bank = GPIO_BANK('C'), .pin = 13,
539 		.out = false, .conf = _TAMP_OR_STM32MP15_OUT3RMP_PI8,
540 	},
541 	{
542 		.id = EXT_TAMP2, .bank = GPIO_BANK('I'), .pin = 8,
543 		.out = false, .conf = _TAMP_OR_STM32MP15_OUT3RMP_PI8,
544 	},
545 	{
546 		.id = EXT_TAMP3, .bank = GPIO_BANK('C'), .pin = 1,
547 		.out = false, .conf = _TAMP_OR_STM32MP15_OUT3RMP_PI8,
548 	},
549 	{
550 		.id = OUT_TAMP2, .bank = GPIO_BANK('C'), .pin = 13,
551 		.out = true, .conf = _TAMP_OR_STM32MP15_OUT3RMP_PI8,
552 	},
553 	{
554 		.id = OUT_TAMP3, .bank = GPIO_BANK('C'), .pin = 13,
555 		.out = true, .conf = _TAMP_OR_STM32MP15_OUT3RMP_PC13,
556 	},
557 	{
558 		.id = OUT_TAMP3, .bank = GPIO_BANK('I'), .pin = 8,
559 		.out = true, .conf = _TAMP_OR_STM32MP15_OUT3RMP_PI8,
560 	},
561 };
562 #endif
563 
564 #if defined(CFG_STM32MP21)
565 static const char * const itamper_name[] = {
566 	[INT_TAMP1] = "Backup domain voltage threshold monitoring",
567 	[INT_TAMP2] = "Temperature monitoring",
568 	[INT_TAMP3] = "LSE monitoring",
569 	[INT_TAMP4] = "HSE monitoring",
570 	[INT_TAMP5] = "RTC Calendar overflow",
571 	[INT_TAMP6] = "JTAG TAP access in secured-closed",
572 	[INT_TAMP7] = "ADC2 analog watchdog monitoring1",
573 	[INT_TAMP8] = "Monotonic counter 1 overflow",
574 	[INT_TAMP9] = "Cryptographic peripherals fault",
575 	[INT_TAMP10] = "Monotonic counter 2 overflow",
576 	[INT_TAMP11] = "IWDG3 reset",
577 	[INT_TAMP12] = "ADC2 analog watchdog monitoring2",
578 	[INT_TAMP13] = "ADC2 analog watchdog monitoring3",
579 	[INT_TAMP14] = "RIFSC or BSEC or DBGMCU fault",
580 	[INT_TAMP15] = "IWDG1_reset",
581 	[INT_TAMP16] = "BOOTROM fault",
582 };
583 
584 static struct stm32_tamp_tamper_data int_tamp_mp21[] = {
585 	{ .id = INT_TAMP1 }, { .id = INT_TAMP2 }, { .id = INT_TAMP3 },
586 	{ .id = INT_TAMP4 }, { .id = INT_TAMP5 }, { .id = INT_TAMP6 },
587 	{ .id = INT_TAMP7 }, { .id = INT_TAMP8 }, { .id = INT_TAMP9 },
588 	{ .id = INT_TAMP10 }, { .id = INT_TAMP11 }, { .id = INT_TAMP12 },
589 	{ .id = INT_TAMP13 }, { .id = INT_TAMP14 }, { .id = INT_TAMP15 },
590 	{ .id = INT_TAMP16 },
591 };
592 
593 static struct stm32_tamp_tamper_data ext_tamp_mp21[] = {
594 	{ .id = EXT_TAMP1 }, { .id = EXT_TAMP2 }, { .id = EXT_TAMP3 },
595 	{ .id = EXT_TAMP4 }, { .id = EXT_TAMP5 }, { .id = EXT_TAMP6 },
596 	{ .id = EXT_TAMP7 },
597 };
598 
599 static const struct stm32_tamp_pin_map pin_map_mp21[] = {
600 	{
601 		.id = EXT_TAMP1, .bank = GPIO_BANK('I'), .pin = 8,
602 		.out = false, .conf = _TAMP_STM32MP21_OR_IN1RMP_PI8,
603 	},
604 	{
605 		.id = EXT_TAMP1, .bank = GPIO_BANK('C'), .pin = 4,
606 		.out = false, .conf = _TAMP_STM32MP21_OR_IN1RMP_PC4,
607 	},
608 };
609 #endif
610 
611 #if defined(CFG_STM32MP25) || defined(CFG_STM32MP23)
612 static const char * const itamper_name[] = {
613 	[INT_TAMP1] = "Backup domain voltage threshold monitoring",
614 	[INT_TAMP2] = "Temperature monitoring",
615 	[INT_TAMP3] = "LSE monitoring",
616 	[INT_TAMP4] = "HSE monitoring",
617 	[INT_TAMP5] = "RTC Calendar overflow",
618 	[INT_TAMP6] = "JTAG/SWD access",
619 	[INT_TAMP7] = "VDDCORE monitoring under/over voltage",
620 	[INT_TAMP8] = "Monotonic counter 1 overflow",
621 	[INT_TAMP9] = "Cryptographic peripherals fault",
622 	[INT_TAMP10] = "Monotonic counter 2 overflow",
623 	[INT_TAMP11] = "IWDG3 reset",
624 	[INT_TAMP12] = "VDDCPU monitoring under/over voltage",
625 	[INT_TAMP14] = "IWDG5_reset",
626 	[INT_TAMP15] = "IWDG1_reset",
627 };
628 
629 static struct stm32_tamp_tamper_data int_tamp_mp25[] = {
630 	{ .id = INT_TAMP1 }, { .id = INT_TAMP2 }, { .id = INT_TAMP3 },
631 	{ .id = INT_TAMP4 }, { .id = INT_TAMP5 }, { .id = INT_TAMP6 },
632 	{ .id = INT_TAMP7 }, { .id = INT_TAMP8 }, { .id = INT_TAMP9 },
633 	{ .id = INT_TAMP10 }, { .id = INT_TAMP11 },
634 	{ .id = INT_TAMP12 }, { .id = INT_TAMP14 },
635 	{ .id = INT_TAMP15 },
636 };
637 
638 #ifdef CFG_STM32MP25
639 static struct stm32_tamp_tamper_data ext_tamp_mp25[] = {
640 	{ .id = EXT_TAMP1 }, { .id = EXT_TAMP2 }, { .id = EXT_TAMP3 },
641 	{ .id = EXT_TAMP4 }, { .id = EXT_TAMP5 }, { .id = EXT_TAMP6 },
642 	{ .id = EXT_TAMP7 }, { .id = EXT_TAMP8 },
643 };
644 #else
645 static struct stm32_tamp_tamper_data ext_tamp_mp23[] = {
646 	{ .id = EXT_TAMP1 }, { .id = EXT_TAMP2 }, { .id = EXT_TAMP3 },
647 	{ .id = EXT_TAMP4 }, { .id = EXT_TAMP5 }, { .id = EXT_TAMP6 },
648 	{ .id = EXT_TAMP7 },
649 };
650 #endif
651 
652 static const struct stm32_tamp_pin_map pin_map_mp25[] = {
653 	{
654 		.id = EXT_TAMP1, .bank = GPIO_BANK('I'), .pin = 8,
655 		.out = false, .conf = _TAMP_OR_STM32MP25_IN1RMP_PI8,
656 	},
657 	{
658 		.id = EXT_TAMP1, .bank = GPIO_BANK('C'), .pin = 4,
659 		.out = false, .conf = _TAMP_OR_STM32MP25_IN1RMP_PC4,
660 	},
661 	{
662 		.id = EXT_TAMP3, .bank = GPIO_BANK('C'), .pin = 3,
663 		.out = false, .conf = _TAMP_OR_STM32MP25_IN3RMP_PC3,
664 	},
665 	{
666 		.id = EXT_TAMP3, .bank = GPIO_BANK('Z'), .pin = 2,
667 		.out = false, .conf = _TAMP_OR_STM32MP25_IN3RMP_PZ2,
668 	},
669 	{
670 		.id = EXT_TAMP5, .bank = GPIO_BANK('F'), .pin = 6,
671 		.out = false, .conf = _TAMP_OR_STM32MP25_IN5RMP_PF6,
672 	},
673 	{
674 		.id = EXT_TAMP5, .bank = GPIO_BANK('Z'), .pin = 4,
675 		.out = false, .conf = _TAMP_OR_STM32MP25_IN5RMP_PZ4,
676 	},
677 };
678 #endif
679 
680 /* Expects at most a single instance */
681 static struct stm32_tamp_instance *stm32_tamp_dev;
682 
683 static vaddr_t get_base(void)
684 {
685 	assert(stm32_tamp_dev && stm32_tamp_dev->pdata.base.pa);
686 
687 	return io_pa_or_va_secure(&stm32_tamp_dev->pdata.base, 1);
688 }
689 
690 static void apply_rif_config(void)
691 {
692 	struct rif_conf_data *rif_conf = stm32_tamp_dev->pdata.conf_data;
693 	uint32_t access_mask_priv_reg = 0;
694 	uint32_t access_mask_sec_reg = 0;
695 	vaddr_t base = get_base();
696 	uint32_t privcfgr = 0;
697 	uint32_t seccfgr = 0;
698 	unsigned int i = 0;
699 
700 	if (!stm32_tamp_dev->pdata.conf_data)
701 		return;
702 
703 	/* Build access masks for _TAMP_PRIVCFGR and _TAMP_SECCFGR */
704 	for (i = 0; i < TAMP_RIF_RESOURCES; i++) {
705 		if (BIT(i) & rif_conf->access_mask[0]) {
706 			switch (i) {
707 			case 0:
708 				access_mask_sec_reg |= _TAMP_SECCFGR_TAMPSEC;
709 				access_mask_priv_reg |= _TAMP_PRIVCFG_TAMPPRIV;
710 				break;
711 			case 1:
712 				access_mask_sec_reg |= _TAMP_SECCFGR_CNT1SEC;
713 				access_mask_priv_reg |= _TAMP_PRIVCFG_CNT1PRIV;
714 				access_mask_priv_reg |= _TAMP_PRIVCFG_BKPRWPRIV;
715 				break;
716 			case 2:
717 				access_mask_sec_reg |= _TAMP_SECCFGR_CNT2SEC;
718 				access_mask_priv_reg |= _TAMP_PRIVCFG_CNT2PRIV;
719 				access_mask_priv_reg |= _TAMP_PRIVCFG_BKPWPRIV;
720 				break;
721 			default:
722 				panic();
723 			}
724 		}
725 	}
726 
727 	/*
728 	 * When TDCID, OP-TEE should be the one to set the CID filtering
729 	 * configuration. Clearing previous configuration prevents
730 	 * undesired events during the only legitimate configuration.
731 	 */
732 	if (stm32_tamp_dev->pdata.is_tdcid) {
733 		for (i = 0; i < TAMP_RIF_RESOURCES; i++)
734 			if (BIT(i) & rif_conf->access_mask[0])
735 				io_clrbits32(base + _TAMP_CIDCFGR(i),
736 					     _TAMP_CIDCFGR_CONF_MASK);
737 	}
738 
739 	if (rif_conf->sec_conf[0] & _TAMP_SECCFGR_RIF_TAMP_SEC)
740 		seccfgr |= _TAMP_SECCFGR_TAMPSEC;
741 	if (rif_conf->sec_conf[0] & _TAMP_SECCFGR_RIF_COUNT_1)
742 		seccfgr |= _TAMP_SECCFGR_CNT1SEC;
743 	if (rif_conf->sec_conf[0] & _TAMP_SECCFGR_RIF_COUNT_2)
744 		seccfgr |= _TAMP_SECCFGR_CNT2SEC;
745 
746 	if (rif_conf->priv_conf[0] & _TAMP_PRIVCFGR_RIF_TAMP_PRIV)
747 		privcfgr |= _TAMP_PRIVCFG_TAMPPRIV;
748 	if (rif_conf->priv_conf[0] & _TAMP_PRIVCFGR_RIF_R1)
749 		privcfgr |= _TAMP_PRIVCFG_CNT1PRIV | _TAMP_PRIVCFG_BKPRWPRIV;
750 	if (rif_conf->priv_conf[0] & _TAMP_PRIVCFGR_RIF_R2)
751 		privcfgr |= _TAMP_PRIVCFG_CNT2PRIV | _TAMP_PRIVCFG_BKPWPRIV;
752 
753 	/* Security and privilege RIF configuration */
754 	io_clrsetbits32(base + _TAMP_PRIVCFGR, access_mask_priv_reg, privcfgr);
755 	io_clrsetbits32(base + _TAMP_SECCFGR, access_mask_sec_reg, seccfgr);
756 
757 	if (!stm32_tamp_dev->pdata.is_tdcid)
758 		return;
759 
760 	for (i = 0; i < TAMP_RIF_RESOURCES; i++) {
761 		if (!(BIT(i) & rif_conf->access_mask[0]))
762 			continue;
763 
764 		io_clrsetbits32(base + _TAMP_CIDCFGR(i),
765 				_TAMP_CIDCFGR_CONF_MASK,
766 				rif_conf->cid_confs[i]);
767 	}
768 }
769 
770 static TEE_Result stm32_tamp_apply_bkpr_rif_conf(void)
771 {
772 	struct stm32_bkpregs_conf *bkpregs_conf =
773 			&stm32_tamp_dev->pdata.bkpregs_conf;
774 	vaddr_t base = get_base();
775 	unsigned int i = 0;
776 
777 	if (!bkpregs_conf->rif_offsets)
778 		panic("No backup register configuration");
779 
780 	for (i = 0; i < TAMP_RIF_OFFSET_CNT; i++) {
781 		if (bkpregs_conf->rif_offsets[i] >
782 		    (stm32_tamp_dev->hwconf1 & _TAMP_HWCFGR1_BKPREG))
783 			return TEE_ERROR_NOT_SUPPORTED;
784 	}
785 
786 	/* Fill the 3 TAMP_BKPRIFRx registers */
787 	io_clrsetbits32(base + _TAMP_BKPRIFR(1), _TAMP_BKPRIFR_1_MASK,
788 			bkpregs_conf->rif_offsets[0]);
789 	io_clrsetbits32(base + _TAMP_BKPRIFR(2), _TAMP_BKPRIFR_2_MASK,
790 			bkpregs_conf->rif_offsets[1]);
791 	io_clrsetbits32(base + _TAMP_BKPRIFR(3), _TAMP_BKPRIFR_3_MASK,
792 			bkpregs_conf->rif_offsets[2] |
793 			SHIFT_U32(bkpregs_conf->rif_offsets[3],
794 				  _TAMP_BKPRIFR_ZONE3_RIF2_SHIFT));
795 
796 	DMSG("Backup registers mapping :");
797 	DMSG("********START of zone 1********");
798 	DMSG("Protection Zone 1-RIF1 begins at register: 0");
799 	DMSG("Protection Zone 1-RIF2 begins at register: %"PRIu32,
800 	     bkpregs_conf->rif_offsets[0]);
801 	DMSG("Protection Zone 1-RIF2 ends at register: %"PRIu32,
802 	     bkpregs_conf->zone1_end ? bkpregs_conf->zone1_end - 1 : 0);
803 	DMSG("********END of zone 1********");
804 	DMSG("********START of zone 2********");
805 	DMSG("Protection Zone 2-RIF1 begins at register: %"PRIu32,
806 	     bkpregs_conf->zone1_end);
807 	DMSG("Protection Zone 2-RIF2 begins at register: %"PRIu32,
808 	     bkpregs_conf->rif_offsets[1]);
809 	DMSG("Protection Zone 2-RIF2 ends at register: %"PRIu32,
810 	     bkpregs_conf->rif_offsets[1] > bkpregs_conf->zone1_end ?
811 	     bkpregs_conf->zone2_end - 1 : 0);
812 	DMSG("********END of zone 2********");
813 	DMSG("********START of zone 3********");
814 	DMSG("Protection Zone 3-RIF1 begins at register: %"PRIu32,
815 	     bkpregs_conf->zone2_end);
816 	DMSG("Protection Zone 3-RIF0 begins at register: %"PRIu32,
817 	     bkpregs_conf->rif_offsets[2]);
818 	DMSG("Protection Zone 3-RIF2 begins at register: %"PRIu32,
819 	     bkpregs_conf->rif_offsets[3]);
820 	DMSG("Protection Zone 3-RIF2 ends at the last register: %"PRIu32,
821 	     stm32_tamp_dev->hwconf1 & _TAMP_HWCFGR1_BKPREG);
822 	DMSG("********END of zone 3********");
823 
824 	return TEE_SUCCESS;
825 }
826 
827 static TEE_Result stm32_tamp_set_secure_bkpregs(void)
828 {
829 	struct stm32_bkpregs_conf *bkpregs_conf =
830 		&stm32_tamp_dev->pdata.bkpregs_conf;
831 	vaddr_t base = get_base();
832 	uint32_t first_z2 = 0;
833 	uint32_t first_z3 = 0;
834 
835 	first_z2 = bkpregs_conf->zone1_end;
836 	first_z3 = bkpregs_conf->zone2_end;
837 
838 	if ((first_z2 > (stm32_tamp_dev->hwconf1 & _TAMP_HWCFGR1_BKPREG)) ||
839 	    (first_z3 > (stm32_tamp_dev->hwconf1 & _TAMP_HWCFGR1_BKPREG)))
840 		return TEE_ERROR_BAD_PARAMETERS;
841 
842 	if (stm32_tamp_dev->pdata.compat &&
843 	    (stm32_tamp_dev->pdata.compat->tags & TAMP_HAS_REGISTER_SECCFGR)) {
844 		io_clrsetbits32(base + _TAMP_SECCFGR,
845 				_TAMP_SECCFGR_BKPRWSEC_MASK,
846 				(first_z2 << _TAMP_SECCFGR_BKPRWSEC_SHIFT) &
847 				_TAMP_SECCFGR_BKPRWSEC_MASK);
848 
849 		io_clrsetbits32(base + _TAMP_SECCFGR,
850 				_TAMP_SECCFGR_BKPWSEC_MASK,
851 				(first_z3 << _TAMP_SECCFGR_BKPWSEC_SHIFT) &
852 				_TAMP_SECCFGR_BKPWSEC_MASK);
853 	} else {
854 		io_clrsetbits32(base + _TAMP_SMCR,
855 				_TAMP_SMCR_BKPRWDPROT_MASK,
856 				(first_z2 << _TAMP_SMCR_BKPRWDPROT_SHIFT) &
857 				_TAMP_SMCR_BKPRWDPROT_MASK);
858 
859 		io_clrsetbits32(base + _TAMP_SMCR,
860 				_TAMP_SMCR_BKPWDPROT_MASK,
861 				(first_z3 << _TAMP_SMCR_BKPWDPROT_SHIFT) &
862 				_TAMP_SMCR_BKPWDPROT_MASK);
863 	}
864 
865 	return TEE_SUCCESS;
866 }
867 
868 static void stm32_tamp_set_secure(uint32_t mode)
869 {
870 	vaddr_t base = get_base();
871 
872 	if (stm32_tamp_dev->pdata.compat &&
873 	    (stm32_tamp_dev->pdata.compat->tags & TAMP_HAS_REGISTER_SECCFGR)) {
874 		io_clrsetbits32(base + _TAMP_SECCFGR,
875 				_TAMP_SECCFGR_BUT_BKP_MASK,
876 				mode & _TAMP_SECCFGR_BUT_BKP_MASK);
877 	} else {
878 		/*
879 		 * Note: MP15 doesn't use SECCFG register and
880 		 * inverts the secure bit.
881 		 */
882 		if (mode & _TAMP_SECCFGR_TAMPSEC)
883 			io_clrbits32(base + _TAMP_SMCR, _TAMP_SMCR_DPROT);
884 		else
885 			io_setbits32(base + _TAMP_SMCR, _TAMP_SMCR_DPROT);
886 	}
887 }
888 
889 static void stm32_tamp_set_privilege(uint32_t mode)
890 {
891 	vaddr_t base = get_base();
892 
893 	if (stm32_tamp_dev->pdata.compat &&
894 	    (stm32_tamp_dev->pdata.compat->tags & TAMP_HAS_REGISTER_PRIVCFGR))
895 		io_clrsetbits32(base + _TAMP_PRIVCFGR, _TAMP_PRIVCFGR_MASK,
896 				mode & _TAMP_PRIVCFGR_MASK);
897 }
898 
899 static void parse_bkpregs_dt_conf(const void *fdt, int node)
900 {
901 	struct stm32_tamp_platdata *pdata = &stm32_tamp_dev->pdata;
902 	unsigned int bkpregs_count = 0;
903 	const fdt32_t *cuint = NULL;
904 	int lenp = 0;
905 
906 	cuint = fdt_getprop(fdt, node, "st,backup-zones", &lenp);
907 	if (!cuint)
908 		panic("Missing backup registers configuration");
909 
910 	/*
911 	 * When TAMP does not support RIF, the backup registers can
912 	 * be splited in 3 zones. These zones have specific read/write
913 	 * access permissions based on the secure status of the accesser.
914 	 * When RIF is supported, these zones can additionally be splited
915 	 * in subzones that have CID filtering. Zones/Subzones can be empty and
916 	 * are contiguous.
917 	 */
918 	if (!(pdata->compat->tags & TAMP_HAS_RIF_SUPPORT)) {
919 		/* 3 zones, 2 offsets to apply */
920 		if (lenp != sizeof(uint32_t) * TAMP_NB_BKPR_ZONES)
921 			panic("Incorrect bkpregs configuration");
922 
923 		pdata->bkpregs_conf.zone1_end = fdt32_to_cpu(cuint[0]);
924 		bkpregs_count = fdt32_to_cpu(cuint[0]);
925 
926 		pdata->bkpregs_conf.zone2_end = bkpregs_count +
927 						fdt32_to_cpu(cuint[1]);
928 	} else {
929 		/*
930 		 * Zone 3
931 		 * ----------------------|
932 		 * Protection Zone 3-RIF2|Read non-
933 		 * ----------------------|secure
934 		 * Protection Zone 3-RIF0|Write non-
935 		 * ----------------------|secure
936 		 * Protection Zone 3-RIF1|
937 		 * ----------------------|
938 		 *
939 		 * Zone 2
940 		 * ----------------------|
941 		 * Protection Zone 2-RIF2|Read non-
942 		 * ----------------------|secure
943 		 * Protection Zone 2-RIF1|Write secure
944 		 * ----------------------|
945 		 *
946 		 * Zone 1
947 		 * ----------------------|
948 		 * Protection Zone 1-RIF2|Read secure
949 		 * ----------------------|Write secure
950 		 * Protection Zone 1-RIF1|
951 		 * ----------------------|
952 		 *
953 		 * (BHK => First 8 registers)
954 		 */
955 		pdata->bkpregs_conf.rif_offsets = calloc(TAMP_RIF_OFFSET_CNT,
956 							 sizeof(uint32_t));
957 		if (!pdata->bkpregs_conf.rif_offsets)
958 			panic();
959 
960 		/*
961 		 * 3 zones with 7 subzones in total(6 offsets):
962 		 * - 2 zone offsets
963 		 * - 4 subzones offsets
964 		 */
965 		if (lenp != sizeof(uint32_t) *
966 		    (TAMP_RIF_OFFSET_CNT + TAMP_NB_BKPR_ZONES))
967 			panic("Incorrect bkpregs configuration");
968 
969 		/* Backup registers zone 1 */
970 		pdata->bkpregs_conf.rif_offsets[0] = fdt32_to_cpu(cuint[0]);
971 		pdata->bkpregs_conf.zone1_end = fdt32_to_cpu(cuint[0]) +
972 						fdt32_to_cpu(cuint[1]);
973 
974 		bkpregs_count = pdata->bkpregs_conf.zone1_end;
975 
976 		/* Backup registers zone 2 */
977 		pdata->bkpregs_conf.rif_offsets[1] = bkpregs_count +
978 						     fdt32_to_cpu(cuint[2]);
979 		pdata->bkpregs_conf.zone2_end = bkpregs_count +
980 						fdt32_to_cpu(cuint[2]) +
981 						fdt32_to_cpu(cuint[3]);
982 
983 		bkpregs_count = pdata->bkpregs_conf.zone2_end;
984 
985 		/* Backup registers zone 3 */
986 		pdata->bkpregs_conf.rif_offsets[2] = bkpregs_count +
987 						     fdt32_to_cpu(cuint[4]);
988 		pdata->bkpregs_conf.rif_offsets[3] = bkpregs_count +
989 						      fdt32_to_cpu(cuint[4]) +
990 						      fdt32_to_cpu(cuint[5]);
991 	}
992 }
993 
994 static void stm32_tamp_set_pins(vaddr_t base, uint32_t mode)
995 {
996 	io_setbits32(base + _TAMP_OR, mode);
997 }
998 
999 static TEE_Result stm32_tamp_set_seed(vaddr_t base)
1000 {
1001 	uint32_t value = 0;
1002 	int idx = 0;
1003 
1004 	for (idx = 0; idx < 4; idx++) {
1005 		uint32_t rnd = 0;
1006 
1007 		if (crypto_rng_read(&rnd, sizeof(uint32_t)))
1008 			return TEE_ERROR_BAD_STATE;
1009 
1010 		io_write32(base + _TAMP_ATSEEDR, rnd);
1011 	}
1012 
1013 	if (IO_READ32_POLL_TIMEOUT(base + _TAMP_ATOR, value,
1014 				   !(value & _TAMP_SEEDF), 0, SEED_TIMEOUT_US))
1015 		return TEE_ERROR_BAD_STATE;
1016 
1017 	return TEE_SUCCESS;
1018 }
1019 
1020 static TEE_Result is_int_tamp_id_valid(enum stm32_tamp_id id)
1021 {
1022 	if (id - INT_TAMP1 >= _TAMP_HWCFGR1_ITAMP_MAX_ID)
1023 		return TEE_ERROR_BAD_PARAMETERS;
1024 
1025 	if (!(stm32_tamp_dev->hwconf1 & _TAMP_HWCFGR1_ITAMP(id)))
1026 		return TEE_ERROR_ITEM_NOT_FOUND;
1027 
1028 	return TEE_SUCCESS;
1029 }
1030 
1031 static bool is_ext_tamp_id_valid(enum stm32_tamp_id id)
1032 {
1033 	return id - EXT_TAMP1 <=
1034 	       (stm32_tamp_dev->hwconf1 & _TAMP_HWCFGR1_TAMPER) >>
1035 	       _TAMP_HWCFGR1_TAMPER_SHIFT;
1036 }
1037 
1038 static enum itr_return stm32_tamp_it_handler(struct itr_handler *h __unused)
1039 {
1040 	struct optee_rtc_time __maybe_unused tamp_ts = { };
1041 	vaddr_t base = get_base();
1042 	uint32_t it = io_read32(base + _TAMP_SR);
1043 	uint32_t int_it = it & _TAMP_SR_ITAMPXF_MASK;
1044 	uint32_t ext_it = it & _TAMP_SR_ETAMPXF_MASK;
1045 	bool ts_enabled = false;
1046 	size_t i = 0;
1047 
1048 	if (stm32_rtc_is_timestamp_enabled(&ts_enabled))
1049 		panic();
1050 
1051 	if (ts_enabled && it) {
1052 		TEE_Result res = stm32_rtc_get_timestamp(&tamp_ts);
1053 
1054 		if (res)
1055 			EMSG("Failed to get RTC timestamp: %"PRIx32, res);
1056 		FMSG("Tamper event occurred at:");
1057 		FMSG("\n \t Date: %"PRIu32"/%"PRIu32"\n \t Time: %"PRIu32":%"PRIu32":%"PRIu32,
1058 		     tamp_ts.tm_mday, tamp_ts.tm_mon, tamp_ts.tm_hour,
1059 		     tamp_ts.tm_min, tamp_ts.tm_sec);
1060 	}
1061 
1062 	while (int_it && i < stm32_tamp_dev->pdata.compat->int_tamp_size) {
1063 		struct stm32_tamp_tamper_data int_tamp =
1064 			stm32_tamp_dev->pdata.compat->int_tamp[i];
1065 		int id = int_tamp.id;
1066 
1067 		if (int_it & _TAMP_SR_ITAMP(id)) {
1068 			uint32_t ret = 0;
1069 
1070 			int_it &= ~_TAMP_SR_ITAMP(id);
1071 
1072 			if (int_tamp.func)
1073 				ret = int_tamp.func(id);
1074 
1075 			if (ret & TAMP_CB_ACK)
1076 				io_setbits32(base + _TAMP_SCR,
1077 					     _TAMP_SCR_ITAMP(id));
1078 
1079 			if (ret & TAMP_CB_RESET)
1080 				do_reset("Internal tamper event detected");
1081 		}
1082 		i++;
1083 	}
1084 
1085 	i = 0;
1086 	/* External tamper interrupt */
1087 	while (ext_it && i < stm32_tamp_dev->pdata.compat->ext_tamp_size) {
1088 		struct stm32_tamp_tamper_data ext_tamp =
1089 			stm32_tamp_dev->pdata.compat->ext_tamp[i];
1090 		int id = ext_tamp.id;
1091 
1092 		if (ext_it & _TAMP_SR_ETAMP(id)) {
1093 			uint32_t ret = 0;
1094 
1095 			ext_it &= ~_TAMP_SR_ETAMP(id);
1096 
1097 			if (ext_tamp.func)
1098 				ret = ext_tamp.func(id);
1099 
1100 			if (ret & TAMP_CB_ACK)
1101 				io_setbits32(base + _TAMP_SCR,
1102 					     _TAMP_SCR_ETAMP(id));
1103 
1104 			if (ret & TAMP_CB_RESET)
1105 				do_reset("External tamper event detected");
1106 		}
1107 		i++;
1108 	}
1109 
1110 	return ITRR_HANDLED;
1111 }
1112 DECLARE_KEEP_PAGER(stm32_tamp_it_handler);
1113 
1114 static TEE_Result stm32_tamp_set_int_config(struct stm32_tamp_compat *tcompat,
1115 					    uint32_t itamp_index, uint32_t *cr1,
1116 					    uint32_t *cr3, uint32_t *ier)
1117 {
1118 	struct stm32_tamp_tamper_data *tamp_int = NULL;
1119 	enum stm32_tamp_id id = INVALID_TAMP;
1120 	TEE_Result res = TEE_ERROR_GENERIC;
1121 
1122 	if (!tcompat)
1123 		return TEE_ERROR_BAD_PARAMETERS;
1124 
1125 	tamp_int = &tcompat->int_tamp[itamp_index];
1126 	id = tamp_int->id;
1127 
1128 	res = is_int_tamp_id_valid(id);
1129 	if (res == TEE_ERROR_ITEM_NOT_FOUND)
1130 		return TEE_SUCCESS;
1131 	else if (res)
1132 		return res;
1133 
1134 	/*
1135 	 * If there is no callback
1136 	 * this tamper is disabled, we reset its configuration.
1137 	 */
1138 	if (!tamp_int->func) {
1139 		*cr1 &= ~_TAMP_CR1_ITAMP(id);
1140 		*ier &= ~_TAMP_IER_ITAMP(id);
1141 		if (tcompat->tags & TAMP_HAS_REGISTER_CR3)
1142 			*cr3 &= ~_TAMP_CR3_ITAMPNOER(id);
1143 
1144 		FMSG("INT_TAMP%d disabled", id - INT_TAMP1 + 1);
1145 		return TEE_SUCCESS;
1146 	}
1147 
1148 	*cr1 |= _TAMP_CR1_ITAMP(id);
1149 	*ier |= _TAMP_IER_ITAMP(id);
1150 
1151 	if (tcompat->tags & TAMP_HAS_REGISTER_CR3) {
1152 		if (tamp_int->mode & TAMP_NOERASE)
1153 			*cr3 |= _TAMP_CR3_ITAMPNOER(id);
1154 		else
1155 			*cr3 &= ~_TAMP_CR3_ITAMPNOER(id);
1156 	}
1157 
1158 	DMSG("'%s' internal tamper enabled in %s mode",
1159 	     itamper_name[id - INT_TAMP1],
1160 	     (tamp_int->mode & TAMP_NOERASE) ? "potential" : "confirmed");
1161 
1162 	return TEE_SUCCESS;
1163 }
1164 
1165 static TEE_Result stm32_tamp_set_ext_config(struct stm32_tamp_compat *tcompat,
1166 					    uint32_t etamp_index, uint32_t *cr1,
1167 					    uint32_t *cr2, uint32_t *atcr1,
1168 					    uint32_t *atcr2, uint32_t *ier)
1169 {
1170 	struct stm32_tamp_tamper_data *tamp_ext = NULL;
1171 	enum stm32_tamp_id id = INVALID_TAMP;
1172 
1173 	if (!tcompat)
1174 		return TEE_ERROR_BAD_PARAMETERS;
1175 
1176 	tamp_ext = &tcompat->ext_tamp[etamp_index];
1177 	id = tamp_ext->id;
1178 
1179 	/* Exit if not a valid TAMP_ID */
1180 	if (!is_ext_tamp_id_valid(id))
1181 		return TEE_ERROR_BAD_PARAMETERS;
1182 
1183 	/*
1184 	 * If there is no callback or this TAMPER wasn't defined in DT,
1185 	 * this tamper is disabled, we reset its configuration.
1186 	 */
1187 	if (!tamp_ext->func || !(tamp_ext->mode & TAMP_IN_DT)) {
1188 		*cr1 &= ~_TAMP_CR1_ETAMP(id);
1189 		*cr2 &= ~_TAMP_CR2_ETAMPMSK(id);
1190 		*cr2 &= ~_TAMP_CR2_ETAMPTRG(id);
1191 		*cr2 &= ~_TAMP_CR2_ETAMPNOER(id);
1192 		*ier &= ~_TAMP_IER_ETAMP(id);
1193 
1194 		FMSG("EXT_TAMP%d disabled", id - EXT_TAMP1 + 1);
1195 		return TEE_SUCCESS;
1196 	}
1197 
1198 	*cr1 |= _TAMP_CR1_ETAMP(id);
1199 
1200 	if (tamp_ext->mode & TAMP_TRIG_ON)
1201 		*cr2 |= _TAMP_CR2_ETAMPTRG(id);
1202 	else
1203 		*cr2 &= ~_TAMP_CR2_ETAMPTRG(id);
1204 
1205 	if (tamp_ext->mode & TAMP_ACTIVE) {
1206 		*atcr1 |= _TAMP_ATCR1_ETAMPAM(id);
1207 
1208 		/* Configure output pin if ATOSHARE is selected */
1209 		if (*atcr1 & _TAMP_ATCR1_ATOSHARE) {
1210 			if (tcompat->tags & TAMP_HAS_REGISTER_ATCR2)
1211 				*atcr2 = (*atcr2 &
1212 					  ~_TAMP_ATCR2_ATOSEL_MASK(id)) |
1213 					 _TAMP_ATCR2_ATOSEL(id,
1214 							    tamp_ext->out_id);
1215 			else
1216 				*atcr1 = (*atcr1 &
1217 					  ~_TAMP_ATCR1_ATOSEL_MASK(id)) |
1218 					 _TAMP_ATCR1_ATOSEL(id,
1219 							    tamp_ext->out_id);
1220 		}
1221 	} else {
1222 		*atcr1 &= ~_TAMP_ATCR1_ETAMPAM(id);
1223 	}
1224 
1225 	if (tamp_ext->mode & TAMP_NOERASE)
1226 		*cr2 |= _TAMP_CR2_ETAMPNOER(id);
1227 	else
1228 		*cr2 &= ~_TAMP_CR2_ETAMPNOER(id);
1229 
1230 	if (id < _TAMP_CR2_ETAMPMSK_MAX_ID) {
1231 		/*
1232 		 * Only external TAMP 1, 2 and 3 can be masked
1233 		 * and we may want them masked at startup.
1234 		 */
1235 		if (tamp_ext->mode & TAMP_EVT_MASK) {
1236 			/*
1237 			 * ETAMP(id) event generates a trigger event. This
1238 			 * ETAMP(id) is masked and internally cleared by
1239 			 * hardware.
1240 			 * The secrets are not erased.
1241 			 */
1242 			*ier &= ~_TAMP_IER_ETAMP(id);
1243 			*cr2 |= _TAMP_CR2_ETAMPMSK(id);
1244 		} else {
1245 			/*
1246 			 * normal ETAMP interrupt:
1247 			 * ETAMP(id) event generates a trigger event and
1248 			 * TAMP(id) must be cleared by software to allow
1249 			 * next tamper event detection.
1250 			 */
1251 			*ier |= _TAMP_IER_ETAMP(id);
1252 			*cr2 &= ~_TAMP_CR2_ETAMPMSK(id);
1253 		}
1254 	} else {
1255 		/* Other than 1,2,3 external TAMP, we want its interrupt */
1256 		*ier |= _TAMP_IER_ETAMP(id);
1257 	}
1258 
1259 	DMSG("EXT_TAMP%d enabled as a %s tamper in %s mode, trig_%s %s",
1260 	     id - EXT_TAMP1 + 1,
1261 	     (tamp_ext->mode & TAMP_ACTIVE) ? "active" : "passive",
1262 	     (tamp_ext->mode & TAMP_NOERASE) ? "potential" : "confirmed",
1263 	     (tamp_ext->mode & TAMP_TRIG_ON) ? "on" : "off",
1264 	     (tamp_ext->mode & TAMP_EVT_MASK) ? " (masked)" : "");
1265 
1266 	if (tamp_ext->mode & TAMP_ACTIVE)
1267 		DMSG("   linked with OUT_TAMP%"PRIu32,
1268 		     tamp_ext->out_id - OUT_TAMP1 + 1);
1269 
1270 	return TEE_SUCCESS;
1271 }
1272 
1273 /*
1274  * Count number of 1 in bitmask
1275  * Cannot use __builtin_popcount(): libgcc.a for ARMV7 use hardfloat ABI,
1276  * but OP-TEE core is compiled with softfloat ABI.
1277  */
1278 static int popcount(uint32_t bitmask)
1279 {
1280 	int nb = 0;
1281 
1282 	while (bitmask) {
1283 		if (bitmask & 1)
1284 			nb++;
1285 		bitmask >>= 1;
1286 	}
1287 
1288 	return nb;
1289 }
1290 
1291 static void stm32_tamp_set_atper(uint32_t pins_out_bits, uint32_t *atcr1)
1292 {
1293 	uint32_t conf = 0;
1294 
1295 	switch (popcount(pins_out_bits)) {
1296 	case 0:
1297 	case 1:
1298 		conf = 0;
1299 		break;
1300 	case 2:
1301 		conf = 1;
1302 		break;
1303 	case 3:
1304 	case 4:
1305 		conf = 2;
1306 		break;
1307 	default:
1308 		conf = 3;
1309 		break;
1310 	}
1311 
1312 	*atcr1 |= SHIFT_U32(conf, _TAMP_ATCR1_ATPER_SHIFT) &
1313 		  _TAMP_ATCR1_ATPER_MASK;
1314 }
1315 
1316 static TEE_Result stm32_tamp_set_config(void)
1317 {
1318 	TEE_Result ret = TEE_SUCCESS;
1319 	vaddr_t base = get_base();
1320 	uint32_t atcr1 = 0;
1321 	uint32_t atcr2 = 0;
1322 	uint32_t fltcr = 0;
1323 	uint32_t cr1 = 0;
1324 	uint32_t cr2 = 0;
1325 	uint32_t cr3 = 0;
1326 	uint32_t ier = 0;
1327 	size_t i = 0;
1328 
1329 	if (!stm32_tamp_dev->pdata.compat ||
1330 	    !stm32_tamp_dev->pdata.compat->int_tamp ||
1331 	    !stm32_tamp_dev->pdata.compat->ext_tamp)
1332 		return TEE_ERROR_BAD_STATE;
1333 
1334 	/* Set passive filter configuration */
1335 	fltcr = stm32_tamp_dev->pdata.passive_conf;
1336 
1337 	/* Set active mode configuration */
1338 	atcr1 = stm32_tamp_dev->pdata.active_conf & _TAMP_ATCR1_COMMON_MASK;
1339 	stm32_tamp_set_atper(stm32_tamp_dev->pdata.out_pins, &atcr1);
1340 
1341 	for (i = 0; i < stm32_tamp_dev->pdata.compat->int_tamp_size; i++) {
1342 		ret = stm32_tamp_set_int_config(stm32_tamp_dev->pdata.compat, i,
1343 						&cr1, &cr3, &ier);
1344 		if (ret)
1345 			return ret;
1346 	}
1347 
1348 	for (i = 0; i < stm32_tamp_dev->pdata.compat->ext_tamp_size; i++) {
1349 		ret = stm32_tamp_set_ext_config(stm32_tamp_dev->pdata.compat, i,
1350 						&cr1, &cr2, &atcr1, &atcr2,
1351 						&ier);
1352 		if (ret)
1353 			return ret;
1354 	}
1355 
1356 	/*
1357 	 * We apply configuration all in a row:
1358 	 * As for active ext tamper "all the needed tampers must be enabled in
1359 	 * the same write access".
1360 	 */
1361 	io_write32(base + _TAMP_FLTCR, fltcr);
1362 	FMSG("Set passive conf %08"PRIx32, fltcr);
1363 
1364 	/* Active configuration applied only if not already done. */
1365 	if (((io_read32(base + _TAMP_ATOR) & _TAMP_INITS) != _TAMP_INITS)) {
1366 		io_write32(base + _TAMP_ATCR1, atcr1);
1367 		FMSG("Set active conf1 %08"PRIx32, atcr1);
1368 
1369 		if (stm32_tamp_dev->pdata.compat->tags &
1370 		    TAMP_HAS_REGISTER_ATCR2) {
1371 			io_write32(base + _TAMP_ATCR2, atcr2);
1372 			FMSG("Set active conf2 %08"PRIx32, atcr2);
1373 		}
1374 	}
1375 
1376 	io_write32(base + _TAMP_CR1, cr1);
1377 	io_write32(base + _TAMP_CR2, cr2);
1378 	if (stm32_tamp_dev->pdata.compat->tags & TAMP_HAS_REGISTER_CR3)
1379 		io_write32(base + _TAMP_CR3, cr3);
1380 
1381 	/* If active tamper we reinit the seed. */
1382 	if (stm32_tamp_dev->pdata.active_conf) {
1383 		if (stm32_tamp_set_seed(base) != TEE_SUCCESS) {
1384 			EMSG("Active tamper: SEED not initialized");
1385 			return TEE_ERROR_BAD_STATE;
1386 		}
1387 	}
1388 
1389 	/* Enable interrupts. */
1390 	io_write32(base + _TAMP_IER, ier);
1391 
1392 	return TEE_SUCCESS;
1393 }
1394 
1395 /*
1396  * Mask a tamper event detection for a given @id
1397  * If ETAMP(id) event generates a trigger event, this ETAMP(id) is masked and
1398  * internally cleared by hardware. The secrets are not erased.
1399  */
1400 static TEE_Result __maybe_unused stm32_tamp_set_mask(enum stm32_tamp_id id)
1401 {
1402 	vaddr_t base = get_base();
1403 
1404 	/* Only EXT_TAMP1, EXT_TAMP2, EXT_TAMP3 can be masked. */
1405 	if (id < EXT_TAMP1 || id > (EXT_TAMP1 + _TAMP_CR2_ETAMPMSK_MAX_ID))
1406 		return TEE_ERROR_BAD_PARAMETERS;
1407 
1408 	/* We cannot mask the event if pending. */
1409 	if (io_read32(base + _TAMP_SR) & _TAMP_SR_ETAMP(id))
1410 		return TEE_ERROR_BAD_STATE;
1411 
1412 	/* We disable the IT */
1413 	io_clrbits32(base + _TAMP_IER, _TAMP_IER_ETAMP(id));
1414 	/* We mask the event */
1415 	io_setbits32(base + _TAMP_CR2, _TAMP_CR2_ETAMPMSK(id));
1416 
1417 	return TEE_SUCCESS;
1418 }
1419 
1420 /*
1421  * Unmask a tamper event detection for a given @id
1422  * ETAMP(id) event now generates a trigger event and ETAMP(id) must be cleared
1423  * by software to allow next tamper event detection.
1424  */
1425 static TEE_Result __maybe_unused stm32_tamp_unset_mask(enum stm32_tamp_id id)
1426 {
1427 	vaddr_t base = get_base();
1428 
1429 	/* Only EXT_TAMP1, EXT_TAMP2, EXT_TAMP3 can be masked. */
1430 	if (id < EXT_TAMP1 || id > (EXT_TAMP1 + _TAMP_CR2_ETAMPMSK_MAX_ID))
1431 		return TEE_ERROR_BAD_PARAMETERS;
1432 
1433 	/* We unmask the event */
1434 	io_clrbits32(base + _TAMP_CR2, _TAMP_CR2_ETAMPMSK(id));
1435 	/* We enable the IT */
1436 	io_setbits32(base + _TAMP_IER, _TAMP_IER_ETAMP(id));
1437 
1438 	return TEE_SUCCESS;
1439 }
1440 
1441 /* This will increment the monotonic counter by 1. It cannot roll-over */
1442 static TEE_Result __maybe_unused stm32_tamp_write_mcounter(int cnt_idx)
1443 {
1444 	vaddr_t base = get_base();
1445 
1446 	if (cnt_idx < 0 || !stm32_tamp_dev->pdata.compat ||
1447 	    cnt_idx >= stm32_tamp_dev->pdata.compat->nb_monotonic_counter)
1448 		return TEE_ERROR_BAD_PARAMETERS;
1449 
1450 	io_write32(base + _TAMP_COUNTR + cnt_idx * sizeof(uint32_t), 1);
1451 
1452 	return TEE_SUCCESS;
1453 }
1454 
1455 static uint32_t __maybe_unused stm32_tamp_read_mcounter(int cnt_idx)
1456 {
1457 	vaddr_t base = get_base();
1458 
1459 	if (cnt_idx < 0 || !stm32_tamp_dev->pdata.compat ||
1460 	    cnt_idx >= stm32_tamp_dev->pdata.compat->nb_monotonic_counter)
1461 		return 0U;
1462 
1463 	return io_read32(base + _TAMP_COUNTR + cnt_idx * sizeof(uint32_t));
1464 }
1465 
1466 static TEE_Result stm32_tamp_configure_int(struct stm32_tamp_tamper_data *tamp,
1467 					   uint32_t mode,
1468 					   uint32_t (*cb)(int id))
1469 {
1470 	if (mode & TAMP_EVT_MASK)
1471 		return TEE_ERROR_BAD_PARAMETERS;
1472 
1473 	tamp->mode |= (mode & TAMP_MODE_MASK);
1474 	tamp->func = cb;
1475 
1476 	return TEE_SUCCESS;
1477 }
1478 
1479 static TEE_Result stm32_tamp_configure_ext(struct stm32_tamp_tamper_data *tamp,
1480 					   uint32_t mode,
1481 					   uint32_t (*cb)(int id))
1482 {
1483 	enum stm32_tamp_id id = tamp->id;
1484 
1485 	if (mode & TAMP_EVT_MASK && !is_ext_tamp_id_valid(id))
1486 		return TEE_ERROR_BAD_PARAMETERS;
1487 
1488 	if (!(tamp->mode & TAMP_IN_DT))
1489 		return TEE_ERROR_ITEM_NOT_FOUND;
1490 
1491 	tamp->mode |= (mode & TAMP_MODE_MASK);
1492 	tamp->func = cb;
1493 
1494 	return TEE_SUCCESS;
1495 }
1496 
1497 /*
1498  * stm32_tamp_activate_tamp: Configure and activate one tamper (internal or
1499  * external).
1500  *
1501  * @id: tamper ID
1502  * @mode: bitmask from TAMPER modes define:
1503  *       TAMP_ERASE/TAMP_NOERASE:
1504  *            TAMP_ERASE: when this tamper event is triggered; secrets are
1505  *            erased.
1506  *            TAMP_NOERASE: when this event is triggered; cryptographic
1507  *            and some secure peripherals are locked until the event is
1508  *            acknowledged. If the callback confirms the TAMPER, it
1509  *            can manually erase secrets with stm32_tamp_erase_secrets().
1510  *       TAMP_NO_EVT_MASK/TAMP_EVT_MASK:
1511  *            TAMP_NO_EVT_MASK: normal behavior.
1512  *            TAMP_EVT_MASK: if the event is triggered, the event is masked and
1513  *            internally cleared by hardware. Secrets are not erased. Only
1514  *            applicable for some external tampers. This defines only the status
1515  *            at boot. To change mask while runtime: stm32_tamp_set_mask() and
1516  *            stm32_tamp_unset_mask() can be used.
1517  * @cb: function to call when a tamper event is raised (cannot be NULL).
1518  *      It is called in interrupt context and returns a bitmask defining
1519  *      the action to take by the driver:
1520  *           TAMP_CB_RESET: will reset the board.
1521  *           TAMP_CB_ACK: this specific tamper is acknowledged (in case
1522  *                        of no-erase tamper, blocked secret are unblocked).
1523  *
1524  * return: TEE_ERROR_BAD_PARAMETERS:
1525  *                   if @id is not a valid tamper ID,
1526  *                   if @cb is NULL,
1527  *                   if TAMP_EVT_MASK @mode is set for an unsupported @id.
1528  *         TEE_ERROR_BAD_STATE
1529  *                   if driver was not previously initialized.
1530  *         TEE_ERROR_ITEM_NOT_FOUND
1531  *                   if the activated external tamper was not previously
1532  *                   defined in the device tree.
1533  *         else TEE_SUCCESS.
1534  */
1535 static TEE_Result stm32_tamp_activate_tamp(enum stm32_tamp_id id, uint32_t mode,
1536 					   uint32_t (*cb)(int id))
1537 {
1538 	struct stm32_tamp_tamper_data *tamp_conf = NULL;
1539 	size_t i = 0;
1540 
1541 	if (!stm32_tamp_dev->pdata.compat)
1542 		return TEE_ERROR_BAD_STATE;
1543 
1544 	assert(is_unpaged(cb));
1545 
1546 	if (!cb)
1547 		return TEE_ERROR_BAD_PARAMETERS;
1548 
1549 	/* Find internal Tamp struct */
1550 	for (i = 0; i < stm32_tamp_dev->pdata.compat->int_tamp_size; i++) {
1551 		if (stm32_tamp_dev->pdata.compat->int_tamp[i].id == id) {
1552 			tamp_conf = &stm32_tamp_dev->pdata.compat->int_tamp[i];
1553 			return stm32_tamp_configure_int(tamp_conf, mode, cb);
1554 		}
1555 	}
1556 
1557 	/* Find external Tamp struct */
1558 	for (i = 0; i < stm32_tamp_dev->pdata.compat->ext_tamp_size; i++) {
1559 		if (stm32_tamp_dev->pdata.compat->ext_tamp[i].id == id) {
1560 			tamp_conf = &stm32_tamp_dev->pdata.compat->ext_tamp[i];
1561 			return stm32_tamp_configure_ext(tamp_conf, mode, cb);
1562 		}
1563 	}
1564 
1565 	EMSG("Did not find existing tamper for ID:%d", id);
1566 
1567 	return TEE_ERROR_BAD_PARAMETERS;
1568 }
1569 
1570 static bool __maybe_unused stm32_tamp_are_secrets_blocked(void)
1571 {
1572 	if (stm32_tamp_dev->pdata.compat &&
1573 	    (stm32_tamp_dev->pdata.compat->tags & TAMP_HAS_CR2_SECRET_STATUS)) {
1574 		vaddr_t base = get_base();
1575 
1576 		return ((io_read32(base + _TAMP_CR2) & _TAMP_CR2_BKBLOCK) ||
1577 			io_read32(base + _TAMP_SR));
1578 	} else {
1579 		return false;
1580 	}
1581 }
1582 
1583 static void __maybe_unused stm32_tamp_block_secrets(void)
1584 {
1585 	vaddr_t base = get_base();
1586 
1587 	if (stm32_tamp_dev->pdata.compat &&
1588 	    (stm32_tamp_dev->pdata.compat->tags & TAMP_HAS_CR2_SECRET_STATUS))
1589 		io_setbits32(base + _TAMP_CR2, _TAMP_CR2_BKBLOCK);
1590 }
1591 
1592 static void __maybe_unused stm32_tamp_unblock_secrets(void)
1593 {
1594 	vaddr_t base = get_base();
1595 
1596 	if (stm32_tamp_dev->pdata.compat &&
1597 	    (stm32_tamp_dev->pdata.compat->tags & TAMP_HAS_CR2_SECRET_STATUS))
1598 		io_clrbits32(base + _TAMP_CR2, _TAMP_CR2_BKBLOCK);
1599 }
1600 
1601 static void __maybe_unused stm32_tamp_erase_secrets(void)
1602 {
1603 	vaddr_t base = get_base();
1604 
1605 	if (stm32_tamp_dev->pdata.compat &&
1606 	    (stm32_tamp_dev->pdata.compat->tags & TAMP_HAS_CR2_SECRET_STATUS))
1607 		io_setbits32(base + _TAMP_CR2, _TAMP_CR2_BKERASE);
1608 }
1609 
1610 static void __maybe_unused stm32_tamp_lock_boot_hardware_key(void)
1611 {
1612 	vaddr_t base = get_base();
1613 
1614 	if (stm32_tamp_dev->pdata.compat &&
1615 	    (stm32_tamp_dev->pdata.compat->tags & TAMP_HAS_REGISTER_SECCFGR))
1616 		io_setbits32(base + _TAMP_SECCFGR, _TAMP_SECCFGR_BHKLOCK);
1617 }
1618 
1619 static void stm32_tamp_configure_pin(uint32_t id, struct gpio *gpio, bool out,
1620 				     struct stm32_tamp_platdata *pdata)
1621 {
1622 	struct stm32_tamp_compat *compat = pdata->compat;
1623 	unsigned int bank = stm32_gpio_chip_bank_id(gpio->chip);
1624 	unsigned int pin = gpio->pin;
1625 	size_t i = 0;
1626 
1627 	if (!compat)
1628 		return;
1629 
1630 	/* Configure option registers */
1631 	for (i = 0; i < compat->pin_map_size; i++) {
1632 		if (id == compat->pin_map[i].id &&
1633 		    bank == compat->pin_map[i].bank &&
1634 		    pin == compat->pin_map[i].pin &&
1635 		    out == compat->pin_map[i].out) {
1636 			pdata->pins_conf |= compat->pin_map[i].conf;
1637 			break;
1638 		}
1639 	}
1640 }
1641 
1642 static TEE_Result
1643 stm32_tamp_configure_pin_from_dt(const void *fdt, int node,
1644 				 struct stm32_tamp_platdata *pdata,
1645 				 uint32_t ext_tamp_id, uint32_t out_tamp_id)
1646 {
1647 	enum stm32_tamp_out_id out_id = INVALID_OUT_TAMP;
1648 	struct stm32_tamp_tamper_data *tamp_ext = NULL;
1649 	enum stm32_tamp_id id = INVALID_TAMP;
1650 	TEE_Result res = TEE_SUCCESS;
1651 	struct gpio *gpio_out = NULL;
1652 	struct gpio *gpio_ext = NULL;
1653 	bool active = false;
1654 	unsigned int i = 0;
1655 
1656 	/*
1657 	 * First GPIO in the tamper-gpios property is required and refers to the
1658 	 * EXT_TAMP control. Second GPIO in the tamper-gpios property is
1659 	 * optional and, if defined, refers to the OUT_TAMP control.
1660 	 * If only one GPIO is defined, the tamper control is a passive tamper.
1661 	 * Else, it is an active tamper.
1662 	 */
1663 	res = gpio_dt_cfg_by_index(fdt, node, 1, "tamper", GPIO_IN, &gpio_out);
1664 	if (res && res != TEE_ERROR_ITEM_NOT_FOUND)
1665 		return res;
1666 
1667 	if (res != TEE_ERROR_ITEM_NOT_FOUND) {
1668 		active = true;
1669 		out_id = OUT_TAMP1 + out_tamp_id - 1;
1670 		if (out_tamp_id > pdata->compat->ext_tamp_size) {
1671 			gpio_put(gpio_out);
1672 			return TEE_ERROR_BAD_PARAMETERS;
1673 		}
1674 
1675 		stm32_tamp_configure_pin(out_id, gpio_out, true, pdata);
1676 	}
1677 
1678 	res = gpio_dt_cfg_by_index(fdt, node, 0, "tamper", GPIO_IN, &gpio_ext);
1679 	if (res) {
1680 		gpio_put(gpio_out);
1681 		return res;
1682 	}
1683 
1684 	/* We now configure first pin */
1685 	id = ext_tamp_id + EXT_TAMP1 - 1;
1686 
1687 	/* Find external TAMP struct */
1688 	for (i = 0; i < pdata->compat->ext_tamp_size; i++) {
1689 		if (pdata->compat->ext_tamp[i].id == id) {
1690 			tamp_ext = &pdata->compat->ext_tamp[i];
1691 			break;
1692 		}
1693 	}
1694 
1695 	if (!tamp_ext) {
1696 		gpio_put(gpio_out);
1697 		gpio_put(gpio_ext);
1698 		return TEE_ERROR_BAD_PARAMETERS;
1699 	}
1700 
1701 	if (active) {
1702 		tamp_ext->mode |= TAMP_ACTIVE;
1703 		tamp_ext->out_id = out_id;
1704 		pdata->out_pins |= BIT(tamp_ext->out_id - OUT_TAMP1);
1705 
1706 		if (out_id - OUT_TAMP1 != id - EXT_TAMP1)
1707 			pdata->active_conf |= _TAMP_ATCR1_ATOSHARE;
1708 	} else {
1709 		if (fdt_getprop(fdt, node, "st,trig-on", NULL))
1710 			tamp_ext->mode |= TAMP_TRIG_ON;
1711 	}
1712 
1713 	tamp_ext->mode |= TAMP_IN_DT;
1714 
1715 	stm32_tamp_configure_pin(id, gpio_ext, false, pdata);
1716 
1717 	return TEE_SUCCESS;
1718 }
1719 
1720 static TEE_Result
1721 stm32_tamp_parse_passive_conf(const void *fdt, int node,
1722 			      struct stm32_tamp_platdata *pdata)
1723 {
1724 	const fdt32_t *cuint = NULL;
1725 	uint32_t precharge = 0;
1726 	uint32_t nb_sample = 0;
1727 	uint32_t clk_div = 32768;
1728 	uint32_t conf = 0;
1729 
1730 	cuint = fdt_getprop(fdt, node, "st,tamp-passive-precharge", NULL);
1731 	if (cuint)
1732 		precharge = fdt32_to_cpu(*cuint);
1733 
1734 	cuint = fdt_getprop(fdt, node, "st,tamp-passive-nb-sample", NULL);
1735 	if (cuint)
1736 		nb_sample = fdt32_to_cpu(*cuint);
1737 
1738 	cuint = fdt_getprop(fdt, node, "st,tamp-passive-sample-clk-div", NULL);
1739 	if (cuint)
1740 		clk_div = fdt32_to_cpu(*cuint);
1741 
1742 	DMSG("Passive conf from dt: precharge=%"PRIu32", nb_sample=%"PRIu32
1743 	     ", clk_div=%"PRIu32, precharge, nb_sample, clk_div);
1744 
1745 	switch (precharge) {
1746 	case 0:
1747 		/* No precharge, => we disable the pull-up */
1748 		conf |= _TAMP_FLTCR_TAMPPUDIS;
1749 		break;
1750 	case 1:
1751 		/* Precharge for one cycle value stay 0 */
1752 		break;
1753 	case 2:
1754 		/* Precharge passive pin 2 cycles */
1755 		conf |= SHIFT_U32(1, _TAMP_FLTCR_TAMPPRCH_SHIFT);
1756 		break;
1757 	case 4:
1758 		/* Precharge passive pin 4 cycles */
1759 		conf |= SHIFT_U32(2, _TAMP_FLTCR_TAMPPRCH_SHIFT);
1760 		break;
1761 	case 8:
1762 		/* Precharge passive pin 8 cycles */
1763 		conf |= SHIFT_U32(3, _TAMP_FLTCR_TAMPPRCH_SHIFT);
1764 		break;
1765 	default:
1766 		return TEE_ERROR_BAD_PARAMETERS;
1767 	}
1768 
1769 	switch (nb_sample) {
1770 	case 0:
1771 		/* Activation on edge, no pull-up: value stay 0 */
1772 		break;
1773 	case 2:
1774 		/*
1775 		 * Tamper event is activated after 2 consecutive samples at
1776 		 * active level.
1777 		 */
1778 		conf |= SHIFT_U32(1, _TAMP_FLTCR_TAMPFLT_SHIFT);
1779 		break;
1780 	case 4:
1781 		/*
1782 		 * Tamper event is activated after 4 consecutive samples at
1783 		 * active level.
1784 		 */
1785 		conf |= SHIFT_U32(2, _TAMP_FLTCR_TAMPFLT_SHIFT);
1786 		break;
1787 	case 8:
1788 		/*
1789 		 * Tamper event is activated after 8 consecutive samples at
1790 		 * active level.
1791 		 */
1792 		conf |= SHIFT_U32(3, _TAMP_FLTCR_TAMPFLT_SHIFT);
1793 		break;
1794 	default:
1795 		return TEE_ERROR_BAD_PARAMETERS;
1796 	}
1797 
1798 	switch (clk_div) {
1799 	case 32768:
1800 		/* RTCCLK / 32768 (1 Hz when RTCCLK = 32768 Hz): stay 0 */
1801 		break;
1802 	case 16384:
1803 		/* RTCCLK / 16384 (2 Hz when RTCCLK = 32768 Hz) */
1804 		conf |= SHIFT_U32(1, _TAMP_FLTCR_TAMPFREQ_SHIFT);
1805 		break;
1806 	case 8192:
1807 		/* RTCCLK / 8192  (4 Hz when RTCCLK = 32768 Hz) */
1808 		conf |= SHIFT_U32(2, _TAMP_FLTCR_TAMPFREQ_SHIFT);
1809 		break;
1810 	case 4096:
1811 		/* RTCCLK / 4096  (8 Hz when RTCCLK = 32768 Hz) */
1812 		conf |= SHIFT_U32(3, _TAMP_FLTCR_TAMPFREQ_SHIFT);
1813 		break;
1814 	case 2048:
1815 		/* RTCCLK / 2048  (16 Hz when RTCCLK = 32768 Hz) */
1816 		conf |= SHIFT_U32(4, _TAMP_FLTCR_TAMPFREQ_SHIFT);
1817 		break;
1818 	case 1024:
1819 		/* RTCCLK / 1024  (32 Hz when RTCCLK = 32768 Hz) */
1820 		conf |= SHIFT_U32(5, _TAMP_FLTCR_TAMPFREQ_SHIFT);
1821 		break;
1822 	case 512:
1823 		/* RTCCLK / 512   (64 Hz when RTCCLK = 32768 Hz) */
1824 		conf |= SHIFT_U32(6, _TAMP_FLTCR_TAMPFREQ_SHIFT);
1825 		break;
1826 	case 256:
1827 		/* RTCCLK / 256   (128 Hz when RTCCLK = 32768 Hz) */
1828 		conf |= SHIFT_U32(7, _TAMP_FLTCR_TAMPFREQ_SHIFT);
1829 		break;
1830 	default:
1831 		return TEE_ERROR_BAD_PARAMETERS;
1832 	}
1833 
1834 	pdata->passive_conf = conf;
1835 
1836 	return TEE_SUCCESS;
1837 }
1838 
1839 static uint32_t stm32_tamp_itamper_action(int id)
1840 {
1841 	const char __maybe_unused *tamp_name = NULL;
1842 
1843 	if (id >= 0 && ((size_t)id < ARRAY_SIZE(itamper_name)))
1844 		tamp_name = itamper_name[id];
1845 
1846 	MSG("Internal tamper event %u (%s) occurred", id - INT_TAMP1 + 1,
1847 	    tamp_name);
1848 
1849 	return TAMP_CB_ACK_AND_RESET;
1850 }
1851 DECLARE_KEEP_PAGER(stm32_tamp_itamper_action);
1852 
1853 static uint32_t stm32_tamp_etamper_action(int id __maybe_unused)
1854 {
1855 	MSG("External tamper %u occurs", id - EXT_TAMP1 + 1);
1856 
1857 	return TAMP_CB_ACK_AND_RESET;
1858 }
1859 DECLARE_KEEP_PAGER(stm32_tamp_etamper_action);
1860 
1861 static TEE_Result stm32_configure_tamp(const void *fdt, int node)
1862 {
1863 	const fdt32_t *internal_tampers = 0;
1864 	uint32_t i_tampers[EXT_TAMP1 * 2] = { };
1865 	int subnode = -FDT_ERR_NOTFOUND;
1866 	TEE_Result res = TEE_SUCCESS;
1867 	int retval = 0;
1868 	int len = 0;
1869 	int i = 0;
1870 
1871 	/* Internal tampers configuration */
1872 	internal_tampers = fdt_getprop(fdt, node, "st,tamp-internal-tampers",
1873 				       &len);
1874 	if (len == -FDT_ERR_NOTFOUND)
1875 		goto skip_int_tamp;
1876 
1877 	if ((internal_tampers && len % (2 * sizeof(uint32_t))) ||
1878 	    !internal_tampers || len / sizeof(uint32_t) > EXT_TAMP1 * 2)
1879 		return TEE_ERROR_BAD_PARAMETERS;
1880 
1881 	retval = fdt_read_uint32_array(fdt, node, "st,tamp-internal-tampers",
1882 				       i_tampers, len / sizeof(uint32_t));
1883 	if (retval && retval != -FDT_ERR_NOTFOUND)
1884 		return TEE_ERROR_BAD_PARAMETERS;
1885 
1886 	len = len / sizeof(uint32_t);
1887 	for (i = 0; i < len; i += 2) {
1888 		uint32_t i_tamper_id = i_tampers[i] - 1;
1889 		uint32_t i_tamper_mode = i_tampers[i + 1];
1890 
1891 		res = stm32_tamp_activate_tamp(i_tamper_id, i_tamper_mode,
1892 					       stm32_tamp_itamper_action);
1893 		if (res)
1894 			return res;
1895 	}
1896 
1897 skip_int_tamp:
1898 	fdt_for_each_subnode(subnode, fdt, node) {
1899 		unsigned int ext_tamp_id = 0;
1900 		unsigned int out_tamp_id = 0;
1901 		const fdt32_t *cuint = 0;
1902 		unsigned int mode = 0;
1903 		int lenp = 0;
1904 
1905 		if (!fdt_getprop(fdt, subnode, "tamper-gpios", NULL) ||
1906 		    fdt_get_status(fdt, subnode) == DT_STATUS_DISABLED)
1907 			continue;
1908 
1909 		cuint = fdt_getprop(fdt, subnode, "st,tamp-mode", NULL);
1910 		if (!cuint)
1911 			return TEE_ERROR_BAD_PARAMETERS;
1912 
1913 		mode = fdt32_to_cpu(*cuint);
1914 
1915 		cuint = fdt_getprop(fdt, subnode, "st,tamp-id", &lenp);
1916 		if (!cuint)
1917 			return TEE_ERROR_BAD_PARAMETERS;
1918 
1919 		ext_tamp_id = fdt32_to_cpu(*cuint);
1920 		if (lenp > (int)sizeof(uint32_t))
1921 			out_tamp_id = fdt32_to_cpu(*(cuint + 1));
1922 
1923 		res = stm32_tamp_configure_pin_from_dt(fdt, subnode,
1924 						       &stm32_tamp_dev->pdata,
1925 						       ext_tamp_id,
1926 						       out_tamp_id);
1927 		if (res)
1928 			return res;
1929 
1930 		res = stm32_tamp_activate_tamp(EXT_TAMP1 + ext_tamp_id - 1,
1931 					       mode, stm32_tamp_etamper_action);
1932 		if (res)
1933 			return res;
1934 	}
1935 
1936 	if (stm32_tamp_set_config())
1937 		panic();
1938 
1939 	/* Enable timestamp for tamper */
1940 	if (stm32_rtc_set_tamper_timestamp())
1941 		panic();
1942 
1943 	return TEE_SUCCESS;
1944 }
1945 
1946 static TEE_Result
1947 stm32_tamp_parse_active_conf(const void *fdt, int node,
1948 			     struct stm32_tamp_platdata *pdata)
1949 {
1950 	const fdt32_t *cuint = NULL;
1951 	uint32_t clk_div = 1;
1952 	uint32_t conf = 0;
1953 
1954 	cuint = fdt_getprop(fdt, node, "st,tamp-active-filter", NULL);
1955 	if (cuint)
1956 		conf |= _TAMP_ATCR1_FLTEN;
1957 
1958 	/*
1959 	 * Here we will select a divisor for the RTCCLK.
1960 	 * Note that RTCCLK is also divided by (RTC_PRER_PREDIV_A - 1).
1961 	 */
1962 	cuint = fdt_getprop(fdt, node, "st,tamp-active-clk-div", NULL);
1963 	if (cuint)
1964 		clk_div = fdt32_to_cpu(*cuint);
1965 
1966 	DMSG("Active conf from dt: %s clk_div=%"PRIu32,
1967 	     (conf & _TAMP_ATCR1_FLTEN) ? "filter" : "no filter", clk_div);
1968 
1969 	switch (clk_div) {
1970 	case 1:
1971 		/* RTCCLK / 32768 (1 Hz when RTCCLK = 32768 Hz): stay 0 */
1972 		break;
1973 	case 2:
1974 		/* RTCCLK / 16384 (2 Hz when RTCCLK = 32768 Hz) */
1975 		conf |= SHIFT_U32(1, _TAMP_ATCR1_ATCKSEL_SHIFT);
1976 		break;
1977 	case 4:
1978 		/* RTCCLK / 8192  (4 Hz when RTCCLK = 32768 Hz) */
1979 		conf |= SHIFT_U32(2, _TAMP_ATCR1_ATCKSEL_SHIFT);
1980 		break;
1981 	case 8:
1982 		/* RTCCLK / 4096  (8 Hz when RTCCLK = 32768 Hz) */
1983 		conf |= SHIFT_U32(3, _TAMP_ATCR1_ATCKSEL_SHIFT);
1984 		break;
1985 	case 16:
1986 		/* RTCCLK / 2048  (16 Hz when RTCCLK = 32768 Hz) */
1987 		conf |= SHIFT_U32(4, _TAMP_ATCR1_ATCKSEL_SHIFT);
1988 		break;
1989 	case 32:
1990 		/* RTCCLK / 1024  (32 Hz when RTCCLK = 32768 Hz) */
1991 		conf |= SHIFT_U32(5, _TAMP_ATCR1_ATCKSEL_SHIFT);
1992 		break;
1993 	case 64:
1994 		/* RTCCLK / 512   (64 Hz when RTCCLK = 32768 Hz) */
1995 		conf |= SHIFT_U32(6, _TAMP_ATCR1_ATCKSEL_SHIFT);
1996 		break;
1997 	case 128:
1998 		/* RTCCLK / 256   (128 Hz when RTCCLK = 32768 Hz) */
1999 		conf |= SHIFT_U32(7, _TAMP_ATCR1_ATCKSEL_SHIFT);
2000 		break;
2001 	case 2048:
2002 		if (pdata->compat &&
2003 		    (pdata->compat->tags & TAMP_SIZE_ATCR1_ATCKSEL_IS_4)) {
2004 			/*
2005 			 * RTCCLK/2048 when (PREDIV_A+1) = 128 and (PREDIV_S+1)
2006 			 * is a multiple of 16.
2007 			 */
2008 			conf |=  SHIFT_U32(11, _TAMP_ATCR1_ATCKSEL_SHIFT);
2009 			break;
2010 		}
2011 
2012 		return TEE_ERROR_BAD_PARAMETERS;
2013 	default:
2014 		return TEE_ERROR_BAD_PARAMETERS;
2015 	}
2016 
2017 	pdata->active_conf = conf;
2018 
2019 	return TEE_SUCCESS;
2020 }
2021 
2022 static TEE_Result stm32_tamp_parse_fdt(const void *fdt, int node,
2023 				       const void *compat)
2024 {
2025 	struct stm32_tamp_platdata *pdata = &stm32_tamp_dev->pdata;
2026 	TEE_Result res = TEE_ERROR_GENERIC;
2027 	size_t reg_size = 0;
2028 
2029 	pdata->compat = (struct stm32_tamp_compat *)compat;
2030 
2031 	if (stm32_tamp_dev->pdata.compat->tags & TAMP_HAS_RIF_SUPPORT) {
2032 		res = stm32_rifsc_check_tdcid(&pdata->is_tdcid);
2033 		if (res)
2034 			return res;
2035 	}
2036 
2037 	if (fdt_reg_info(fdt, node, &pdata->base.pa, &reg_size))
2038 		panic();
2039 
2040 	io_pa_or_va_secure(&pdata->base, reg_size);
2041 	assert(pdata->base.va);
2042 
2043 	res = clk_dt_get_by_index(fdt, node, 0, &pdata->clock);
2044 	if (res)
2045 		return res;
2046 
2047 	res = stm32_tamp_parse_passive_conf(fdt, node, pdata);
2048 	if (res)
2049 		return res;
2050 
2051 	res = stm32_tamp_parse_active_conf(fdt, node, pdata);
2052 	if (res)
2053 		return res;
2054 
2055 	if (fdt_getprop(fdt, node, "wakeup-source", NULL))
2056 		pdata->is_wakeup_source = true;
2057 
2058 	parse_bkpregs_dt_conf(fdt, node);
2059 
2060 	if (pdata->compat->tags & TAMP_HAS_RIF_SUPPORT) {
2061 		const fdt32_t *cuint = NULL;
2062 		unsigned int i = 0;
2063 		int lenp = 0;
2064 
2065 		cuint = fdt_getprop(fdt, node, "st,protreg", &lenp);
2066 		if (!cuint) {
2067 			DMSG("No RIF configuration available");
2068 			return TEE_SUCCESS;
2069 		}
2070 
2071 		pdata->conf_data = calloc(1, sizeof(*pdata->conf_data));
2072 		if (!pdata->conf_data)
2073 			panic();
2074 
2075 		pdata->nb_rif_resources = (unsigned int)(lenp /
2076 							 sizeof(uint32_t));
2077 		assert(pdata->nb_rif_resources <= TAMP_RIF_RESOURCES);
2078 
2079 		pdata->conf_data->cid_confs = calloc(TAMP_RIF_RESOURCES,
2080 						     sizeof(uint32_t));
2081 		pdata->conf_data->sec_conf = calloc(1, sizeof(uint32_t));
2082 		pdata->conf_data->priv_conf = calloc(1, sizeof(uint32_t));
2083 		pdata->conf_data->access_mask = calloc(1, sizeof(uint32_t));
2084 		if (!pdata->conf_data->cid_confs ||
2085 		    !pdata->conf_data->sec_conf ||
2086 		    !pdata->conf_data->priv_conf ||
2087 		    !pdata->conf_data->access_mask)
2088 			panic("Not enough memory capacity for TAMP RIF config");
2089 
2090 		for (i = 0; i < pdata->nb_rif_resources; i++)
2091 			stm32_rif_parse_cfg(fdt32_to_cpu(cuint[i]),
2092 					    pdata->conf_data,
2093 					    TAMP_RIF_RESOURCES);
2094 	}
2095 
2096 	return TEE_SUCCESS;
2097 }
2098 
2099 static TEE_Result stm32_tamp_probe(const void *fdt, int node,
2100 				   const void *compat_data)
2101 {
2102 	size_t it_num = DT_INFO_INVALID_INTERRUPT;
2103 	uint32_t __maybe_unused revision = 0;
2104 	struct itr_chip *chip = NULL;
2105 	TEE_Result res = TEE_SUCCESS;
2106 	vaddr_t base = 0;
2107 
2108 	/* Manage dependency on RNG driver */
2109 	res = dt_driver_get_crypto();
2110 	if (res)
2111 		return res;
2112 
2113 	/* Manage dependency on RTC driver */
2114 	res = stm32_rtc_driver_is_initialized();
2115 	if (res)
2116 		return res;
2117 
2118 	res = interrupt_dt_get_by_index(fdt, node, 0, &chip, &it_num);
2119 	if (res)
2120 		return res;
2121 
2122 	stm32_tamp_dev = calloc(1, sizeof(*stm32_tamp_dev));
2123 	if (!stm32_tamp_dev)
2124 		return TEE_ERROR_OUT_OF_MEMORY;
2125 
2126 	res = stm32_tamp_parse_fdt(fdt, node, compat_data);
2127 	if (res)
2128 		goto err;
2129 
2130 	if (clk_enable(stm32_tamp_dev->pdata.clock))
2131 		panic();
2132 
2133 	base = get_base();
2134 
2135 	stm32_tamp_dev->hwconf1 = io_read32(base + _TAMP_HWCFGR1);
2136 	stm32_tamp_dev->hwconf2 = io_read32(base + _TAMP_HWCFGR2);
2137 
2138 	revision = io_read32(base + _TAMP_VERR);
2139 	FMSG("STM32 TAMPER V%"PRIx32".%"PRIu32,
2140 	     (revision & _TAMP_VERR_MAJREV) >> 4, revision & _TAMP_VERR_MINREV);
2141 
2142 	if (!(stm32_tamp_dev->hwconf2 & _TAMP_HWCFGR2_TZ)) {
2143 		EMSG("TAMP doesn't support TrustZone");
2144 		res = TEE_ERROR_NOT_SUPPORTED;
2145 		goto err_clk;
2146 	}
2147 
2148 	if (stm32_tamp_dev->pdata.compat->tags & TAMP_HAS_RIF_SUPPORT) {
2149 		apply_rif_config();
2150 
2151 		if (stm32_tamp_dev->pdata.is_tdcid) {
2152 			res = stm32_tamp_apply_bkpr_rif_conf();
2153 			if (res)
2154 				goto err_clk;
2155 		}
2156 	} else {
2157 		/*
2158 		 * Enforce secure only access to protected TAMP registers.
2159 		 * Allow non-secure access to monotonic counter.
2160 		 */
2161 		stm32_tamp_set_secure(_TAMP_SECCFGR_TAMPSEC);
2162 
2163 		/*
2164 		 * Enforce privilege only access to TAMP registers, backup
2165 		 * registers and monotonic counter.
2166 		 */
2167 		stm32_tamp_set_privilege(_TAMP_PRIVCFG_TAMPPRIV |
2168 					 _TAMP_PRIVCFG_BKPRWPRIV |
2169 					 _TAMP_PRIVCFG_BKPWPRIV);
2170 	}
2171 
2172 	if (!(stm32_tamp_dev->pdata.compat->tags & TAMP_HAS_RIF_SUPPORT) ||
2173 	    stm32_tamp_dev->pdata.is_tdcid) {
2174 		res = stm32_tamp_set_secure_bkpregs();
2175 		if (res)
2176 			goto err_clk;
2177 	}
2178 
2179 	res = interrupt_create_handler(chip, it_num, stm32_tamp_it_handler,
2180 				       NULL, ITRF_TRIGGER_LEVEL,
2181 				       &stm32_tamp_dev->pdata.itr);
2182 	if (res)
2183 		goto err_clk;
2184 
2185 	if (stm32_tamp_dev->pdata.is_wakeup_source &&
2186 	    interrupt_can_set_wake(chip)) {
2187 		interrupt_set_wake(chip, it_num, true);
2188 		DMSG("Tamper event wakeup capability enabled");
2189 	}
2190 
2191 	res = stm32_configure_tamp(fdt, node);
2192 	if (res)
2193 		goto err_clk;
2194 
2195 	stm32_tamp_set_pins(base, stm32_tamp_dev->pdata.pins_conf);
2196 
2197 	interrupt_enable(chip, it_num);
2198 
2199 	return TEE_SUCCESS;
2200 
2201 err_clk:
2202 	clk_disable(stm32_tamp_dev->pdata.clock);
2203 err:
2204 	if (stm32_tamp_dev->pdata.conf_data) {
2205 		free(stm32_tamp_dev->pdata.conf_data->cid_confs);
2206 		free(stm32_tamp_dev->pdata.conf_data->sec_conf);
2207 		free(stm32_tamp_dev->pdata.conf_data->priv_conf);
2208 		free(stm32_tamp_dev->pdata.conf_data->access_mask);
2209 		free(stm32_tamp_dev->pdata.conf_data);
2210 	}
2211 
2212 	if (stm32_tamp_dev->pdata.itr) {
2213 		interrupt_disable(chip, it_num);
2214 		interrupt_remove_free_handler(stm32_tamp_dev->pdata.itr);
2215 	}
2216 
2217 	free(stm32_tamp_dev->pdata.bkpregs_conf.rif_offsets);
2218 	free(stm32_tamp_dev);
2219 
2220 	return res;
2221 }
2222 
2223 static const struct stm32_tamp_compat mp13_compat = {
2224 	.nb_monotonic_counter = 2,
2225 	.tags = TAMP_HAS_REGISTER_SECCFGR | TAMP_HAS_REGISTER_PRIVCFGR |
2226 		TAMP_HAS_REGISTER_ERCFGR | TAMP_HAS_REGISTER_CR3 |
2227 		TAMP_HAS_REGISTER_ATCR2 | TAMP_HAS_CR2_SECRET_STATUS |
2228 		TAMP_SIZE_ATCR1_ATCKSEL_IS_4,
2229 #if defined(CFG_STM32MP13)
2230 	.int_tamp = int_tamp_mp13,
2231 	.int_tamp_size = ARRAY_SIZE(int_tamp_mp13),
2232 	.ext_tamp = ext_tamp_mp13,
2233 	.ext_tamp_size = ARRAY_SIZE(ext_tamp_mp13),
2234 	.pin_map = pin_map_mp13,
2235 	.pin_map_size = ARRAY_SIZE(pin_map_mp13),
2236 #endif
2237 };
2238 
2239 static const struct stm32_tamp_compat mp15_compat = {
2240 	.nb_monotonic_counter = 1,
2241 	.tags = 0,
2242 #if defined(CFG_STM32MP15)
2243 	.int_tamp = int_tamp_mp15,
2244 	.int_tamp_size = ARRAY_SIZE(int_tamp_mp15),
2245 	.ext_tamp = ext_tamp_mp15,
2246 	.ext_tamp_size = ARRAY_SIZE(ext_tamp_mp15),
2247 	.pin_map = pin_map_mp15,
2248 	.pin_map_size = ARRAY_SIZE(pin_map_mp15),
2249 #endif
2250 };
2251 
2252 static const struct stm32_tamp_compat mp21_compat = {
2253 		.nb_monotonic_counter = 2,
2254 		.tags = TAMP_HAS_REGISTER_SECCFGR |
2255 			TAMP_HAS_REGISTER_PRIVCFGR |
2256 			TAMP_HAS_RIF_SUPPORT |
2257 			TAMP_HAS_REGISTER_ERCFGR |
2258 			TAMP_HAS_REGISTER_CR3 |
2259 			TAMP_HAS_REGISTER_ATCR2 |
2260 			TAMP_HAS_CR2_SECRET_STATUS |
2261 			TAMP_SIZE_ATCR1_ATCKSEL_IS_4,
2262 #if defined(CFG_STM32MP21)
2263 		.int_tamp = int_tamp_mp21,
2264 		.int_tamp_size = ARRAY_SIZE(int_tamp_mp21),
2265 		.ext_tamp = ext_tamp_mp21,
2266 		.ext_tamp_size = ARRAY_SIZE(ext_tamp_mp21),
2267 		.pin_map = pin_map_mp21,
2268 		.pin_map_size = ARRAY_SIZE(pin_map_mp21),
2269 #endif
2270 };
2271 
2272 static const struct stm32_tamp_compat mp25_compat = {
2273 	.nb_monotonic_counter = 2,
2274 	.tags = TAMP_HAS_REGISTER_SECCFGR | TAMP_HAS_REGISTER_PRIVCFGR |
2275 		TAMP_HAS_RIF_SUPPORT | TAMP_HAS_REGISTER_ERCFGR |
2276 		TAMP_HAS_REGISTER_CR3 |	TAMP_HAS_REGISTER_ATCR2 |
2277 		TAMP_HAS_CR2_SECRET_STATUS | TAMP_SIZE_ATCR1_ATCKSEL_IS_4,
2278 #if defined(CFG_STM32MP25)
2279 	.int_tamp = int_tamp_mp25,
2280 	.int_tamp_size = ARRAY_SIZE(int_tamp_mp25),
2281 	.ext_tamp = ext_tamp_mp25,
2282 	.ext_tamp_size = ARRAY_SIZE(ext_tamp_mp25),
2283 	.pin_map = pin_map_mp25,
2284 	.pin_map_size = ARRAY_SIZE(pin_map_mp25),
2285 #endif
2286 };
2287 
2288 static const struct stm32_tamp_compat mp23_compat = {
2289 		.nb_monotonic_counter = 2,
2290 		.tags = TAMP_HAS_REGISTER_SECCFGR |
2291 			TAMP_HAS_REGISTER_PRIVCFGR |
2292 			TAMP_HAS_RIF_SUPPORT |
2293 			TAMP_HAS_REGISTER_ERCFGR |
2294 			TAMP_HAS_REGISTER_CR3 |
2295 			TAMP_HAS_REGISTER_ATCR2 |
2296 			TAMP_HAS_CR2_SECRET_STATUS,
2297 #if defined(CFG_STM32MP23)
2298 		.int_tamp = int_tamp_mp25,
2299 		.int_tamp_size = ARRAY_SIZE(int_tamp_mp25),
2300 		.ext_tamp = ext_tamp_mp23,
2301 		.ext_tamp_size = ARRAY_SIZE(ext_tamp_mp23),
2302 		.pin_map = pin_map_mp25,
2303 		.pin_map_size = ARRAY_SIZE(pin_map_mp25),
2304 #endif
2305 };
2306 
2307 static const struct dt_device_match stm32_tamp_match_table[] = {
2308 	{ .compatible = "st,stm32mp25-tamp", .compat_data = &mp25_compat },
2309 	{ .compatible = "st,stm32mp23-tamp", .compat_data = &mp23_compat },
2310 	{ .compatible = "st,stm32mp21-tamp", .compat_data = &mp21_compat },
2311 	{ .compatible = "st,stm32mp13-tamp", .compat_data = &mp13_compat },
2312 	{ .compatible = "st,stm32-tamp", .compat_data = &mp15_compat },
2313 	{ }
2314 };
2315 
2316 DEFINE_DT_DRIVER(stm32_tamp_dt_driver) = {
2317 	.name = "stm32-tamp",
2318 	.match_table = stm32_tamp_match_table,
2319 	.probe = stm32_tamp_probe,
2320 };
2321