1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (c) 2017-2019, STMicroelectronics 4 * 5 * The driver API is defined in header file stm32_i2c.h. 6 * 7 * I2C bus driver does not register to the PM framework. It is the 8 * responsibility of the bus owner to call the related STM32 I2C driver 9 * API functions when bus suspends or resumes. 10 */ 11 12 #include <arm.h> 13 #include <drivers/clk.h> 14 #include <drivers/clk_dt.h> 15 #include <drivers/stm32_i2c.h> 16 #include <io.h> 17 #include <kernel/delay.h> 18 #include <kernel/dt.h> 19 #include <kernel/boot.h> 20 #include <kernel/panic.h> 21 #include <libfdt.h> 22 #include <stdbool.h> 23 #include <stdlib.h> 24 #include <stm32_util.h> 25 #include <trace.h> 26 27 /* STM32 I2C registers offsets */ 28 #define I2C_CR1 0x00U 29 #define I2C_CR2 0x04U 30 #define I2C_OAR1 0x08U 31 #define I2C_OAR2 0x0CU 32 #define I2C_TIMINGR 0x10U 33 #define I2C_TIMEOUTR 0x14U 34 #define I2C_ISR 0x18U 35 #define I2C_ICR 0x1CU 36 #define I2C_PECR 0x20U 37 #define I2C_RXDR 0x24U 38 #define I2C_TXDR 0x28U 39 #define I2C_SIZE 0x2CU 40 41 /* Bit definition for I2C_CR1 register */ 42 #define I2C_CR1_PE BIT(0) 43 #define I2C_CR1_TXIE BIT(1) 44 #define I2C_CR1_RXIE BIT(2) 45 #define I2C_CR1_ADDRIE BIT(3) 46 #define I2C_CR1_NACKIE BIT(4) 47 #define I2C_CR1_STOPIE BIT(5) 48 #define I2C_CR1_TCIE BIT(6) 49 #define I2C_CR1_ERRIE BIT(7) 50 #define I2C_CR1_DNF GENMASK_32(11, 8) 51 #define I2C_CR1_ANFOFF BIT(12) 52 #define I2C_CR1_SWRST BIT(13) 53 #define I2C_CR1_TXDMAEN BIT(14) 54 #define I2C_CR1_RXDMAEN BIT(15) 55 #define I2C_CR1_SBC BIT(16) 56 #define I2C_CR1_NOSTRETCH BIT(17) 57 #define I2C_CR1_WUPEN BIT(18) 58 #define I2C_CR1_GCEN BIT(19) 59 #define I2C_CR1_SMBHEN BIT(22) 60 #define I2C_CR1_SMBDEN BIT(21) 61 #define I2C_CR1_ALERTEN BIT(22) 62 #define I2C_CR1_PECEN BIT(23) 63 64 /* Bit definition for I2C_CR2 register */ 65 #define I2C_CR2_SADD GENMASK_32(9, 0) 66 #define I2C_CR2_RD_WRN BIT(10) 67 #define I2C_CR2_RD_WRN_OFFSET 10U 68 #define I2C_CR2_ADD10 BIT(11) 69 #define I2C_CR2_HEAD10R BIT(12) 70 #define I2C_CR2_START BIT(13) 71 #define I2C_CR2_STOP BIT(14) 72 #define I2C_CR2_NACK BIT(15) 73 #define I2C_CR2_NBYTES GENMASK_32(23, 16) 74 #define I2C_CR2_NBYTES_OFFSET 16U 75 #define I2C_CR2_RELOAD BIT(24) 76 #define I2C_CR2_AUTOEND BIT(25) 77 #define I2C_CR2_PECBYTE BIT(26) 78 79 /* Bit definition for I2C_OAR1 register */ 80 #define I2C_OAR1_OA1 GENMASK_32(9, 0) 81 #define I2C_OAR1_OA1MODE BIT(10) 82 #define I2C_OAR1_OA1EN BIT(15) 83 84 /* Bit definition for I2C_OAR2 register */ 85 #define I2C_OAR2_OA2 GENMASK_32(7, 1) 86 #define I2C_OAR2_OA2MSK GENMASK_32(10, 8) 87 #define I2C_OAR2_OA2NOMASK 0 88 #define I2C_OAR2_OA2MASK01 BIT(8) 89 #define I2C_OAR2_OA2MASK02 BIT(9) 90 #define I2C_OAR2_OA2MASK03 GENMASK_32(9, 8) 91 #define I2C_OAR2_OA2MASK04 BIT(10) 92 #define I2C_OAR2_OA2MASK05 (BIT(8) | BIT(10)) 93 #define I2C_OAR2_OA2MASK06 (BIT(9) | BIT(10)) 94 #define I2C_OAR2_OA2MASK07 GENMASK_32(10, 8) 95 #define I2C_OAR2_OA2EN BIT(15) 96 97 /* Bit definition for I2C_TIMINGR register */ 98 #define I2C_TIMINGR_SCLL GENMASK_32(7, 0) 99 #define I2C_TIMINGR_SCLH GENMASK_32(15, 8) 100 #define I2C_TIMINGR_SDADEL GENMASK_32(19, 16) 101 #define I2C_TIMINGR_SCLDEL GENMASK_32(23, 20) 102 #define I2C_TIMINGR_PRESC GENMASK_32(31, 28) 103 #define I2C_TIMINGR_SCLL_MAX (I2C_TIMINGR_SCLL + 1) 104 #define I2C_TIMINGR_SCLH_MAX ((I2C_TIMINGR_SCLH >> 8) + 1) 105 #define I2C_TIMINGR_SDADEL_MAX ((I2C_TIMINGR_SDADEL >> 16) + 1) 106 #define I2C_TIMINGR_SCLDEL_MAX ((I2C_TIMINGR_SCLDEL >> 20) + 1) 107 #define I2C_TIMINGR_PRESC_MAX ((I2C_TIMINGR_PRESC >> 28) + 1) 108 #define I2C_SET_TIMINGR_SCLL(n) ((n) & \ 109 (I2C_TIMINGR_SCLL_MAX - 1)) 110 #define I2C_SET_TIMINGR_SCLH(n) (((n) & \ 111 (I2C_TIMINGR_SCLH_MAX - 1)) << 8) 112 #define I2C_SET_TIMINGR_SDADEL(n) (((n) & \ 113 (I2C_TIMINGR_SDADEL_MAX - 1)) << 16) 114 #define I2C_SET_TIMINGR_SCLDEL(n) (((n) & \ 115 (I2C_TIMINGR_SCLDEL_MAX - 1)) << 20) 116 #define I2C_SET_TIMINGR_PRESC(n) (((n) & \ 117 (I2C_TIMINGR_PRESC_MAX - 1)) << 28) 118 119 /* Bit definition for I2C_TIMEOUTR register */ 120 #define I2C_TIMEOUTR_TIMEOUTA GENMASK_32(11, 0) 121 #define I2C_TIMEOUTR_TIDLE BIT(12) 122 #define I2C_TIMEOUTR_TIMOUTEN BIT(15) 123 #define I2C_TIMEOUTR_TIMEOUTB GENMASK_32(27, 16) 124 #define I2C_TIMEOUTR_TEXTEN BIT(31) 125 126 /* Bit definition for I2C_ISR register */ 127 #define I2C_ISR_TXE BIT(0) 128 #define I2C_ISR_TXIS BIT(1) 129 #define I2C_ISR_RXNE BIT(2) 130 #define I2C_ISR_ADDR BIT(3) 131 #define I2C_ISR_NACKF BIT(4) 132 #define I2C_ISR_STOPF BIT(5) 133 #define I2C_ISR_TC BIT(6) 134 #define I2C_ISR_TCR BIT(7) 135 #define I2C_ISR_BERR BIT(8) 136 #define I2C_ISR_ARLO BIT(9) 137 #define I2C_ISR_OVR BIT(10) 138 #define I2C_ISR_PECERR BIT(11) 139 #define I2C_ISR_TIMEOUT BIT(12) 140 #define I2C_ISR_ALERT BIT(13) 141 #define I2C_ISR_BUSY BIT(15) 142 #define I2C_ISR_DIR BIT(16) 143 #define I2C_ISR_ADDCODE GENMASK_32(23, 17) 144 145 /* Bit definition for I2C_ICR register */ 146 #define I2C_ICR_ADDRCF BIT(3) 147 #define I2C_ICR_NACKCF BIT(4) 148 #define I2C_ICR_STOPCF BIT(5) 149 #define I2C_ICR_BERRCF BIT(8) 150 #define I2C_ICR_ARLOCF BIT(9) 151 #define I2C_ICR_OVRCF BIT(10) 152 #define I2C_ICR_PECCF BIT(11) 153 #define I2C_ICR_TIMOUTCF BIT(12) 154 #define I2C_ICR_ALERTCF BIT(13) 155 156 /* Max data size for a single I2C transfer */ 157 #define MAX_NBYTE_SIZE 255U 158 159 #define I2C_NSEC_PER_SEC 1000000000UL 160 #define I2C_TIMEOUT_BUSY_MS 25 161 #define I2C_TIMEOUT_BUSY_US (I2C_TIMEOUT_BUSY_MS * 1000) 162 163 #define CR2_RESET_MASK (I2C_CR2_SADD | I2C_CR2_HEAD10R | \ 164 I2C_CR2_NBYTES | I2C_CR2_RELOAD | \ 165 I2C_CR2_RD_WRN) 166 167 #define TIMINGR_CLEAR_MASK (I2C_TIMINGR_SCLL | I2C_TIMINGR_SCLH | \ 168 I2C_TIMINGR_SDADEL | \ 169 I2C_TIMINGR_SCLDEL | I2C_TIMINGR_PRESC) 170 171 /* 172 * I2C transfer modes 173 * I2C_RELOAD: Enable Reload mode 174 * I2C_AUTOEND_MODE: Enable automatic end mode 175 * I2C_SOFTEND_MODE: Enable software end mode 176 */ 177 #define I2C_RELOAD_MODE I2C_CR2_RELOAD 178 #define I2C_AUTOEND_MODE I2C_CR2_AUTOEND 179 #define I2C_SOFTEND_MODE 0x0 180 181 /* 182 * Start/restart/stop I2C transfer requests. 183 * 184 * I2C_NO_STARTSTOP: Don't Generate stop and start condition 185 * I2C_GENERATE_STOP: Generate stop condition (size should be set to 0) 186 * I2C_GENERATE_START_READ: Generate Restart for read request. 187 * I2C_GENERATE_START_WRITE: Generate Restart for write request 188 */ 189 #define I2C_NO_STARTSTOP 0x0 190 #define I2C_GENERATE_STOP (BIT(31) | I2C_CR2_STOP) 191 #define I2C_GENERATE_START_READ (BIT(31) | I2C_CR2_START | \ 192 I2C_CR2_RD_WRN) 193 #define I2C_GENERATE_START_WRITE (BIT(31) | I2C_CR2_START) 194 195 /* Memory address byte sizes */ 196 #define I2C_MEMADD_SIZE_8BIT 1 197 #define I2C_MEMADD_SIZE_16BIT 2 198 199 /* Effective rate cannot be lower than 80% target rate */ 200 #define RATE_MIN(rate) (((rate) * 80U) / 100U) 201 202 /* 203 * struct i2c_spec_s - Private I2C timing specifications. 204 * @rate: I2C bus speed (Hz) 205 * @fall_max: Max fall time of both SDA and SCL signals (ns) 206 * @rise_max: Max rise time of both SDA and SCL signals (ns) 207 * @hddat_min: Min data hold time (ns) 208 * @vddat_max: Max data valid time (ns) 209 * @sudat_min: Min data setup time (ns) 210 * @l_min: Min low period of the SCL clock (ns) 211 * @h_min: Min high period of the SCL clock (ns) 212 */ 213 struct i2c_spec_s { 214 uint32_t rate; 215 uint32_t fall_max; 216 uint32_t rise_max; 217 uint32_t hddat_min; 218 uint32_t vddat_max; 219 uint32_t sudat_min; 220 uint32_t l_min; 221 uint32_t h_min; 222 }; 223 224 /* 225 * struct i2c_timing_s - Private I2C output parameters. 226 * @scldel: Data setup time 227 * @sdadel: Data hold time 228 * @sclh: SCL high period (master mode) 229 * @sclh: SCL low period (master mode) 230 * @is_saved: True if relating to a configuration candidate 231 */ 232 struct i2c_timing_s { 233 uint8_t scldel; 234 uint8_t sdadel; 235 uint8_t sclh; 236 uint8_t scll; 237 bool is_saved; 238 }; 239 240 /* This table must be sorted in increasing value for field @rate */ 241 static const struct i2c_spec_s i2c_specs[] = { 242 /* Standard - 100KHz */ 243 { 244 .rate = I2C_STANDARD_RATE, 245 .fall_max = 300, 246 .rise_max = 1000, 247 .hddat_min = 0, 248 .vddat_max = 3450, 249 .sudat_min = 250, 250 .l_min = 4700, 251 .h_min = 4000, 252 }, 253 /* Fast - 400KHz */ 254 { 255 .rate = I2C_FAST_RATE, 256 .fall_max = 300, 257 .rise_max = 300, 258 .hddat_min = 0, 259 .vddat_max = 900, 260 .sudat_min = 100, 261 .l_min = 1300, 262 .h_min = 600, 263 }, 264 /* FastPlus - 1MHz */ 265 { 266 .rate = I2C_FAST_PLUS_RATE, 267 .fall_max = 100, 268 .rise_max = 120, 269 .hddat_min = 0, 270 .vddat_max = 450, 271 .sudat_min = 50, 272 .l_min = 500, 273 .h_min = 260, 274 }, 275 }; 276 277 /* 278 * I2C request parameters 279 * @dev_addr: I2C address of the target device 280 * @mode: Communication mode, one of I2C_MODE_(MASTER|MEM) 281 * @mem_addr: Target memory cell accessed in device (memory mode) 282 * @mem_addr_size: Byte size of the memory cell address (memory mode) 283 * @timeout_ms: Timeout in millisenconds for the request 284 */ 285 struct i2c_request { 286 uint32_t dev_addr; 287 enum i2c_mode_e mode; 288 uint32_t mem_addr; 289 uint32_t mem_addr_size; 290 unsigned int timeout_ms; 291 }; 292 293 static vaddr_t get_base(struct i2c_handle_s *hi2c) 294 { 295 return io_pa_or_va_secure(&hi2c->base, hi2c->reg_size); 296 } 297 298 static void notif_i2c_timeout(struct i2c_handle_s *hi2c) 299 { 300 hi2c->i2c_err |= I2C_ERROR_TIMEOUT; 301 hi2c->i2c_state = I2C_STATE_READY; 302 } 303 304 static const struct i2c_spec_s *get_specs(uint32_t rate) 305 { 306 size_t i = 0; 307 308 for (i = 0; i < ARRAY_SIZE(i2c_specs); i++) 309 if (rate <= i2c_specs[i].rate) 310 return i2c_specs + i; 311 312 return NULL; 313 } 314 315 static void save_cfg(struct i2c_handle_s *hi2c, struct i2c_cfg *cfg) 316 { 317 vaddr_t base = get_base(hi2c); 318 319 clk_enable(hi2c->clock); 320 321 cfg->cr1 = io_read32(base + I2C_CR1); 322 cfg->cr2 = io_read32(base + I2C_CR2); 323 cfg->oar1 = io_read32(base + I2C_OAR1); 324 cfg->oar2 = io_read32(base + I2C_OAR2); 325 cfg->timingr = io_read32(base + I2C_TIMINGR); 326 327 clk_disable(hi2c->clock); 328 } 329 330 static void restore_cfg(struct i2c_handle_s *hi2c, struct i2c_cfg *cfg) 331 { 332 vaddr_t base = get_base(hi2c); 333 334 clk_enable(hi2c->clock); 335 336 io_clrbits32(base + I2C_CR1, I2C_CR1_PE); 337 io_write32(base + I2C_TIMINGR, cfg->timingr & TIMINGR_CLEAR_MASK); 338 io_write32(base + I2C_OAR1, cfg->oar1); 339 io_write32(base + I2C_CR2, cfg->cr2); 340 io_write32(base + I2C_OAR2, cfg->oar2); 341 io_write32(base + I2C_CR1, cfg->cr1 & ~I2C_CR1_PE); 342 io_setbits32(base + I2C_CR1, cfg->cr1 & I2C_CR1_PE); 343 344 clk_disable(hi2c->clock); 345 } 346 347 static void __maybe_unused dump_cfg(struct i2c_cfg *cfg __maybe_unused) 348 { 349 DMSG("CR1: %#"PRIx32, cfg->cr1); 350 DMSG("CR2: %#"PRIx32, cfg->cr2); 351 DMSG("OAR1: %#"PRIx32, cfg->oar1); 352 DMSG("OAR2: %#"PRIx32, cfg->oar2); 353 DMSG("TIM: %#"PRIx32, cfg->timingr); 354 } 355 356 static void __maybe_unused dump_i2c(struct i2c_handle_s *hi2c) 357 { 358 vaddr_t __maybe_unused base = get_base(hi2c); 359 360 clk_enable(hi2c->clock); 361 362 DMSG("CR1: %#"PRIx32, io_read32(base + I2C_CR1)); 363 DMSG("CR2: %#"PRIx32, io_read32(base + I2C_CR2)); 364 DMSG("OAR1: %#"PRIx32, io_read32(base + I2C_OAR1)); 365 DMSG("OAR2: %#"PRIx32, io_read32(base + I2C_OAR2)); 366 DMSG("TIM: %#"PRIx32, io_read32(base + I2C_TIMINGR)); 367 368 clk_disable(hi2c->clock); 369 } 370 371 /* 372 * Compute the I2C device timings 373 * 374 * @init: Ref to the initialization configuration structure 375 * @clock_src: I2C clock source frequency (Hz) 376 * @timing: Pointer to the final computed timing result 377 * Return 0 on success or a negative value 378 */ 379 static int i2c_compute_timing(struct stm32_i2c_init_s *init, 380 unsigned long clock_src, uint32_t *timing) 381 { 382 const struct i2c_spec_s *specs = NULL; 383 uint32_t speed_freq = 0; 384 uint32_t i2cbus = UDIV_ROUND_NEAREST(I2C_NSEC_PER_SEC, speed_freq); 385 uint32_t i2cclk = UDIV_ROUND_NEAREST(I2C_NSEC_PER_SEC, clock_src); 386 uint32_t p_prev = I2C_TIMINGR_PRESC_MAX; 387 uint32_t af_delay_min = 0; 388 uint32_t af_delay_max = 0; 389 uint32_t dnf_delay = 0; 390 uint32_t tsync = 0; 391 uint32_t clk_min = 0; 392 uint32_t clk_max = 0; 393 int clk_error_prev = 0; 394 uint16_t p = 0; 395 uint16_t l = 0; 396 uint16_t a = 0; 397 uint16_t h = 0; 398 unsigned int sdadel_min = 0; 399 unsigned int sdadel_max = 0; 400 unsigned int scldel_min = 0; 401 unsigned int delay = 0; 402 int s = -1; 403 struct i2c_timing_s solutions[I2C_TIMINGR_PRESC_MAX] = { 0 }; 404 405 specs = get_specs(init->bus_rate); 406 if (!specs) { 407 DMSG("I2C speed out of bound: %"PRId32"Hz", init->bus_rate); 408 return -1; 409 } 410 411 speed_freq = specs->rate; 412 i2cbus = UDIV_ROUND_NEAREST(I2C_NSEC_PER_SEC, speed_freq); 413 clk_error_prev = INT_MAX; 414 415 if (init->rise_time > specs->rise_max || 416 init->fall_time > specs->fall_max) { 417 DMSG("I2C rise{%"PRId32">%"PRId32"}/fall{%"PRId32">%"PRId32"}", 418 init->rise_time, specs->rise_max, 419 init->fall_time, specs->fall_max); 420 return -1; 421 } 422 423 if (init->digital_filter_coef > STM32_I2C_DIGITAL_FILTER_MAX) { 424 DMSG("DNF out of bound %"PRId8"/%d", 425 init->digital_filter_coef, STM32_I2C_DIGITAL_FILTER_MAX); 426 return -1; 427 } 428 429 /* Analog and Digital Filters */ 430 if (init->analog_filter) { 431 af_delay_min = STM32_I2C_ANALOG_FILTER_DELAY_MIN; 432 af_delay_max = STM32_I2C_ANALOG_FILTER_DELAY_MAX; 433 } 434 dnf_delay = init->digital_filter_coef * i2cclk; 435 436 sdadel_min = specs->hddat_min + init->fall_time; 437 delay = af_delay_min - ((init->digital_filter_coef + 3) * i2cclk); 438 if (SUB_OVERFLOW(sdadel_min, delay, &sdadel_min)) 439 sdadel_min = 0; 440 441 sdadel_max = specs->vddat_max - init->rise_time; 442 delay = af_delay_max - ((init->digital_filter_coef + 4) * i2cclk); 443 if (SUB_OVERFLOW(sdadel_max, delay, &sdadel_max)) 444 sdadel_max = 0; 445 446 scldel_min = init->rise_time + specs->sudat_min; 447 448 DMSG("I2C SDADEL(min/max): %u/%u, SCLDEL(Min): %u", 449 sdadel_min, sdadel_max, scldel_min); 450 451 /* Compute possible values for PRESC, SCLDEL and SDADEL */ 452 for (p = 0; p < I2C_TIMINGR_PRESC_MAX; p++) { 453 for (l = 0; l < I2C_TIMINGR_SCLDEL_MAX; l++) { 454 uint32_t scldel = (l + 1) * (p + 1) * i2cclk; 455 456 if (scldel < scldel_min) 457 continue; 458 459 for (a = 0; a < I2C_TIMINGR_SDADEL_MAX; a++) { 460 uint32_t sdadel = (a * (p + 1) + 1) * i2cclk; 461 462 if ((sdadel >= sdadel_min) && 463 (sdadel <= sdadel_max) && 464 (p != p_prev)) { 465 solutions[p].scldel = l; 466 solutions[p].sdadel = a; 467 solutions[p].is_saved = true; 468 p_prev = p; 469 break; 470 } 471 } 472 473 if (p_prev == p) 474 break; 475 } 476 } 477 478 if (p_prev == I2C_TIMINGR_PRESC_MAX) { 479 DMSG("I2C no Prescaler solution"); 480 return -1; 481 } 482 483 tsync = af_delay_min + dnf_delay + (2 * i2cclk); 484 clk_max = I2C_NSEC_PER_SEC / RATE_MIN(specs->rate); 485 clk_min = I2C_NSEC_PER_SEC / specs->rate; 486 487 /* 488 * Among prescaler possibilities discovered above figures out SCL Low 489 * and High Period. Provided: 490 * - SCL Low Period has to be higher than Low Period of the SCL Clock 491 * defined by I2C Specification. I2C Clock has to be lower than 492 * (SCL Low Period - Analog/Digital filters) / 4. 493 * - SCL High Period has to be lower than High Period of the SCL Clock 494 * defined by I2C Specification. 495 * - I2C Clock has to be lower than SCL High Period. 496 */ 497 for (p = 0; p < I2C_TIMINGR_PRESC_MAX; p++) { 498 uint32_t prescaler = (p + 1) * i2cclk; 499 500 if (!solutions[p].is_saved) 501 continue; 502 503 for (l = 0; l < I2C_TIMINGR_SCLL_MAX; l++) { 504 uint32_t tscl_l = ((l + 1) * prescaler) + tsync; 505 506 if (tscl_l < specs->l_min || 507 i2cclk >= ((tscl_l - af_delay_min - dnf_delay) / 4)) 508 continue; 509 510 for (h = 0; h < I2C_TIMINGR_SCLH_MAX; h++) { 511 uint32_t tscl_h = ((h + 1) * prescaler) + tsync; 512 uint32_t tscl = tscl_l + tscl_h + 513 init->rise_time + 514 init->fall_time; 515 516 if (tscl >= clk_min && tscl <= clk_max && 517 tscl_h >= specs->h_min && i2cclk < tscl_h) { 518 int clk_error = tscl - i2cbus; 519 520 if (clk_error < 0) 521 clk_error = -clk_error; 522 523 if (clk_error < clk_error_prev) { 524 clk_error_prev = clk_error; 525 solutions[p].scll = l; 526 solutions[p].sclh = h; 527 s = p; 528 } 529 } 530 } 531 } 532 } 533 534 if (s < 0) { 535 DMSG("I2C no solution at all"); 536 return -1; 537 } 538 539 /* Finalize timing settings */ 540 *timing = I2C_SET_TIMINGR_PRESC(s) | 541 I2C_SET_TIMINGR_SCLDEL(solutions[s].scldel) | 542 I2C_SET_TIMINGR_SDADEL(solutions[s].sdadel) | 543 I2C_SET_TIMINGR_SCLH(solutions[s].sclh) | 544 I2C_SET_TIMINGR_SCLL(solutions[s].scll); 545 546 DMSG("I2C TIMINGR (PRESC/SCLDEL/SDADEL): %i/%"PRIu8"/%"PRIu8, 547 s, solutions[s].scldel, solutions[s].sdadel); 548 DMSG("I2C TIMINGR (SCLH/SCLL): %"PRIu8"/%"PRIu8, 549 solutions[s].sclh, solutions[s].scll); 550 DMSG("I2C TIMINGR: 0x%"PRIx32, *timing); 551 552 return 0; 553 } 554 555 /* i2c_specs[] must be sorted by increasing rate */ 556 static bool __maybe_unused i2c_specs_is_consistent(void) 557 { 558 size_t i = 0; 559 560 COMPILE_TIME_ASSERT(ARRAY_SIZE(i2c_specs)); 561 562 for (i = 1; i < ARRAY_SIZE(i2c_specs); i++) 563 if (i2c_specs[i - 1].rate >= i2c_specs[i].rate) 564 return false; 565 566 return true; 567 } 568 569 /* 570 * @brief From requested rate, get the closest I2C rate without exceeding it, 571 * within I2C specification values defined in @i2c_specs. 572 * @param rate: The requested rate. 573 * @retval Found rate, else the lowest value supported by platform. 574 */ 575 static uint32_t get_lower_rate(uint32_t rate) 576 { 577 size_t i = 0; 578 579 for (i = ARRAY_SIZE(i2c_specs); i > 0; i--) 580 if (rate > i2c_specs[i - 1].rate) 581 return i2c_specs[i - 1].rate; 582 583 return i2c_specs[0].rate; 584 } 585 586 /* 587 * Setup the I2C device timings 588 * 589 * @hi2c: I2C handle structure 590 * @init: Ref to the initialization configuration structure 591 * @timing: Output TIMINGR register configuration value 592 * @retval 0 if OK, negative value else 593 */ 594 static int i2c_setup_timing(struct i2c_handle_s *hi2c, 595 struct stm32_i2c_init_s *init, 596 uint32_t *timing) 597 { 598 int rc = 0; 599 unsigned long clock_src = 0; 600 601 assert(i2c_specs_is_consistent()); 602 603 clock_src = clk_get_rate(hi2c->clock); 604 if (!clock_src) { 605 DMSG("Null I2C clock rate"); 606 return -1; 607 } 608 609 /* 610 * If the timing has already been computed, and the frequency is the 611 * same as when it was computed, then use the saved timing. 612 */ 613 if (clock_src == hi2c->saved_frequency) { 614 *timing = hi2c->saved_timing; 615 return 0; 616 } 617 618 do { 619 rc = i2c_compute_timing(init, clock_src, timing); 620 if (rc) { 621 DMSG("Failed to compute I2C timings"); 622 if (init->bus_rate > I2C_STANDARD_RATE) { 623 init->bus_rate = get_lower_rate(init->bus_rate); 624 IMSG("Downgrade I2C speed to %"PRIu32"Hz)", 625 init->bus_rate); 626 } else { 627 break; 628 } 629 } 630 } while (rc); 631 632 if (rc) { 633 DMSG("Impossible to compute I2C timings"); 634 return rc; 635 } 636 637 DMSG("I2C Freq(%"PRIu32"Hz), Clk Source(%lu)", 638 init->bus_rate, clock_src); 639 DMSG("I2C Rise(%"PRId32") and Fall(%"PRId32") Time", 640 init->rise_time, init->fall_time); 641 DMSG("I2C Analog Filter(%s), DNF(%"PRIu8")", 642 init->analog_filter ? "On" : "Off", init->digital_filter_coef); 643 644 hi2c->saved_timing = *timing; 645 hi2c->saved_frequency = clock_src; 646 647 return 0; 648 } 649 650 /* 651 * Configure I2C Analog noise filter. 652 * @hi2c: I2C handle structure 653 * @analog_filter_on: True if enabling analog filter, false otherwise 654 * Return 0 on success or a negative value 655 */ 656 static int i2c_config_analog_filter(struct i2c_handle_s *hi2c, 657 bool analog_filter_on) 658 { 659 vaddr_t base = get_base(hi2c); 660 661 if (hi2c->i2c_state != I2C_STATE_READY) 662 return -1; 663 664 hi2c->i2c_state = I2C_STATE_BUSY; 665 666 /* Disable the selected I2C peripheral */ 667 io_clrbits32(base + I2C_CR1, I2C_CR1_PE); 668 669 /* Reset I2Cx ANOFF bit */ 670 io_clrbits32(base + I2C_CR1, I2C_CR1_ANFOFF); 671 672 /* Set analog filter bit if filter is disabled */ 673 if (!analog_filter_on) 674 io_setbits32(base + I2C_CR1, I2C_CR1_ANFOFF); 675 676 /* Enable the selected I2C peripheral */ 677 io_setbits32(base + I2C_CR1, I2C_CR1_PE); 678 679 hi2c->i2c_state = I2C_STATE_READY; 680 681 return 0; 682 } 683 684 TEE_Result stm32_i2c_get_setup_from_fdt(void *fdt, int node, 685 struct stm32_i2c_init_s *init, 686 struct stm32_pinctrl **pinctrl, 687 size_t *pinctrl_count) 688 { 689 TEE_Result res = TEE_ERROR_GENERIC; 690 const fdt32_t *cuint = NULL; 691 struct dt_node_info info = { .status = 0 }; 692 int count = 0; 693 694 /* Default STM32 specific configs caller may need to overwrite */ 695 memset(init, 0, sizeof(*init)); 696 697 _fdt_fill_device_info(fdt, &info, node); 698 assert(info.reg != DT_INFO_INVALID_REG && 699 info.reg_size != DT_INFO_INVALID_REG_SIZE); 700 701 init->dt_status = info.status; 702 init->pbase = info.reg; 703 init->reg_size = info.reg_size; 704 705 res = clk_dt_get_by_index(fdt, node, 0, &init->clock); 706 if (res) 707 return res; 708 709 cuint = fdt_getprop(fdt, node, "i2c-scl-rising-time-ns", NULL); 710 if (cuint) 711 init->rise_time = fdt32_to_cpu(*cuint); 712 else 713 init->rise_time = STM32_I2C_RISE_TIME_DEFAULT; 714 715 cuint = fdt_getprop(fdt, node, "i2c-scl-falling-time-ns", NULL); 716 if (cuint) 717 init->fall_time = fdt32_to_cpu(*cuint); 718 else 719 init->fall_time = STM32_I2C_FALL_TIME_DEFAULT; 720 721 cuint = fdt_getprop(fdt, node, "clock-frequency", NULL); 722 if (cuint) { 723 init->bus_rate = fdt32_to_cpu(*cuint); 724 725 if (init->bus_rate > I2C_FAST_PLUS_RATE) { 726 DMSG("Invalid bus speed (%"PRIu32" > %i)", 727 init->bus_rate, I2C_FAST_PLUS_RATE); 728 return TEE_ERROR_GENERIC; 729 } 730 } else { 731 init->bus_rate = I2C_STANDARD_RATE; 732 } 733 734 count = stm32_pinctrl_fdt_get_pinctrl(fdt, node, NULL, 0); 735 if (count <= 0) { 736 *pinctrl = NULL; 737 *pinctrl_count = count; 738 DMSG("Failed to get pinctrl: FDT errno %d", count); 739 return TEE_ERROR_GENERIC; 740 } 741 742 if (count > 2) { 743 DMSG("Too many PINCTRLs found: %zd", count); 744 return TEE_ERROR_GENERIC; 745 } 746 747 *pinctrl = calloc(count, sizeof(**pinctrl)); 748 if (!*pinctrl) 749 return TEE_ERROR_OUT_OF_MEMORY; 750 751 *pinctrl_count = stm32_pinctrl_fdt_get_pinctrl(fdt, node, 752 *pinctrl, count); 753 assert(*pinctrl_count == (unsigned int)count); 754 755 return TEE_SUCCESS; 756 } 757 758 int stm32_i2c_init(struct i2c_handle_s *hi2c, 759 struct stm32_i2c_init_s *init_data) 760 { 761 int rc = 0; 762 uint32_t timing = 0; 763 vaddr_t base = 0; 764 uint32_t val = 0; 765 766 hi2c->dt_status = init_data->dt_status; 767 hi2c->base.pa = init_data->pbase; 768 hi2c->reg_size = init_data->reg_size; 769 hi2c->clock = init_data->clock; 770 771 rc = i2c_setup_timing(hi2c, init_data, &timing); 772 if (rc) 773 return rc; 774 775 clk_enable(hi2c->clock); 776 777 base = get_base(hi2c); 778 hi2c->i2c_state = I2C_STATE_BUSY; 779 780 /* Disable the selected I2C peripheral */ 781 io_clrbits32(base + I2C_CR1, I2C_CR1_PE); 782 783 /* Configure I2Cx: Frequency range */ 784 io_write32(base + I2C_TIMINGR, timing & TIMINGR_CLEAR_MASK); 785 786 /* Disable Own Address1 before set the Own Address1 configuration */ 787 io_write32(base + I2C_OAR1, 0); 788 789 /* Configure I2Cx: Own Address1 and ack own address1 mode */ 790 if (init_data->addr_mode_10b_not_7b) 791 io_write32(base + I2C_OAR1, 792 I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE | 793 init_data->own_address1); 794 else 795 io_write32(base + I2C_OAR1, 796 I2C_OAR1_OA1EN | init_data->own_address1); 797 798 /* Configure I2Cx: Addressing Master mode */ 799 io_write32(base + I2C_CR2, 0); 800 if (init_data->addr_mode_10b_not_7b) 801 io_setbits32(base + I2C_CR2, I2C_CR2_ADD10); 802 803 /* 804 * Enable the AUTOEND by default, and enable NACK 805 * (should be disabled only during Slave process). 806 */ 807 io_setbits32(base + I2C_CR2, I2C_CR2_AUTOEND | I2C_CR2_NACK); 808 809 /* Disable Own Address2 before set the Own Address2 configuration */ 810 io_write32(base + I2C_OAR2, 0); 811 812 /* Configure I2Cx: Dual mode and Own Address2 */ 813 if (init_data->dual_address_mode) 814 io_write32(base + I2C_OAR2, 815 I2C_OAR2_OA2EN | init_data->own_address2 | 816 (init_data->own_address2_masks << 8)); 817 818 /* Configure I2Cx: Generalcall and NoStretch mode */ 819 val = 0; 820 if (init_data->general_call_mode) 821 val |= I2C_CR1_GCEN; 822 if (init_data->no_stretch_mode) 823 val |= I2C_CR1_NOSTRETCH; 824 io_write32(base + I2C_CR1, val); 825 826 /* Enable the selected I2C peripheral */ 827 io_setbits32(base + I2C_CR1, I2C_CR1_PE); 828 829 hi2c->i2c_err = I2C_ERROR_NONE; 830 hi2c->i2c_state = I2C_STATE_READY; 831 832 rc = i2c_config_analog_filter(hi2c, init_data->analog_filter); 833 if (rc) 834 DMSG("I2C analog filter error %d", rc); 835 836 clk_disable(hi2c->clock); 837 838 return rc; 839 } 840 841 /* I2C transmit (TX) data register flush sequence */ 842 static void i2c_flush_txdr(struct i2c_handle_s *hi2c) 843 { 844 vaddr_t base = get_base(hi2c); 845 846 /* 847 * If a pending TXIS flag is set, 848 * write a dummy data in TXDR to clear it. 849 */ 850 if (io_read32(base + I2C_ISR) & I2C_ISR_TXIS) 851 io_write32(base + I2C_TXDR, 0); 852 853 /* Flush TX register if not empty */ 854 if ((io_read32(base + I2C_ISR) & I2C_ISR_TXE) == 0) 855 io_setbits32(base + I2C_ISR, I2C_ISR_TXE); 856 } 857 858 /* 859 * Wait for a single target I2C_ISR bit to reach an awaited value (0 or 1) 860 * 861 * @hi2c: I2C handle structure 862 * @bit_mask: Bit mask for the target single bit position to consider 863 * @awaited_value: Awaited value of the target bit in I2C_ISR, 0 or 1 864 * @timeout_ref: Expriation timeout reference 865 * Return 0 on success and a non-zero value on timeout 866 */ 867 static int wait_isr_event(struct i2c_handle_s *hi2c, uint32_t bit_mask, 868 unsigned int awaited_value, uint64_t timeout_ref) 869 { 870 vaddr_t isr = get_base(hi2c) + I2C_ISR; 871 872 assert(IS_POWER_OF_TWO(bit_mask) && !(awaited_value & ~1U)); 873 874 /* May timeout while TEE thread is suspended */ 875 while (!timeout_elapsed(timeout_ref)) 876 if (!!(io_read32(isr) & bit_mask) == awaited_value) 877 break; 878 879 if (!!(io_read32(isr) & bit_mask) == awaited_value) 880 return 0; 881 882 notif_i2c_timeout(hi2c); 883 return -1; 884 } 885 886 /* Handle Acknowledge-Failed sequence detection during an I2C Communication */ 887 static int i2c_ack_failed(struct i2c_handle_s *hi2c, uint64_t timeout_ref) 888 { 889 vaddr_t base = get_base(hi2c); 890 891 if ((io_read32(base + I2C_ISR) & I2C_ISR_NACKF) == 0U) 892 return 0; 893 894 /* 895 * Wait until STOP Flag is reset. Use polling method. 896 * AutoEnd should be initiate after AF. 897 * Timeout may elpased while TEE thread is suspended. 898 */ 899 while (!timeout_elapsed(timeout_ref)) 900 if (io_read32(base + I2C_ISR) & I2C_ISR_STOPF) 901 break; 902 903 if ((io_read32(base + I2C_ISR) & I2C_ISR_STOPF) == 0) { 904 notif_i2c_timeout(hi2c); 905 return -1; 906 } 907 908 io_write32(base + I2C_ICR, I2C_ISR_NACKF); 909 910 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 911 912 i2c_flush_txdr(hi2c); 913 914 io_clrbits32(base + I2C_CR2, CR2_RESET_MASK); 915 916 hi2c->i2c_err |= I2C_ERROR_ACKF; 917 hi2c->i2c_state = I2C_STATE_READY; 918 919 return -1; 920 } 921 922 /* Wait TXIS bit is 1 in I2C_ISR register */ 923 static int i2c_wait_txis(struct i2c_handle_s *hi2c, uint64_t timeout_ref) 924 { 925 while (!timeout_elapsed(timeout_ref)) { 926 if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_TXIS) 927 break; 928 if (i2c_ack_failed(hi2c, timeout_ref)) 929 return -1; 930 } 931 932 if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_TXIS) 933 return 0; 934 935 if (i2c_ack_failed(hi2c, timeout_ref)) 936 return -1; 937 938 notif_i2c_timeout(hi2c); 939 return -1; 940 } 941 942 /* Wait STOPF bit is 1 in I2C_ISR register */ 943 static int i2c_wait_stop(struct i2c_handle_s *hi2c, uint64_t timeout_ref) 944 { 945 while (!timeout_elapsed(timeout_ref)) { 946 if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_STOPF) 947 break; 948 949 if (i2c_ack_failed(hi2c, timeout_ref)) 950 return -1; 951 } 952 953 if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_STOPF) 954 return 0; 955 956 if (i2c_ack_failed(hi2c, timeout_ref)) 957 return -1; 958 959 notif_i2c_timeout(hi2c); 960 return -1; 961 } 962 963 /* 964 * Load I2C_CR2 register for a I2C transfer 965 * 966 * @hi2c: I2C handle structure 967 * @dev_addr: Slave address to be transferred 968 * @size: Number of bytes to be transferred 969 * @i2c_mode: One of I2C_{RELOAD|AUTOEND|SOFTEND}_MODE: Enable Reload mode. 970 * @startstop: One of I2C_NO_STARTSTOP, I2C_GENERATE_STOP, 971 * I2C_GENERATE_START_{READ|WRITE} 972 */ 973 static void i2c_transfer_config(struct i2c_handle_s *hi2c, uint32_t dev_addr, 974 uint32_t size, uint32_t i2c_mode, 975 uint32_t startstop) 976 { 977 uint32_t clr_value = I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD | 978 I2C_CR2_AUTOEND | I2C_CR2_START | I2C_CR2_STOP | 979 (I2C_CR2_RD_WRN & 980 (startstop >> (31U - I2C_CR2_RD_WRN_OFFSET))); 981 uint32_t set_value = (dev_addr & I2C_CR2_SADD) | 982 ((size << I2C_CR2_NBYTES_OFFSET) & 983 I2C_CR2_NBYTES) | 984 i2c_mode | startstop; 985 986 io_clrsetbits32(get_base(hi2c) + I2C_CR2, clr_value, set_value); 987 } 988 989 /* 990 * Master sends target device address followed by internal memory 991 * address for a memory write request. 992 * Function returns 0 on success or a negative value. 993 */ 994 static int i2c_request_mem_write(struct i2c_handle_s *hi2c, 995 struct i2c_request *request, 996 uint64_t timeout_ref) 997 { 998 vaddr_t base = get_base(hi2c); 999 1000 i2c_transfer_config(hi2c, request->dev_addr, request->mem_addr_size, 1001 I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); 1002 1003 if (i2c_wait_txis(hi2c, timeout_ref)) 1004 return -1; 1005 1006 if (request->mem_addr_size == I2C_MEMADD_SIZE_8BIT) { 1007 /* Send memory address */ 1008 io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU); 1009 } else { 1010 /* Send MSB of memory address */ 1011 io_write8(base + I2C_TXDR, (request->mem_addr & 0xFF00U) >> 8); 1012 1013 if (i2c_wait_txis(hi2c, timeout_ref)) 1014 return -1; 1015 1016 /* Send LSB of memory address */ 1017 io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU); 1018 } 1019 1020 if (wait_isr_event(hi2c, I2C_ISR_TCR, 1, timeout_ref)) 1021 return -1; 1022 1023 return 0; 1024 } 1025 1026 /* 1027 * Master sends target device address followed by internal memory 1028 * address to prepare a memory read request. 1029 * Function returns 0 on success or a negative value. 1030 */ 1031 static int i2c_request_mem_read(struct i2c_handle_s *hi2c, 1032 struct i2c_request *request, 1033 uint64_t timeout_ref) 1034 { 1035 vaddr_t base = get_base(hi2c); 1036 1037 i2c_transfer_config(hi2c, request->dev_addr, request->mem_addr_size, 1038 I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE); 1039 1040 if (i2c_wait_txis(hi2c, timeout_ref)) 1041 return -1; 1042 1043 if (request->mem_addr_size == I2C_MEMADD_SIZE_8BIT) { 1044 /* Send memory address */ 1045 io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU); 1046 } else { 1047 /* Send MSB of memory address */ 1048 io_write8(base + I2C_TXDR, (request->mem_addr & 0xFF00U) >> 8); 1049 1050 if (i2c_wait_txis(hi2c, timeout_ref)) 1051 return -1; 1052 1053 /* Send LSB of memory address */ 1054 io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU); 1055 } 1056 1057 if (wait_isr_event(hi2c, I2C_ISR_TC, 1, timeout_ref)) 1058 return -1; 1059 1060 return 0; 1061 } 1062 1063 /* 1064 * Write an amount of data in blocking mode 1065 * 1066 * @hi2c: Reference to struct i2c_handle_s 1067 * @request: I2C request parameters 1068 * @p_data: Pointer to data buffer 1069 * @size: Amount of data to be sent 1070 * Return 0 on success or a negative value 1071 */ 1072 static int i2c_write(struct i2c_handle_s *hi2c, struct i2c_request *request, 1073 uint8_t *p_data, uint16_t size) 1074 { 1075 uint64_t timeout_ref = 0; 1076 vaddr_t base = get_base(hi2c); 1077 int rc = -1; 1078 uint8_t *p_buff = p_data; 1079 size_t xfer_size = 0; 1080 size_t xfer_count = size; 1081 1082 if (request->mode != I2C_MODE_MASTER && request->mode != I2C_MODE_MEM) 1083 return -1; 1084 1085 if (hi2c->i2c_state != I2C_STATE_READY) 1086 return -1; 1087 1088 if (!p_data || !size) 1089 return -1; 1090 1091 clk_enable(hi2c->clock); 1092 1093 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_MS * 1000); 1094 if (wait_isr_event(hi2c, I2C_ISR_BUSY, 0, timeout_ref)) 1095 goto bail; 1096 1097 hi2c->i2c_state = I2C_STATE_BUSY_TX; 1098 hi2c->i2c_err = I2C_ERROR_NONE; 1099 timeout_ref = timeout_init_us(request->timeout_ms * 1000); 1100 1101 if (request->mode == I2C_MODE_MEM) { 1102 /* In memory mode, send slave address and memory address */ 1103 if (i2c_request_mem_write(hi2c, request, timeout_ref)) 1104 goto bail; 1105 1106 if (xfer_count > MAX_NBYTE_SIZE) { 1107 xfer_size = MAX_NBYTE_SIZE; 1108 i2c_transfer_config(hi2c, request->dev_addr, xfer_size, 1109 I2C_RELOAD_MODE, I2C_NO_STARTSTOP); 1110 } else { 1111 xfer_size = xfer_count; 1112 i2c_transfer_config(hi2c, request->dev_addr, xfer_size, 1113 I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); 1114 } 1115 } else { 1116 /* In master mode, send slave address */ 1117 if (xfer_count > MAX_NBYTE_SIZE) { 1118 xfer_size = MAX_NBYTE_SIZE; 1119 i2c_transfer_config(hi2c, request->dev_addr, xfer_size, 1120 I2C_RELOAD_MODE, 1121 I2C_GENERATE_START_WRITE); 1122 } else { 1123 xfer_size = xfer_count; 1124 i2c_transfer_config(hi2c, request->dev_addr, xfer_size, 1125 I2C_AUTOEND_MODE, 1126 I2C_GENERATE_START_WRITE); 1127 } 1128 } 1129 1130 do { 1131 if (i2c_wait_txis(hi2c, timeout_ref)) 1132 goto bail; 1133 1134 io_write8(base + I2C_TXDR, *p_buff); 1135 p_buff++; 1136 xfer_count--; 1137 xfer_size--; 1138 1139 if (xfer_count && !xfer_size) { 1140 /* Wait until TCR flag is set */ 1141 if (wait_isr_event(hi2c, I2C_ISR_TCR, 1, timeout_ref)) 1142 goto bail; 1143 1144 if (xfer_count > MAX_NBYTE_SIZE) { 1145 xfer_size = MAX_NBYTE_SIZE; 1146 i2c_transfer_config(hi2c, request->dev_addr, 1147 xfer_size, 1148 I2C_RELOAD_MODE, 1149 I2C_NO_STARTSTOP); 1150 } else { 1151 xfer_size = xfer_count; 1152 i2c_transfer_config(hi2c, request->dev_addr, 1153 xfer_size, 1154 I2C_AUTOEND_MODE, 1155 I2C_NO_STARTSTOP); 1156 } 1157 } 1158 1159 } while (xfer_count > 0U); 1160 1161 /* 1162 * No need to Check TC flag, with AUTOEND mode the stop 1163 * is automatically generated. 1164 * Wait until STOPF flag is reset. 1165 */ 1166 if (i2c_wait_stop(hi2c, timeout_ref)) 1167 goto bail; 1168 1169 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 1170 1171 io_clrbits32(base + I2C_CR2, CR2_RESET_MASK); 1172 1173 hi2c->i2c_state = I2C_STATE_READY; 1174 1175 rc = 0; 1176 1177 bail: 1178 clk_disable(hi2c->clock); 1179 1180 return rc; 1181 } 1182 1183 int stm32_i2c_mem_write(struct i2c_handle_s *hi2c, uint32_t dev_addr, 1184 uint32_t mem_addr, uint32_t mem_addr_size, 1185 uint8_t *p_data, size_t size, unsigned int timeout_ms) 1186 { 1187 struct i2c_request request = { 1188 .dev_addr = dev_addr, 1189 .mode = I2C_MODE_MEM, 1190 .mem_addr = mem_addr, 1191 .mem_addr_size = mem_addr_size, 1192 .timeout_ms = timeout_ms, 1193 }; 1194 1195 return i2c_write(hi2c, &request, p_data, size); 1196 } 1197 1198 int stm32_i2c_master_transmit(struct i2c_handle_s *hi2c, uint32_t dev_addr, 1199 uint8_t *p_data, size_t size, 1200 unsigned int timeout_ms) 1201 { 1202 struct i2c_request request = { 1203 .dev_addr = dev_addr, 1204 .mode = I2C_MODE_MASTER, 1205 .timeout_ms = timeout_ms, 1206 }; 1207 1208 return i2c_write(hi2c, &request, p_data, size); 1209 } 1210 1211 int stm32_i2c_read_write_membyte(struct i2c_handle_s *hi2c, uint16_t dev_addr, 1212 unsigned int mem_addr, uint8_t *p_data, 1213 bool write) 1214 { 1215 uint64_t timeout_ref = 0; 1216 uintptr_t base = get_base(hi2c); 1217 int rc = -1; 1218 uint8_t *p_buff = p_data; 1219 uint32_t event_mask = 0; 1220 1221 if (hi2c->i2c_state != I2C_STATE_READY || !p_data) 1222 return -1; 1223 1224 clk_enable(hi2c->clock); 1225 1226 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US); 1227 if (wait_isr_event(hi2c, I2C_ISR_BUSY, 0, timeout_ref)) 1228 goto bail; 1229 1230 hi2c->i2c_state = write ? I2C_STATE_BUSY_TX : I2C_STATE_BUSY_RX; 1231 hi2c->i2c_err = I2C_ERROR_NONE; 1232 1233 i2c_transfer_config(hi2c, dev_addr, I2C_MEMADD_SIZE_8BIT, 1234 write ? I2C_RELOAD_MODE : I2C_SOFTEND_MODE, 1235 I2C_GENERATE_START_WRITE); 1236 1237 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US); 1238 if (i2c_wait_txis(hi2c, timeout_ref)) 1239 goto bail; 1240 1241 io_write8(base + I2C_TXDR, mem_addr); 1242 1243 if (write) 1244 event_mask = I2C_ISR_TCR; 1245 else 1246 event_mask = I2C_ISR_TC; 1247 1248 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US); 1249 if (wait_isr_event(hi2c, event_mask, 1, timeout_ref)) 1250 goto bail; 1251 1252 i2c_transfer_config(hi2c, dev_addr, I2C_MEMADD_SIZE_8BIT, 1253 I2C_AUTOEND_MODE, 1254 write ? I2C_NO_STARTSTOP : I2C_GENERATE_START_READ); 1255 1256 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US); 1257 if (write) { 1258 if (i2c_wait_txis(hi2c, timeout_ref)) 1259 goto bail; 1260 1261 io_write8(base + I2C_TXDR, *p_buff); 1262 } else { 1263 if (wait_isr_event(hi2c, I2C_ISR_RXNE, 1, timeout_ref)) 1264 goto bail; 1265 1266 *p_buff = io_read8(base + I2C_RXDR); 1267 } 1268 1269 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US); 1270 if (i2c_wait_stop(hi2c, timeout_ref)) 1271 goto bail; 1272 1273 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 1274 io_clrbits32(base + I2C_CR2, CR2_RESET_MASK); 1275 1276 hi2c->i2c_state = I2C_STATE_READY; 1277 1278 rc = 0; 1279 1280 bail: 1281 clk_disable(hi2c->clock); 1282 1283 return rc; 1284 } 1285 1286 /* 1287 * Read an amount of data in blocking mode 1288 * 1289 * @hi2c: Reference to struct i2c_handle_s 1290 * @request: I2C request parameters 1291 * @p_data: Pointer to data buffer 1292 * @size: Amount of data to be sent 1293 * Return 0 on success or a negative value 1294 */ 1295 static int i2c_read(struct i2c_handle_s *hi2c, struct i2c_request *request, 1296 uint8_t *p_data, uint32_t size) 1297 { 1298 vaddr_t base = get_base(hi2c); 1299 uint64_t timeout_ref = 0; 1300 int rc = -1; 1301 uint8_t *p_buff = p_data; 1302 size_t xfer_count = size; 1303 size_t xfer_size = 0; 1304 1305 if (request->mode != I2C_MODE_MASTER && request->mode != I2C_MODE_MEM) 1306 return -1; 1307 1308 if (hi2c->i2c_state != I2C_STATE_READY) 1309 return -1; 1310 1311 if (!p_data || !size) 1312 return -1; 1313 1314 clk_enable(hi2c->clock); 1315 1316 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_MS * 1000); 1317 if (wait_isr_event(hi2c, I2C_ISR_BUSY, 0, timeout_ref)) 1318 goto bail; 1319 1320 hi2c->i2c_state = I2C_STATE_BUSY_RX; 1321 hi2c->i2c_err = I2C_ERROR_NONE; 1322 timeout_ref = timeout_init_us(request->timeout_ms * 1000); 1323 1324 if (request->mode == I2C_MODE_MEM) { 1325 /* Send memory address */ 1326 if (i2c_request_mem_read(hi2c, request, timeout_ref)) 1327 goto bail; 1328 } 1329 1330 /* 1331 * Send slave address. 1332 * Set NBYTES to write and reload if xfer_count > MAX_NBYTE_SIZE 1333 * and generate RESTART. 1334 */ 1335 if (xfer_count > MAX_NBYTE_SIZE) { 1336 xfer_size = MAX_NBYTE_SIZE; 1337 i2c_transfer_config(hi2c, request->dev_addr, xfer_size, 1338 I2C_RELOAD_MODE, I2C_GENERATE_START_READ); 1339 } else { 1340 xfer_size = xfer_count; 1341 i2c_transfer_config(hi2c, request->dev_addr, xfer_size, 1342 I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); 1343 } 1344 1345 do { 1346 if (wait_isr_event(hi2c, I2C_ISR_RXNE, 1, timeout_ref)) 1347 goto bail; 1348 1349 *p_buff = io_read8(base + I2C_RXDR); 1350 p_buff++; 1351 xfer_size--; 1352 xfer_count--; 1353 1354 if (xfer_count && !xfer_size) { 1355 if (wait_isr_event(hi2c, I2C_ISR_TCR, 1, timeout_ref)) 1356 goto bail; 1357 1358 if (xfer_count > MAX_NBYTE_SIZE) { 1359 xfer_size = MAX_NBYTE_SIZE; 1360 i2c_transfer_config(hi2c, request->dev_addr, 1361 xfer_size, 1362 I2C_RELOAD_MODE, 1363 I2C_NO_STARTSTOP); 1364 } else { 1365 xfer_size = xfer_count; 1366 i2c_transfer_config(hi2c, request->dev_addr, 1367 xfer_size, 1368 I2C_AUTOEND_MODE, 1369 I2C_NO_STARTSTOP); 1370 } 1371 } 1372 } while (xfer_count > 0U); 1373 1374 /* 1375 * No need to Check TC flag, with AUTOEND mode the stop 1376 * is automatically generated. 1377 * Wait until STOPF flag is reset. 1378 */ 1379 if (i2c_wait_stop(hi2c, timeout_ref)) 1380 goto bail; 1381 1382 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 1383 1384 io_clrbits32(base + I2C_CR2, CR2_RESET_MASK); 1385 1386 hi2c->i2c_state = I2C_STATE_READY; 1387 1388 rc = 0; 1389 1390 bail: 1391 clk_disable(hi2c->clock); 1392 1393 return rc; 1394 } 1395 1396 int stm32_i2c_mem_read(struct i2c_handle_s *hi2c, uint32_t dev_addr, 1397 uint32_t mem_addr, uint32_t mem_addr_size, 1398 uint8_t *p_data, size_t size, unsigned int timeout_ms) 1399 { 1400 struct i2c_request request = { 1401 .dev_addr = dev_addr, 1402 .mode = I2C_MODE_MEM, 1403 .mem_addr = mem_addr, 1404 .mem_addr_size = mem_addr_size, 1405 .timeout_ms = timeout_ms, 1406 }; 1407 1408 return i2c_read(hi2c, &request, p_data, size); 1409 } 1410 1411 int stm32_i2c_master_receive(struct i2c_handle_s *hi2c, uint32_t dev_addr, 1412 uint8_t *p_data, size_t size, 1413 unsigned int timeout_ms) 1414 { 1415 struct i2c_request request = { 1416 .dev_addr = dev_addr, 1417 .mode = I2C_MODE_MASTER, 1418 .timeout_ms = timeout_ms, 1419 }; 1420 1421 return i2c_read(hi2c, &request, p_data, size); 1422 } 1423 1424 bool stm32_i2c_is_device_ready(struct i2c_handle_s *hi2c, uint32_t dev_addr, 1425 unsigned int trials, unsigned int timeout_ms) 1426 { 1427 vaddr_t base = get_base(hi2c); 1428 unsigned int i2c_trials = 0U; 1429 bool rc = false; 1430 1431 if (hi2c->i2c_state != I2C_STATE_READY) 1432 return rc; 1433 1434 clk_enable(hi2c->clock); 1435 1436 if (io_read32(base + I2C_ISR) & I2C_ISR_BUSY) 1437 goto bail; 1438 1439 hi2c->i2c_state = I2C_STATE_BUSY; 1440 hi2c->i2c_err = I2C_ERROR_NONE; 1441 1442 do { 1443 uint64_t timeout_ref = 0; 1444 vaddr_t isr = base + I2C_ISR; 1445 1446 /* Generate Start */ 1447 if ((io_read32(base + I2C_OAR1) & I2C_OAR1_OA1MODE) == 0) 1448 io_write32(base + I2C_CR2, 1449 ((dev_addr & I2C_CR2_SADD) | 1450 I2C_CR2_START | I2C_CR2_AUTOEND) & 1451 ~I2C_CR2_RD_WRN); 1452 else 1453 io_write32(base + I2C_CR2, 1454 ((dev_addr & I2C_CR2_SADD) | 1455 I2C_CR2_START | I2C_CR2_ADD10) & 1456 ~I2C_CR2_RD_WRN); 1457 1458 /* 1459 * No need to Check TC flag, with AUTOEND mode the stop 1460 * is automatically generated. 1461 * Wait until STOPF flag is set or a NACK flag is set. 1462 */ 1463 timeout_ref = timeout_init_us(timeout_ms * 1000); 1464 while (!timeout_elapsed(timeout_ref)) 1465 if (io_read32(isr) & (I2C_ISR_STOPF | I2C_ISR_NACKF)) 1466 break; 1467 1468 if ((io_read32(isr) & (I2C_ISR_STOPF | I2C_ISR_NACKF)) == 0) { 1469 notif_i2c_timeout(hi2c); 1470 goto bail; 1471 } 1472 1473 if ((io_read32(base + I2C_ISR) & I2C_ISR_NACKF) == 0U) { 1474 if (wait_isr_event(hi2c, I2C_ISR_STOPF, 1, timeout_ref)) 1475 goto bail; 1476 1477 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 1478 1479 hi2c->i2c_state = I2C_STATE_READY; 1480 1481 rc = true; 1482 goto bail; 1483 } 1484 1485 if (wait_isr_event(hi2c, I2C_ISR_STOPF, 1, timeout_ref)) 1486 goto bail; 1487 1488 io_write32(base + I2C_ICR, I2C_ISR_NACKF); 1489 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 1490 1491 if (i2c_trials == trials) { 1492 io_setbits32(base + I2C_CR2, I2C_CR2_STOP); 1493 1494 if (wait_isr_event(hi2c, I2C_ISR_STOPF, 1, timeout_ref)) 1495 goto bail; 1496 1497 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 1498 } 1499 1500 i2c_trials++; 1501 } while (i2c_trials < trials); 1502 1503 notif_i2c_timeout(hi2c); 1504 1505 bail: 1506 clk_disable(hi2c->clock); 1507 1508 return rc; 1509 } 1510 1511 void stm32_i2c_resume(struct i2c_handle_s *hi2c) 1512 { 1513 if (hi2c->i2c_state == I2C_STATE_READY) 1514 return; 1515 1516 if ((hi2c->i2c_state != I2C_STATE_RESET) && 1517 (hi2c->i2c_state != I2C_STATE_SUSPENDED)) 1518 panic(); 1519 1520 stm32_pinctrl_load_active_cfg(hi2c->pinctrl, hi2c->pinctrl_count); 1521 1522 if (hi2c->i2c_state == I2C_STATE_RESET) { 1523 /* There is no valid I2C configuration to be loaded yet */ 1524 return; 1525 } 1526 1527 restore_cfg(hi2c, &hi2c->sec_cfg); 1528 1529 hi2c->i2c_state = I2C_STATE_READY; 1530 } 1531 1532 void stm32_i2c_suspend(struct i2c_handle_s *hi2c) 1533 { 1534 if (hi2c->i2c_state == I2C_STATE_SUSPENDED) 1535 return; 1536 1537 if (hi2c->i2c_state != I2C_STATE_READY) 1538 panic(); 1539 1540 save_cfg(hi2c, &hi2c->sec_cfg); 1541 stm32_pinctrl_load_standby_cfg(hi2c->pinctrl, hi2c->pinctrl_count); 1542 1543 hi2c->i2c_state = I2C_STATE_SUSPENDED; 1544 } 1545