xref: /optee_os/core/drivers/stm32_i2c.c (revision ad443200b69711ad9dc30f32847b6a0d7e2bddf2)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright (c) 2017-2019, STMicroelectronics
4  *
5  * The driver API is defined in header file stm32_i2c.h.
6  *
7  * I2C bus driver does not register to the PM framework. It is the
8  * responsibility of the bus owner to call the related STM32 I2C driver
9  * API functions when bus suspends or resumes.
10  */
11 
12 #include <arm.h>
13 #include <drivers/stm32_i2c.h>
14 #include <io.h>
15 #include <kernel/delay.h>
16 #include <kernel/dt.h>
17 #include <kernel/generic_boot.h>
18 #include <kernel/panic.h>
19 #include <libfdt.h>
20 #include <stdbool.h>
21 #include <stdlib.h>
22 #include <stm32_util.h>
23 #include <trace.h>
24 
25 /* STM32 I2C registers offsets */
26 #define I2C_CR1				0x00U
27 #define I2C_CR2				0x04U
28 #define I2C_OAR1			0x08U
29 #define I2C_OAR2			0x0CU
30 #define I2C_TIMINGR			0x10U
31 #define I2C_TIMEOUTR			0x14U
32 #define I2C_ISR				0x18U
33 #define I2C_ICR				0x1CU
34 #define I2C_PECR			0x20U
35 #define I2C_RXDR			0x24U
36 #define I2C_TXDR			0x28U
37 
38 /* Bit definition for I2C_CR1 register */
39 #define I2C_CR1_PE			BIT(0)
40 #define I2C_CR1_TXIE			BIT(1)
41 #define I2C_CR1_RXIE			BIT(2)
42 #define I2C_CR1_ADDRIE			BIT(3)
43 #define I2C_CR1_NACKIE			BIT(4)
44 #define I2C_CR1_STOPIE			BIT(5)
45 #define I2C_CR1_TCIE			BIT(6)
46 #define I2C_CR1_ERRIE			BIT(7)
47 #define I2C_CR1_DNF			GENMASK_32(11, 8)
48 #define I2C_CR1_ANFOFF			BIT(12)
49 #define I2C_CR1_SWRST			BIT(13)
50 #define I2C_CR1_TXDMAEN			BIT(14)
51 #define I2C_CR1_RXDMAEN			BIT(15)
52 #define I2C_CR1_SBC			BIT(16)
53 #define I2C_CR1_NOSTRETCH		BIT(17)
54 #define I2C_CR1_WUPEN			BIT(18)
55 #define I2C_CR1_GCEN			BIT(19)
56 #define I2C_CR1_SMBHEN			BIT(22)
57 #define I2C_CR1_SMBDEN			BIT(21)
58 #define I2C_CR1_ALERTEN			BIT(22)
59 #define I2C_CR1_PECEN			BIT(23)
60 
61 /* Bit definition for I2C_CR2 register */
62 #define I2C_CR2_SADD			GENMASK_32(9, 0)
63 #define I2C_CR2_RD_WRN			BIT(10)
64 #define I2C_CR2_RD_WRN_OFFSET		10U
65 #define I2C_CR2_ADD10			BIT(11)
66 #define I2C_CR2_HEAD10R			BIT(12)
67 #define I2C_CR2_START			BIT(13)
68 #define I2C_CR2_STOP			BIT(14)
69 #define I2C_CR2_NACK			BIT(15)
70 #define I2C_CR2_NBYTES			GENMASK_32(23, 16)
71 #define I2C_CR2_NBYTES_OFFSET		16U
72 #define I2C_CR2_RELOAD			BIT(24)
73 #define I2C_CR2_AUTOEND			BIT(25)
74 #define I2C_CR2_PECBYTE			BIT(26)
75 
76 /* Bit definition for I2C_OAR1 register */
77 #define I2C_OAR1_OA1			GENMASK_32(9, 0)
78 #define I2C_OAR1_OA1MODE		BIT(10)
79 #define I2C_OAR1_OA1EN			BIT(15)
80 
81 /* Bit definition for I2C_OAR2 register */
82 #define I2C_OAR2_OA2			GENMASK_32(7, 1)
83 #define I2C_OAR2_OA2MSK			GENMASK_32(10, 8)
84 #define I2C_OAR2_OA2NOMASK		0
85 #define I2C_OAR2_OA2MASK01		BIT(8)
86 #define I2C_OAR2_OA2MASK02		BIT(9)
87 #define I2C_OAR2_OA2MASK03		GENMASK_32(9, 8)
88 #define I2C_OAR2_OA2MASK04		BIT(10)
89 #define I2C_OAR2_OA2MASK05		(BIT(8) | BIT(10))
90 #define I2C_OAR2_OA2MASK06		(BIT(9) | BIT(10))
91 #define I2C_OAR2_OA2MASK07		GENMASK_32(10, 8)
92 #define I2C_OAR2_OA2EN			BIT(15)
93 
94 /* Bit definition for I2C_TIMINGR register */
95 #define I2C_TIMINGR_SCLL		GENMASK_32(7, 0)
96 #define I2C_TIMINGR_SCLH		GENMASK_32(15, 8)
97 #define I2C_TIMINGR_SDADEL		GENMASK_32(19, 16)
98 #define I2C_TIMINGR_SCLDEL		GENMASK_32(23, 20)
99 #define I2C_TIMINGR_PRESC		GENMASK_32(31, 28)
100 #define I2C_TIMINGR_SCLL_MAX		(I2C_TIMINGR_SCLL + 1)
101 #define I2C_TIMINGR_SCLH_MAX		((I2C_TIMINGR_SCLH >> 8) + 1)
102 #define I2C_TIMINGR_SDADEL_MAX		((I2C_TIMINGR_SDADEL >> 16) + 1)
103 #define I2C_TIMINGR_SCLDEL_MAX		((I2C_TIMINGR_SCLDEL >> 20) + 1)
104 #define I2C_TIMINGR_PRESC_MAX		((I2C_TIMINGR_PRESC >> 28) + 1)
105 #define I2C_SET_TIMINGR_SCLL(n)		((n) & \
106 					 (I2C_TIMINGR_SCLL_MAX - 1))
107 #define I2C_SET_TIMINGR_SCLH(n)		(((n) & \
108 					  (I2C_TIMINGR_SCLH_MAX - 1)) << 8)
109 #define I2C_SET_TIMINGR_SDADEL(n)	(((n) & \
110 					  (I2C_TIMINGR_SDADEL_MAX - 1)) << 16)
111 #define I2C_SET_TIMINGR_SCLDEL(n)	(((n) & \
112 					  (I2C_TIMINGR_SCLDEL_MAX - 1)) << 20)
113 #define I2C_SET_TIMINGR_PRESC(n)	(((n) & \
114 					  (I2C_TIMINGR_PRESC_MAX - 1)) << 28)
115 
116 /* Bit definition for I2C_TIMEOUTR register */
117 #define I2C_TIMEOUTR_TIMEOUTA		GENMASK_32(11, 0)
118 #define I2C_TIMEOUTR_TIDLE		BIT(12)
119 #define I2C_TIMEOUTR_TIMOUTEN		BIT(15)
120 #define I2C_TIMEOUTR_TIMEOUTB		GENMASK_32(27, 16)
121 #define I2C_TIMEOUTR_TEXTEN		BIT(31)
122 
123 /* Bit definition for I2C_ISR register */
124 #define I2C_ISR_TXE			BIT(0)
125 #define I2C_ISR_TXIS			BIT(1)
126 #define I2C_ISR_RXNE			BIT(2)
127 #define I2C_ISR_ADDR			BIT(3)
128 #define I2C_ISR_NACKF			BIT(4)
129 #define I2C_ISR_STOPF			BIT(5)
130 #define I2C_ISR_TC			BIT(6)
131 #define I2C_ISR_TCR			BIT(7)
132 #define I2C_ISR_BERR			BIT(8)
133 #define I2C_ISR_ARLO			BIT(9)
134 #define I2C_ISR_OVR			BIT(10)
135 #define I2C_ISR_PECERR			BIT(11)
136 #define I2C_ISR_TIMEOUT			BIT(12)
137 #define I2C_ISR_ALERT			BIT(13)
138 #define I2C_ISR_BUSY			BIT(15)
139 #define I2C_ISR_DIR			BIT(16)
140 #define I2C_ISR_ADDCODE			GENMASK_32(23, 17)
141 
142 /* Bit definition for I2C_ICR register */
143 #define I2C_ICR_ADDRCF			BIT(3)
144 #define I2C_ICR_NACKCF			BIT(4)
145 #define I2C_ICR_STOPCF			BIT(5)
146 #define I2C_ICR_BERRCF			BIT(8)
147 #define I2C_ICR_ARLOCF			BIT(9)
148 #define I2C_ICR_OVRCF			BIT(10)
149 #define I2C_ICR_PECCF			BIT(11)
150 #define I2C_ICR_TIMOUTCF		BIT(12)
151 #define I2C_ICR_ALERTCF			BIT(13)
152 
153 /* Max data size for a single I2C transfer */
154 #define MAX_NBYTE_SIZE			255U
155 
156 #define I2C_NSEC_PER_SEC		1000000000L
157 #define I2C_TIMEOUT_BUSY_MS		25
158 #define I2C_TIMEOUT_BUSY_US		(I2C_TIMEOUT_BUSY_MS * 1000)
159 
160 #define CR2_RESET_MASK			(I2C_CR2_SADD | I2C_CR2_HEAD10R | \
161 					 I2C_CR2_NBYTES | I2C_CR2_RELOAD | \
162 					 I2C_CR2_RD_WRN)
163 
164 #define TIMINGR_CLEAR_MASK		(I2C_TIMINGR_SCLL | I2C_TIMINGR_SCLH | \
165 					 I2C_TIMINGR_SDADEL | \
166 					 I2C_TIMINGR_SCLDEL | I2C_TIMINGR_PRESC)
167 
168 /*
169  * I2C transfer modes
170  * I2C_RELOAD: Enable Reload mode
171  * I2C_AUTOEND_MODE: Enable automatic end mode
172  * I2C_SOFTEND_MODE: Enable software end mode
173  */
174 #define I2C_RELOAD_MODE				I2C_CR2_RELOAD
175 #define I2C_AUTOEND_MODE			I2C_CR2_AUTOEND
176 #define I2C_SOFTEND_MODE			0x0
177 
178 /*
179  * Start/restart/stop I2C transfer requests.
180  *
181  * I2C_NO_STARTSTOP: Don't Generate stop and start condition
182  * I2C_GENERATE_STOP: Generate stop condition (size should be set to 0)
183  * I2C_GENERATE_START_READ: Generate Restart for read request.
184  * I2C_GENERATE_START_WRITE: Generate Restart for write request
185  */
186 #define I2C_NO_STARTSTOP			0x0
187 #define I2C_GENERATE_STOP			(BIT(31) | I2C_CR2_STOP)
188 #define I2C_GENERATE_START_READ			(BIT(31) | I2C_CR2_START | \
189 						 I2C_CR2_RD_WRN)
190 #define I2C_GENERATE_START_WRITE		(BIT(31) | I2C_CR2_START)
191 
192 /* Memory address byte sizes */
193 #define I2C_MEMADD_SIZE_8BIT		1
194 #define I2C_MEMADD_SIZE_16BIT		2
195 
196 /*
197  * struct i2c_spec_s - Private I2C timing specifications.
198  * @rate: I2C bus speed (Hz)
199  * @rate_min: 80% of I2C bus speed (Hz)
200  * @rate_max: 120% of I2C bus speed (Hz)
201  * @fall_max: Max fall time of both SDA and SCL signals (ns)
202  * @rise_max: Max rise time of both SDA and SCL signals (ns)
203  * @hddat_min: Min data hold time (ns)
204  * @vddat_max: Max data valid time (ns)
205  * @sudat_min: Min data setup time (ns)
206  * @l_min: Min low period of the SCL clock (ns)
207  * @h_min: Min high period of the SCL clock (ns)
208  */
209 struct i2c_spec_s {
210 	uint32_t rate;
211 	uint32_t rate_min;
212 	uint32_t rate_max;
213 	uint32_t fall_max;
214 	uint32_t rise_max;
215 	uint32_t hddat_min;
216 	uint32_t vddat_max;
217 	uint32_t sudat_min;
218 	uint32_t l_min;
219 	uint32_t h_min;
220 };
221 
222 /*
223  * struct i2c_timing_s - Private I2C output parameters.
224  * @scldel: Data setup time
225  * @sdadel: Data hold time
226  * @sclh: SCL high period (master mode)
227  * @sclh: SCL low period (master mode)
228  * @is_saved: True if relating to a configuration candidate
229  */
230 struct i2c_timing_s {
231 	uint8_t scldel;
232 	uint8_t sdadel;
233 	uint8_t sclh;
234 	uint8_t scll;
235 	bool is_saved;
236 };
237 
238 static const struct i2c_spec_s i2c_specs[] = {
239 	[I2C_SPEED_STANDARD] = {
240 		.rate = I2C_STANDARD_RATE,
241 		.rate_min = (I2C_STANDARD_RATE * 80) / 100,
242 		.rate_max = (I2C_STANDARD_RATE * 120) / 100,
243 		.fall_max = 300,
244 		.rise_max = 1000,
245 		.hddat_min = 0,
246 		.vddat_max = 3450,
247 		.sudat_min = 250,
248 		.l_min = 4700,
249 		.h_min = 4000,
250 	},
251 	[I2C_SPEED_FAST] = {
252 		.rate = I2C_FAST_RATE,
253 		.rate_min = (I2C_FAST_RATE * 80) / 100,
254 		.rate_max = (I2C_FAST_RATE * 120) / 100,
255 		.fall_max = 300,
256 		.rise_max = 300,
257 		.hddat_min = 0,
258 		.vddat_max = 900,
259 		.sudat_min = 100,
260 		.l_min = 1300,
261 		.h_min = 600,
262 	},
263 	[I2C_SPEED_FAST_PLUS] = {
264 		.rate = I2C_FAST_PLUS_RATE,
265 		.rate_min = (I2C_FAST_PLUS_RATE * 80) / 100,
266 		.rate_max = (I2C_FAST_PLUS_RATE * 120) / 100,
267 		.fall_max = 100,
268 		.rise_max = 120,
269 		.hddat_min = 0,
270 		.vddat_max = 450,
271 		.sudat_min = 50,
272 		.l_min = 500,
273 		.h_min = 260,
274 	},
275 };
276 
277 /*
278  * I2C request parameters
279  * @dev_addr: I2C address of the target device
280  * @mode: Communication mode, one of I2C_MODE_(MASTER|MEM)
281  * @mem_addr: Target memory cell accessed in device (memory mode)
282  * @mem_addr_size: Byte size of the memory cell address (memory mode)
283  * @timeout_ms: Timeout in millisenconds for the request
284  */
285 struct i2c_request {
286 	uint32_t dev_addr;
287 	enum i2c_mode_e mode;
288 	uint32_t mem_addr;
289 	uint32_t mem_addr_size;
290 	unsigned int timeout_ms;
291 };
292 
293 static vaddr_t get_base(struct i2c_handle_s *hi2c)
294 {
295 	return io_pa_or_va_secure(&hi2c->base);
296 }
297 
298 static void notif_i2c_timeout(struct i2c_handle_s *hi2c)
299 {
300 	hi2c->i2c_err |= I2C_ERROR_TIMEOUT;
301 	hi2c->i2c_state = I2C_STATE_READY;
302 }
303 
304 static void save_cfg(struct i2c_handle_s *hi2c, struct i2c_cfg *cfg)
305 {
306 	vaddr_t base = get_base(hi2c);
307 
308 	stm32_clock_enable(hi2c->clock);
309 
310 	cfg->cr1 = io_read32(base + I2C_CR1);
311 	cfg->cr2 = io_read32(base + I2C_CR2);
312 	cfg->oar1 = io_read32(base + I2C_OAR1);
313 	cfg->oar2 = io_read32(base + I2C_OAR2);
314 	cfg->timingr = io_read32(base + I2C_TIMINGR);
315 
316 	stm32_clock_disable(hi2c->clock);
317 }
318 
319 static void restore_cfg(struct i2c_handle_s *hi2c, struct i2c_cfg *cfg)
320 {
321 	vaddr_t base = get_base(hi2c);
322 
323 	stm32_clock_enable(hi2c->clock);
324 
325 	io_clrbits32(base + I2C_CR1, I2C_CR1_PE);
326 	io_write32(base + I2C_TIMINGR, cfg->timingr & TIMINGR_CLEAR_MASK);
327 	io_write32(base + I2C_OAR1, cfg->oar1);
328 	io_write32(base + I2C_CR2, cfg->cr2);
329 	io_write32(base + I2C_OAR2, cfg->oar2);
330 	io_write32(base + I2C_CR1, cfg->cr1 & ~I2C_CR1_PE);
331 	io_setbits32(base + I2C_CR1, cfg->cr1 & I2C_CR1_PE);
332 
333 	stm32_clock_disable(hi2c->clock);
334 }
335 
336 static void __maybe_unused dump_cfg(struct i2c_cfg *cfg __maybe_unused)
337 {
338 	DMSG("CR1:  0x%" PRIx32, cfg->cr1);
339 	DMSG("CR2:  0x%" PRIx32, cfg->cr2);
340 	DMSG("OAR1: 0x%" PRIx32, cfg->oar1);
341 	DMSG("OAR2: 0x%" PRIx32, cfg->oar2);
342 	DMSG("TIM:  0x%" PRIx32, cfg->timingr);
343 }
344 
345 static void __maybe_unused dump_i2c(struct i2c_handle_s *hi2c)
346 {
347 	vaddr_t __maybe_unused base = get_base(hi2c);
348 
349 	stm32_clock_enable(hi2c->clock);
350 
351 	DMSG("CR1:  0x%" PRIx32, io_read32(base + I2C_CR1));
352 	DMSG("CR2:  0x%" PRIx32, io_read32(base + I2C_CR2));
353 	DMSG("OAR1: 0x%" PRIx32, io_read32(base + I2C_OAR1));
354 	DMSG("OAR2: 0x%" PRIx32, io_read32(base + I2C_OAR2));
355 	DMSG("TIM:  0x%" PRIx32, io_read32(base + I2C_TIMINGR));
356 
357 	stm32_clock_disable(hi2c->clock);
358 }
359 
360 /*
361  * Compute the I2C device timings
362  *
363  * @init: Ref to the initialization configuration structure
364  * @clock_src: I2C clock source frequency (Hz)
365  * @timing: Pointer to the final computed timing result
366  * Return 0 on success or a negative value
367  */
368 static int i2c_compute_timing(struct stm32_i2c_init_s *init,
369 			      uint32_t clock_src, uint32_t *timing)
370 {
371 	enum i2c_speed_e mode = init->speed_mode;
372 	uint32_t speed_freq = i2c_specs[mode].rate;
373 	uint32_t i2cbus = UDIV_ROUND_NEAREST(I2C_NSEC_PER_SEC, speed_freq);
374 	uint32_t i2cclk = UDIV_ROUND_NEAREST(I2C_NSEC_PER_SEC, clock_src);
375 	uint32_t p_prev = I2C_TIMINGR_PRESC_MAX;
376 	uint32_t af_delay_min = 0;
377 	uint32_t af_delay_max = 0;
378 	uint32_t dnf_delay = 0;
379 	uint32_t tsync = 0;
380 	uint32_t clk_min = 0;
381 	uint32_t clk_max = 0;
382 	int clk_error_prev = 0;
383 	uint16_t p = 0;
384 	uint16_t l = 0;
385 	uint16_t a = 0;
386 	uint16_t h = 0;
387 	unsigned int sdadel_min = 0;
388 	unsigned int sdadel_max = 0;
389 	unsigned int scldel_min = 0;
390 	unsigned int delay = 0;
391 	int s = -1;
392 	struct i2c_timing_s solutions[I2C_TIMINGR_PRESC_MAX] = { 0 };
393 
394 	switch (mode) {
395 	case I2C_SPEED_STANDARD:
396 	case I2C_SPEED_FAST:
397 	case I2C_SPEED_FAST_PLUS:
398 		break;
399 	default:
400 		EMSG("I2C speed out of bound {%d/%d}",
401 		     mode, I2C_SPEED_FAST_PLUS);
402 		return -1;
403 	}
404 
405 	speed_freq = i2c_specs[mode].rate;
406 	i2cbus = UDIV_ROUND_NEAREST(I2C_NSEC_PER_SEC, speed_freq);
407 	clk_error_prev = INT_MAX;
408 
409 	if ((init->rise_time > i2c_specs[mode].rise_max) ||
410 	    (init->fall_time > i2c_specs[mode].fall_max)) {
411 		EMSG(" I2C timings out of bound: Rise{%d > %d}/Fall{%d > %d}",
412 		     init->rise_time, i2c_specs[mode].rise_max,
413 		     init->fall_time, i2c_specs[mode].fall_max);
414 		return -1;
415 	}
416 
417 	if (init->digital_filter_coef > STM32_I2C_DIGITAL_FILTER_MAX) {
418 		EMSG("DNF out of bound %d/%d",
419 		     init->digital_filter_coef, STM32_I2C_DIGITAL_FILTER_MAX);
420 		return -1;
421 	}
422 
423 	/* Analog and Digital Filters */
424 	if (init->analog_filter) {
425 		af_delay_min = STM32_I2C_ANALOG_FILTER_DELAY_MIN;
426 		af_delay_max = STM32_I2C_ANALOG_FILTER_DELAY_MAX;
427 	}
428 	dnf_delay = init->digital_filter_coef * i2cclk;
429 
430 	sdadel_min = i2c_specs[mode].hddat_min + init->fall_time;
431 	delay = af_delay_min - ((init->digital_filter_coef + 3) * i2cclk);
432 	if (SUB_OVERFLOW(sdadel_min, delay, &sdadel_min))
433 		sdadel_min = 0;
434 
435 	sdadel_max = i2c_specs[mode].vddat_max - init->rise_time;
436 	delay = af_delay_max - ((init->digital_filter_coef + 4) * i2cclk);
437 	if (SUB_OVERFLOW(sdadel_max, delay, &sdadel_max))
438 		sdadel_max = 0;
439 
440 	scldel_min = init->rise_time + i2c_specs[mode].sudat_min;
441 
442 	DMSG("I2C SDADEL(min/max): %u/%u, SCLDEL(Min): %u",
443 	     sdadel_min, sdadel_max, scldel_min);
444 
445 	/* Compute possible values for PRESC, SCLDEL and SDADEL */
446 	for (p = 0; p < I2C_TIMINGR_PRESC_MAX; p++) {
447 		for (l = 0; l < I2C_TIMINGR_SCLDEL_MAX; l++) {
448 			uint32_t scldel = (l + 1) * (p + 1) * i2cclk;
449 
450 			if (scldel < scldel_min)
451 				continue;
452 
453 			for (a = 0; a < I2C_TIMINGR_SDADEL_MAX; a++) {
454 				uint32_t sdadel = (a * (p + 1) + 1) * i2cclk;
455 
456 				if ((sdadel >= sdadel_min) &&
457 				    (sdadel <= sdadel_max) &&
458 				    (p != p_prev)) {
459 					solutions[p].scldel = l;
460 					solutions[p].sdadel = a;
461 					solutions[p].is_saved = true;
462 					p_prev = p;
463 					break;
464 				}
465 			}
466 
467 			if (p_prev == p)
468 				break;
469 		}
470 	}
471 
472 	if (p_prev == I2C_TIMINGR_PRESC_MAX) {
473 		EMSG(" I2C no Prescaler solution");
474 		return -1;
475 	}
476 
477 	tsync = af_delay_min + dnf_delay + (2 * i2cclk);
478 	clk_max = I2C_NSEC_PER_SEC / i2c_specs[mode].rate_min;
479 	clk_min = I2C_NSEC_PER_SEC / i2c_specs[mode].rate_max;
480 
481 	/*
482 	 * Among prescaler possibilities discovered above figures out SCL Low
483 	 * and High Period. Provided:
484 	 * - SCL Low Period has to be higher than Low Period of the SCL Clock
485 	 *   defined by I2C Specification. I2C Clock has to be lower than
486 	 *   (SCL Low Period - Analog/Digital filters) / 4.
487 	 * - SCL High Period has to be lower than High Period of the SCL Clock
488 	 *   defined by I2C Specification.
489 	 * - I2C Clock has to be lower than SCL High Period.
490 	 */
491 	for (p = 0; p < I2C_TIMINGR_PRESC_MAX; p++) {
492 		uint32_t prescaler = (p + 1) * i2cclk;
493 
494 		if (!solutions[p].is_saved)
495 			continue;
496 
497 		for (l = 0; l < I2C_TIMINGR_SCLL_MAX; l++) {
498 			uint32_t tscl_l = ((l + 1) * prescaler) + tsync;
499 
500 			if ((tscl_l < i2c_specs[mode].l_min) ||
501 			    (i2cclk >=
502 			     ((tscl_l - af_delay_min - dnf_delay) / 4)))
503 				continue;
504 
505 			for (h = 0; h < I2C_TIMINGR_SCLH_MAX; h++) {
506 				uint32_t tscl_h = ((h + 1) * prescaler) + tsync;
507 				uint32_t tscl = tscl_l + tscl_h +
508 						init->rise_time +
509 						init->fall_time;
510 
511 				if ((tscl >= clk_min) && (tscl <= clk_max) &&
512 				    (tscl_h >= i2c_specs[mode].h_min) &&
513 				    (i2cclk < tscl_h)) {
514 					int clk_error = tscl - i2cbus;
515 
516 					if (clk_error < 0)
517 						clk_error = -clk_error;
518 
519 					if (clk_error < clk_error_prev) {
520 						clk_error_prev = clk_error;
521 						solutions[p].scll = l;
522 						solutions[p].sclh = h;
523 						s = p;
524 					}
525 				}
526 			}
527 		}
528 	}
529 
530 	if (s < 0) {
531 		EMSG(" I2C no solution at all");
532 		return -1;
533 	}
534 
535 	/* Finalize timing settings */
536 	*timing = I2C_SET_TIMINGR_PRESC(s) |
537 		   I2C_SET_TIMINGR_SCLDEL(solutions[s].scldel) |
538 		   I2C_SET_TIMINGR_SDADEL(solutions[s].sdadel) |
539 		   I2C_SET_TIMINGR_SCLH(solutions[s].sclh) |
540 		   I2C_SET_TIMINGR_SCLL(solutions[s].scll);
541 
542 	DMSG("I2C TIMINGR (PRESC/SCLDEL/SDADEL): %i/%i/%i",
543 		s, solutions[s].scldel, solutions[s].sdadel);
544 	DMSG("I2C TIMINGR (SCLH/SCLL): %i/%i",
545 		solutions[s].sclh, solutions[s].scll);
546 	DMSG("I2C TIMINGR: 0x%x", *timing);
547 
548 	return 0;
549 }
550 
551 /*
552  * Setup the I2C device timings
553  *
554  * @hi2c: I2C handle structure
555  * @init: Ref to the initialization configuration structure
556  * @timing: Output TIMINGR register configuration value
557  * @retval 0 if OK, negative value else
558  */
559 static int i2c_setup_timing(struct i2c_handle_s *hi2c,
560 			    struct stm32_i2c_init_s *init,
561 			    uint32_t *timing)
562 {
563 	int rc = 0;
564 	uint32_t clock_src = stm32_clock_get_rate(hi2c->clock);
565 
566 	if (!clock_src) {
567 		EMSG("Null I2C clock rate");
568 		return -1;
569 	}
570 
571 	do {
572 		rc = i2c_compute_timing(init, clock_src, timing);
573 		if (rc) {
574 			EMSG("Failed to compute I2C timings");
575 			if (init->speed_mode > I2C_SPEED_STANDARD) {
576 				init->speed_mode--;
577 				IMSG("Downgrade I2C speed to %uHz)",
578 				     i2c_specs[init->speed_mode].rate);
579 			} else {
580 				break;
581 			}
582 		}
583 	} while (rc);
584 
585 	if (rc) {
586 		EMSG("Impossible to compute I2C timings");
587 		return rc;
588 	}
589 
590 	DMSG("I2C Speed Mode(%i), Freq(%i), Clk Source(%i)",
591 	     init->speed_mode, i2c_specs[init->speed_mode].rate, clock_src);
592 	DMSG("I2C Rise(%i) and Fall(%i) Time",
593 	     init->rise_time, init->fall_time);
594 	DMSG("I2C Analog Filter(%s), DNF(%i)",
595 	     init->analog_filter ? "On" : "Off", init->digital_filter_coef);
596 
597 	return 0;
598 }
599 
600 /*
601  * Configure I2C Analog noise filter.
602  * @hi2c: I2C handle structure
603  * @analog_filter_on: True if enabling analog filter, false otherwise
604  * Return 0 on success or a negative value
605  */
606 static int i2c_config_analog_filter(struct i2c_handle_s *hi2c,
607 				    bool analog_filter_on)
608 {
609 	vaddr_t base = get_base(hi2c);
610 
611 	if (hi2c->i2c_state != I2C_STATE_READY)
612 		return -1;
613 
614 	hi2c->i2c_state = I2C_STATE_BUSY;
615 
616 	/* Disable the selected I2C peripheral */
617 	io_clrbits32(base + I2C_CR1, I2C_CR1_PE);
618 
619 	/* Reset I2Cx ANOFF bit */
620 	io_clrbits32(base + I2C_CR1, I2C_CR1_ANFOFF);
621 
622 	/* Set analog filter bit if filter is disabled */
623 	if (!analog_filter_on)
624 		io_setbits32(base + I2C_CR1, I2C_CR1_ANFOFF);
625 
626 	/* Enable the selected I2C peripheral */
627 	io_setbits32(base + I2C_CR1, I2C_CR1_PE);
628 
629 	hi2c->i2c_state = I2C_STATE_READY;
630 
631 	return 0;
632 }
633 
634 int stm32_i2c_get_setup_from_fdt(void *fdt, int node,
635 				 struct stm32_i2c_init_s *init,
636 				 struct stm32_pinctrl **pinctrl,
637 				 size_t *pinctrl_count)
638 {
639 	const fdt32_t *cuint = NULL;
640 	struct dt_node_info info = { .status = 0 };
641 	int count = 0;
642 
643 	/* Default STM32 specific configs caller may need to overwrite */
644 	memset(init, 0, sizeof(*init));
645 
646 	_fdt_fill_device_info(fdt, &info, node);
647 	init->dt_status = info.status;
648 	init->pbase = info.reg;
649 	init->clock = info.clock;
650 	assert(info.reg != DT_INFO_INVALID_REG &&
651 	       info.clock != DT_INFO_INVALID_CLOCK);
652 
653 	cuint = fdt_getprop(fdt, node, "i2c-scl-rising-time-ns", NULL);
654 	if (cuint)
655 		init->rise_time = fdt32_to_cpu(*cuint);
656 	else
657 		init->rise_time = STM32_I2C_RISE_TIME_DEFAULT;
658 
659 	cuint = fdt_getprop(fdt, node, "i2c-scl-falling-time-ns", NULL);
660 	if (cuint)
661 		init->fall_time = fdt32_to_cpu(*cuint);
662 	else
663 		init->fall_time = STM32_I2C_FALL_TIME_DEFAULT;
664 
665 	cuint = fdt_getprop(fdt, node, "clock-frequency", NULL);
666 	if (cuint) {
667 		switch (fdt32_to_cpu(*cuint)) {
668 		case I2C_STANDARD_RATE:
669 			init->speed_mode = I2C_SPEED_STANDARD;
670 			break;
671 		case I2C_FAST_RATE:
672 			init->speed_mode = I2C_SPEED_FAST;
673 			break;
674 		case I2C_FAST_PLUS_RATE:
675 			init->speed_mode = I2C_SPEED_FAST_PLUS;
676 			break;
677 		default:
678 			init->speed_mode = STM32_I2C_SPEED_DEFAULT;
679 			break;
680 		}
681 	} else {
682 		init->speed_mode = STM32_I2C_SPEED_DEFAULT;
683 	}
684 
685 	count = stm32_pinctrl_fdt_get_pinctrl(fdt, node, NULL, 0);
686 	if (count <= 0) {
687 		*pinctrl = NULL;
688 		*pinctrl_count = 0;
689 		return count;
690 	}
691 
692 	if (count > 2)
693 		panic("Too many PINCTRLs found");
694 
695 	*pinctrl = calloc(count, sizeof(**pinctrl));
696 	if (!*pinctrl)
697 		panic();
698 
699 	*pinctrl_count = stm32_pinctrl_fdt_get_pinctrl(fdt, node,
700 						       *pinctrl, count);
701 	assert(*pinctrl_count == (unsigned int)count);
702 
703 	return 0;
704 }
705 
706 int stm32_i2c_init(struct i2c_handle_s *hi2c,
707 		   struct stm32_i2c_init_s *init_data)
708 {
709 	int rc = 0;
710 	uint32_t timing = 0;
711 	vaddr_t base = 0;
712 	uint32_t val = 0;
713 
714 	hi2c->dt_status = init_data->dt_status;
715 	hi2c->base.pa = init_data->pbase;
716 	hi2c->clock = init_data->clock;
717 
718 	rc = i2c_setup_timing(hi2c, init_data, &timing);
719 	if (rc)
720 		return rc;
721 
722 	stm32_clock_enable(hi2c->clock);
723 	base = get_base(hi2c);
724 	hi2c->i2c_state = I2C_STATE_BUSY;
725 
726 	/* Disable the selected I2C peripheral */
727 	io_clrbits32(base + I2C_CR1, I2C_CR1_PE);
728 
729 	/* Configure I2Cx: Frequency range */
730 	io_write32(base + I2C_TIMINGR, timing & TIMINGR_CLEAR_MASK);
731 
732 	/* Disable Own Address1 before set the Own Address1 configuration */
733 	io_write32(base + I2C_OAR1, 0);
734 
735 	/* Configure I2Cx: Own Address1 and ack own address1 mode */
736 	if (init_data->addr_mode_10b_not_7b)
737 		io_write32(base + I2C_OAR1,
738 			   I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE |
739 			   init_data->own_address1);
740 	else
741 		io_write32(base + I2C_OAR1,
742 			   I2C_OAR1_OA1EN | init_data->own_address1);
743 
744 	/* Configure I2Cx: Addressing Master mode */
745 	io_write32(base + I2C_CR2, 0);
746 	if (init_data->addr_mode_10b_not_7b)
747 		io_setbits32(base + I2C_CR2, I2C_CR2_ADD10);
748 
749 	/*
750 	 * Enable the AUTOEND by default, and enable NACK
751 	 * (should be disabled only during Slave process).
752 	 */
753 	io_setbits32(base + I2C_CR2, I2C_CR2_AUTOEND | I2C_CR2_NACK);
754 
755 	/* Disable Own Address2 before set the Own Address2 configuration */
756 	io_write32(base + I2C_OAR2, 0);
757 
758 	/* Configure I2Cx: Dual mode and Own Address2 */
759 	if (init_data->dual_address_mode)
760 		io_write32(base + I2C_OAR2,
761 			   I2C_OAR2_OA2EN | init_data->own_address2 |
762 			   (init_data->own_address2_masks << 8));
763 
764 	/* Configure I2Cx: Generalcall and NoStretch mode */
765 	val = 0;
766 	if (init_data->general_call_mode)
767 		val |= I2C_CR1_GCEN;
768 	if (init_data->no_stretch_mode)
769 		val |= I2C_CR1_NOSTRETCH;
770 	io_write32(base + I2C_CR1, val);
771 
772 	/* Enable the selected I2C peripheral */
773 	io_setbits32(base + I2C_CR1, I2C_CR1_PE);
774 
775 	hi2c->i2c_err = I2C_ERROR_NONE;
776 	hi2c->i2c_state = I2C_STATE_READY;
777 
778 	rc = i2c_config_analog_filter(hi2c, init_data->analog_filter);
779 	if (rc)
780 		EMSG("I2C analog filter error %d", rc);
781 
782 	stm32_clock_disable(hi2c->clock);
783 
784 	return rc;
785 }
786 
787 /* I2C transmit (TX) data register flush sequence */
788 static void i2c_flush_txdr(struct i2c_handle_s *hi2c)
789 {
790 	vaddr_t base = get_base(hi2c);
791 
792 	/*
793 	 * If a pending TXIS flag is set,
794 	 * write a dummy data in TXDR to clear it.
795 	 */
796 	if (io_read32(base + I2C_ISR) & I2C_ISR_TXIS)
797 		io_write32(base + I2C_TXDR, 0);
798 
799 	/* Flush TX register if not empty */
800 	if ((io_read32(base + I2C_ISR) & I2C_ISR_TXE) == 0)
801 		io_setbits32(base + I2C_ISR, I2C_ISR_TXE);
802 }
803 
804 /*
805  * Wait for a single target I2C_ISR bit to reach an awaited value (0 or 1)
806  *
807  * @hi2c: I2C handle structure
808  * @bit_mask: Bit mask for the target single bit position to consider
809  * @awaited_value: Awaited value of the target bit in I2C_ISR, 0 or 1
810  * @timeout_ref: Expriation timeout reference
811  * Return 0 on success and a non-zero value on timeout
812  */
813 static int wait_isr_event(struct i2c_handle_s *hi2c, uint32_t bit_mask,
814 			  unsigned int awaited_value, uint64_t timeout_ref)
815 {
816 	vaddr_t isr = get_base(hi2c) + I2C_ISR;
817 
818 	assert(IS_POWER_OF_TWO(bit_mask) && !(awaited_value & ~1U));
819 
820 	/* May timeout while TEE thread is suspended */
821 	while (!timeout_elapsed(timeout_ref))
822 		if (!!(io_read32(isr) & bit_mask) == awaited_value)
823 			break;
824 
825 	if (!!(io_read32(isr) & bit_mask) == awaited_value)
826 		return 0;
827 
828 	notif_i2c_timeout(hi2c);
829 	return -1;
830 }
831 
832 /* Handle Acknowledge-Failed sequence detection during an I2C Communication */
833 static int i2c_ack_failed(struct i2c_handle_s *hi2c, uint64_t timeout_ref)
834 {
835 	vaddr_t base = get_base(hi2c);
836 
837 	if ((io_read32(base + I2C_ISR) & I2C_ISR_NACKF) == 0U)
838 		return 0;
839 
840 	/*
841 	 * Wait until STOP Flag is reset. Use polling method.
842 	 * AutoEnd should be initiate after AF.
843 	 * Timeout may elpased while TEE thread is suspended.
844 	 */
845 	while (!timeout_elapsed(timeout_ref))
846 		if (io_read32(base + I2C_ISR) & I2C_ISR_STOPF)
847 			break;
848 
849 	if ((io_read32(base + I2C_ISR) & I2C_ISR_STOPF) == 0) {
850 		notif_i2c_timeout(hi2c);
851 		return -1;
852 	}
853 
854 	io_write32(base + I2C_ICR, I2C_ISR_NACKF);
855 
856 	io_write32(base + I2C_ICR, I2C_ISR_STOPF);
857 
858 	i2c_flush_txdr(hi2c);
859 
860 	io_clrbits32(base + I2C_CR2, CR2_RESET_MASK);
861 
862 	hi2c->i2c_err |= I2C_ERROR_ACKF;
863 	hi2c->i2c_state = I2C_STATE_READY;
864 
865 	return -1;
866 }
867 
868 /* Wait TXIS bit is 1 in I2C_ISR register */
869 static int i2c_wait_txis(struct i2c_handle_s *hi2c, uint64_t timeout_ref)
870 {
871 	while (!timeout_elapsed(timeout_ref)) {
872 		if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_TXIS)
873 			break;
874 		if (i2c_ack_failed(hi2c, timeout_ref))
875 			return -1;
876 	}
877 
878 	if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_TXIS)
879 		return 0;
880 
881 	if (i2c_ack_failed(hi2c, timeout_ref))
882 		return -1;
883 
884 	notif_i2c_timeout(hi2c);
885 	return -1;
886 }
887 
888 /* Wait STOPF bit is 1 in I2C_ISR register */
889 static int i2c_wait_stop(struct i2c_handle_s *hi2c, uint64_t timeout_ref)
890 {
891 	while (!timeout_elapsed(timeout_ref)) {
892 		if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_STOPF)
893 			break;
894 
895 		if (i2c_ack_failed(hi2c, timeout_ref))
896 			return -1;
897 	}
898 
899 	if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_STOPF)
900 		return 0;
901 
902 	if (i2c_ack_failed(hi2c, timeout_ref))
903 		return -1;
904 
905 	notif_i2c_timeout(hi2c);
906 	return -1;
907 }
908 
909 /*
910  * Load I2C_CR2 register for a I2C transfer
911  *
912  * @hi2c: I2C handle structure
913  * @dev_addr: Slave address to be transferred
914  * @size: Number of bytes to be transferred
915  * @i2c_mode: One of I2C_{RELOAD|AUTOEND|SOFTEND}_MODE: Enable Reload mode.
916  * @startstop: One of I2C_NO_STARTSTOP, I2C_GENERATE_STOP,
917  *		I2C_GENERATE_START_{READ|WRITE}
918  */
919 static void i2c_transfer_config(struct i2c_handle_s *hi2c, uint32_t dev_addr,
920 				uint32_t size, uint32_t i2c_mode,
921 				uint32_t startstop)
922 {
923 	uint32_t clr_value = I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD |
924 			     I2C_CR2_AUTOEND | I2C_CR2_START | I2C_CR2_STOP |
925 			     (I2C_CR2_RD_WRN &
926 			      (startstop >> (31U - I2C_CR2_RD_WRN_OFFSET)));
927 	uint32_t set_value = (dev_addr & I2C_CR2_SADD) |
928 			     ((size << I2C_CR2_NBYTES_OFFSET) &
929 			      I2C_CR2_NBYTES) |
930 			     i2c_mode | startstop;
931 
932 	io_clrsetbits32(get_base(hi2c) + I2C_CR2, clr_value, set_value);
933 }
934 
935 /*
936  * Master sends target device address followed by internal memory
937  * address for a memory write request.
938  * Function returns 0 on success or a negative value.
939  */
940 static int i2c_request_mem_write(struct i2c_handle_s *hi2c,
941 				 struct i2c_request *request,
942 				 uint64_t timeout_ref)
943 {
944 	vaddr_t base = get_base(hi2c);
945 
946 	i2c_transfer_config(hi2c, request->dev_addr, request->mem_addr_size,
947 			    I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE);
948 
949 	if (i2c_wait_txis(hi2c, timeout_ref))
950 		return -1;
951 
952 	if (request->mem_addr_size == I2C_MEMADD_SIZE_8BIT) {
953 		/* Send memory address */
954 		io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU);
955 	} else {
956 		/* Send MSB of memory address */
957 		io_write8(base + I2C_TXDR, (request->mem_addr & 0xFF00U) >> 8);
958 
959 		if (i2c_wait_txis(hi2c, timeout_ref))
960 			return -1;
961 
962 		/* Send LSB of memory address */
963 		io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU);
964 	}
965 
966 	if (wait_isr_event(hi2c, I2C_ISR_TCR, 1, timeout_ref))
967 		return -1;
968 
969 	return 0;
970 }
971 
972 /*
973  * Master sends target device address followed by internal memory
974  * address to prepare a memory read request.
975  * Function returns 0 on success or a negative value.
976  */
977 static int i2c_request_mem_read(struct i2c_handle_s *hi2c,
978 				struct i2c_request *request,
979 				uint64_t timeout_ref)
980 {
981 	vaddr_t base = get_base(hi2c);
982 
983 	i2c_transfer_config(hi2c, request->dev_addr, request->mem_addr_size,
984 			    I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE);
985 
986 	if (i2c_wait_txis(hi2c, timeout_ref))
987 		return -1;
988 
989 	if (request->mem_addr_size == I2C_MEMADD_SIZE_8BIT) {
990 		/* Send memory address */
991 		io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU);
992 	} else {
993 		/* Send MSB of memory address */
994 		io_write8(base + I2C_TXDR, (request->mem_addr & 0xFF00U) >> 8);
995 
996 		if (i2c_wait_txis(hi2c, timeout_ref))
997 			return -1;
998 
999 		/* Send LSB of memory address */
1000 		io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU);
1001 	}
1002 
1003 	if (wait_isr_event(hi2c, I2C_ISR_TC, 1, timeout_ref))
1004 		return -1;
1005 
1006 	return 0;
1007 }
1008 
1009 /*
1010  * Write an amount of data in blocking mode
1011  *
1012  * @hi2c: Reference to struct i2c_handle_s
1013  * @request: I2C request parameters
1014  * @p_data: Pointer to data buffer
1015  * @size: Amount of data to be sent
1016  * Return 0 on success or a negative value
1017  */
1018 static int i2c_write(struct i2c_handle_s *hi2c, struct i2c_request *request,
1019 		     uint8_t *p_data, uint16_t size)
1020 {
1021 	uint64_t timeout_ref = 0;
1022 	vaddr_t base = get_base(hi2c);
1023 	int rc = -1;
1024 	uint8_t *p_buff = p_data;
1025 	size_t xfer_size = 0;
1026 	size_t xfer_count = size;
1027 
1028 	if (request->mode != I2C_MODE_MASTER && request->mode != I2C_MODE_MEM)
1029 		return -1;
1030 
1031 	if (hi2c->i2c_state != I2C_STATE_READY)
1032 		return -1;
1033 
1034 	if (!p_data || !size)
1035 		return -1;
1036 
1037 	stm32_clock_enable(hi2c->clock);
1038 
1039 	timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_MS * 1000);
1040 	if (wait_isr_event(hi2c, I2C_ISR_BUSY, 0, timeout_ref))
1041 		goto bail;
1042 
1043 	hi2c->i2c_state = I2C_STATE_BUSY_TX;
1044 	hi2c->i2c_err = I2C_ERROR_NONE;
1045 	timeout_ref = timeout_init_us(request->timeout_ms * 1000);
1046 
1047 	if (request->mode == I2C_MODE_MEM) {
1048 		/* In memory mode, send slave address and memory address */
1049 		if (i2c_request_mem_write(hi2c, request, timeout_ref))
1050 			goto bail;
1051 
1052 		if (xfer_count > MAX_NBYTE_SIZE) {
1053 			xfer_size = MAX_NBYTE_SIZE;
1054 			i2c_transfer_config(hi2c, request->dev_addr, xfer_size,
1055 					    I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
1056 		} else {
1057 			xfer_size = xfer_count;
1058 			i2c_transfer_config(hi2c, request->dev_addr, xfer_size,
1059 					    I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
1060 		}
1061 	} else {
1062 		/* In master mode, send slave address */
1063 		if (xfer_count > MAX_NBYTE_SIZE) {
1064 			xfer_size = MAX_NBYTE_SIZE;
1065 			i2c_transfer_config(hi2c, request->dev_addr, xfer_size,
1066 					    I2C_RELOAD_MODE,
1067 					    I2C_GENERATE_START_WRITE);
1068 		} else {
1069 			xfer_size = xfer_count;
1070 			i2c_transfer_config(hi2c, request->dev_addr, xfer_size,
1071 					    I2C_AUTOEND_MODE,
1072 					    I2C_GENERATE_START_WRITE);
1073 		}
1074 	}
1075 
1076 	do {
1077 		if (i2c_wait_txis(hi2c, timeout_ref))
1078 			goto bail;
1079 
1080 		io_write8(base + I2C_TXDR, *p_buff);
1081 		p_buff++;
1082 		xfer_count--;
1083 		xfer_size--;
1084 
1085 		if (xfer_count && !xfer_size) {
1086 			/* Wait until TCR flag is set */
1087 			if (wait_isr_event(hi2c, I2C_ISR_TCR, 1, timeout_ref))
1088 				goto bail;
1089 
1090 			if (xfer_count > MAX_NBYTE_SIZE) {
1091 				xfer_size = MAX_NBYTE_SIZE;
1092 				i2c_transfer_config(hi2c, request->dev_addr,
1093 						    xfer_size,
1094 						    I2C_RELOAD_MODE,
1095 						    I2C_NO_STARTSTOP);
1096 			} else {
1097 				xfer_size = xfer_count;
1098 				i2c_transfer_config(hi2c, request->dev_addr,
1099 						    xfer_size,
1100 						    I2C_AUTOEND_MODE,
1101 						    I2C_NO_STARTSTOP);
1102 			}
1103 		}
1104 
1105 	} while (xfer_count > 0U);
1106 
1107 	/*
1108 	 * No need to Check TC flag, with AUTOEND mode the stop
1109 	 * is automatically generated.
1110 	 * Wait until STOPF flag is reset.
1111 	 */
1112 	if (i2c_wait_stop(hi2c, timeout_ref))
1113 		goto bail;
1114 
1115 	io_write32(base + I2C_ICR, I2C_ISR_STOPF);
1116 
1117 	io_clrbits32(base + I2C_CR2, CR2_RESET_MASK);
1118 
1119 	hi2c->i2c_state = I2C_STATE_READY;
1120 
1121 	rc = 0;
1122 
1123 bail:
1124 	stm32_clock_disable(hi2c->clock);
1125 
1126 	return rc;
1127 }
1128 
1129 int stm32_i2c_mem_write(struct i2c_handle_s *hi2c, uint32_t dev_addr,
1130 			uint32_t mem_addr, uint32_t mem_addr_size,
1131 			uint8_t *p_data, size_t size, unsigned int timeout_ms)
1132 {
1133 	struct i2c_request request = {
1134 		.dev_addr = dev_addr,
1135 		.mode = I2C_MODE_MEM,
1136 		.mem_addr = mem_addr,
1137 		.mem_addr_size = mem_addr_size,
1138 		.timeout_ms = timeout_ms,
1139 	};
1140 
1141 	return i2c_write(hi2c, &request, p_data, size);
1142 }
1143 
1144 int stm32_i2c_master_transmit(struct i2c_handle_s *hi2c, uint32_t dev_addr,
1145 			      uint8_t *p_data, size_t size,
1146 			      unsigned int timeout_ms)
1147 {
1148 	struct i2c_request request = {
1149 		.dev_addr = dev_addr,
1150 		.mode = I2C_MODE_MASTER,
1151 		.timeout_ms = timeout_ms,
1152 	};
1153 
1154 	return i2c_write(hi2c, &request, p_data, size);
1155 }
1156 
1157 int stm32_i2c_read_write_membyte(struct i2c_handle_s *hi2c, uint16_t dev_addr,
1158 				 unsigned int mem_addr, uint8_t *p_data,
1159 				 bool write)
1160 {
1161 	uint64_t timeout_ref = 0;
1162 	uintptr_t base = get_base(hi2c);
1163 	int rc = -1;
1164 	uint8_t *p_buff = p_data;
1165 	uint32_t event_mask = 0;
1166 
1167 	if (hi2c->i2c_state != I2C_STATE_READY || !p_data)
1168 		return -1;
1169 
1170 	stm32_clock_enable(hi2c->clock);
1171 
1172 	timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US);
1173 	if (wait_isr_event(hi2c, I2C_ISR_BUSY, 0, timeout_ref))
1174 		goto bail;
1175 
1176 	hi2c->i2c_state = write ? I2C_STATE_BUSY_TX : I2C_STATE_BUSY_RX;
1177 	hi2c->i2c_err = I2C_ERROR_NONE;
1178 
1179 	i2c_transfer_config(hi2c, dev_addr, I2C_MEMADD_SIZE_8BIT,
1180 			    write ? I2C_RELOAD_MODE : I2C_SOFTEND_MODE,
1181 			    I2C_GENERATE_START_WRITE);
1182 
1183 	timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US);
1184 	if (i2c_wait_txis(hi2c, timeout_ref))
1185 		goto bail;
1186 
1187 	io_write8(base + I2C_TXDR, mem_addr);
1188 
1189 	if (write)
1190 		event_mask = I2C_ISR_TCR;
1191 	else
1192 		event_mask = I2C_ISR_TC;
1193 
1194 	timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US);
1195 	if (wait_isr_event(hi2c, event_mask, 1, timeout_ref))
1196 		goto bail;
1197 
1198 	i2c_transfer_config(hi2c, dev_addr, I2C_MEMADD_SIZE_8BIT,
1199 			    I2C_AUTOEND_MODE,
1200 			    write ? I2C_NO_STARTSTOP : I2C_GENERATE_START_READ);
1201 
1202 	timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US);
1203 	if (write) {
1204 		if (i2c_wait_txis(hi2c, timeout_ref))
1205 			goto bail;
1206 
1207 		io_write8(base + I2C_TXDR, *p_buff);
1208 	} else {
1209 		if (wait_isr_event(hi2c, I2C_ISR_RXNE, 1, timeout_ref))
1210 			goto bail;
1211 
1212 		*p_buff = io_read8(base + I2C_RXDR);
1213 	}
1214 
1215 	timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US);
1216 	if (i2c_wait_stop(hi2c, timeout_ref))
1217 		goto bail;
1218 
1219 	io_write32(base + I2C_ICR, I2C_ISR_STOPF);
1220 	io_clrbits32(base + I2C_CR2, CR2_RESET_MASK);
1221 
1222 	hi2c->i2c_state = I2C_STATE_READY;
1223 
1224 	rc = 0;
1225 
1226 bail:
1227 	stm32_clock_disable(hi2c->clock);
1228 
1229 	return rc;
1230 }
1231 
1232 /*
1233  * Read an amount of data in blocking mode
1234  *
1235  * @hi2c: Reference to struct i2c_handle_s
1236  * @request: I2C request parameters
1237  * @p_data: Pointer to data buffer
1238  * @size: Amount of data to be sent
1239  * Return 0 on success or a negative value
1240  */
1241 static int i2c_read(struct i2c_handle_s *hi2c, struct i2c_request *request,
1242 		    uint8_t *p_data, uint32_t size)
1243 {
1244 	vaddr_t base = get_base(hi2c);
1245 	uint64_t timeout_ref = 0;
1246 	int rc = -1;
1247 	uint8_t *p_buff = p_data;
1248 	size_t xfer_count = size;
1249 	size_t xfer_size = 0;
1250 
1251 	if (request->mode != I2C_MODE_MASTER && request->mode != I2C_MODE_MEM)
1252 		return -1;
1253 
1254 	if (hi2c->i2c_state != I2C_STATE_READY)
1255 		return -1;
1256 
1257 	if (!p_data || !size)
1258 		return -1;
1259 
1260 	stm32_clock_enable(hi2c->clock);
1261 
1262 	timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_MS * 1000);
1263 	if (wait_isr_event(hi2c, I2C_ISR_BUSY, 0, timeout_ref))
1264 		goto bail;
1265 
1266 	hi2c->i2c_state = I2C_STATE_BUSY_RX;
1267 	hi2c->i2c_err = I2C_ERROR_NONE;
1268 	timeout_ref = timeout_init_us(request->timeout_ms * 1000);
1269 
1270 	if (request->mode == I2C_MODE_MEM) {
1271 		/* Send memory address */
1272 		if (i2c_request_mem_read(hi2c, request, timeout_ref))
1273 			goto bail;
1274 	}
1275 
1276 	/*
1277 	 * Send slave address.
1278 	 * Set NBYTES to write and reload if xfer_count > MAX_NBYTE_SIZE
1279 	 * and generate RESTART.
1280 	 */
1281 	if (xfer_count > MAX_NBYTE_SIZE) {
1282 		xfer_size = MAX_NBYTE_SIZE;
1283 		i2c_transfer_config(hi2c, request->dev_addr, xfer_size,
1284 				    I2C_RELOAD_MODE, I2C_GENERATE_START_READ);
1285 	} else {
1286 		xfer_size = xfer_count;
1287 		i2c_transfer_config(hi2c, request->dev_addr, xfer_size,
1288 				    I2C_AUTOEND_MODE, I2C_GENERATE_START_READ);
1289 	}
1290 
1291 	do {
1292 		if (wait_isr_event(hi2c, I2C_ISR_RXNE, 1, timeout_ref))
1293 			goto bail;
1294 
1295 		*p_buff = io_read8(base + I2C_RXDR);
1296 		p_buff++;
1297 		xfer_size--;
1298 		xfer_count--;
1299 
1300 		if (xfer_count && !xfer_size) {
1301 			if (wait_isr_event(hi2c, I2C_ISR_TCR, 1, timeout_ref))
1302 				goto bail;
1303 
1304 			if (xfer_count > MAX_NBYTE_SIZE) {
1305 				xfer_size = MAX_NBYTE_SIZE;
1306 				i2c_transfer_config(hi2c, request->dev_addr,
1307 						    xfer_size,
1308 						    I2C_RELOAD_MODE,
1309 						    I2C_NO_STARTSTOP);
1310 			} else {
1311 				xfer_size = xfer_count;
1312 				i2c_transfer_config(hi2c, request->dev_addr,
1313 						    xfer_size,
1314 						    I2C_AUTOEND_MODE,
1315 						    I2C_NO_STARTSTOP);
1316 			}
1317 		}
1318 	} while (xfer_count > 0U);
1319 
1320 	/*
1321 	 * No need to Check TC flag, with AUTOEND mode the stop
1322 	 * is automatically generated.
1323 	 * Wait until STOPF flag is reset.
1324 	 */
1325 	if (i2c_wait_stop(hi2c, timeout_ref))
1326 		goto bail;
1327 
1328 	io_write32(base + I2C_ICR, I2C_ISR_STOPF);
1329 
1330 	io_clrbits32(base + I2C_CR2, CR2_RESET_MASK);
1331 
1332 	hi2c->i2c_state = I2C_STATE_READY;
1333 
1334 	rc = 0;
1335 
1336 bail:
1337 	stm32_clock_disable(hi2c->clock);
1338 
1339 	return rc;
1340 }
1341 
1342 int stm32_i2c_mem_read(struct i2c_handle_s *hi2c, uint32_t dev_addr,
1343 		       uint32_t mem_addr, uint32_t mem_addr_size,
1344 		       uint8_t *p_data, size_t size, unsigned int timeout_ms)
1345 {
1346 	struct i2c_request request = {
1347 		.dev_addr = dev_addr,
1348 		.mode = I2C_MODE_MEM,
1349 		.mem_addr = mem_addr,
1350 		.mem_addr_size = mem_addr_size,
1351 		.timeout_ms = timeout_ms,
1352 	};
1353 
1354 	return i2c_read(hi2c, &request, p_data, size);
1355 }
1356 
1357 int stm32_i2c_master_receive(struct i2c_handle_s *hi2c, uint32_t dev_addr,
1358 			     uint8_t *p_data, size_t size,
1359 			     unsigned int timeout_ms)
1360 {
1361 	struct i2c_request request = {
1362 		.dev_addr = dev_addr,
1363 		.mode = I2C_MODE_MASTER,
1364 		.timeout_ms = timeout_ms,
1365 	};
1366 
1367 	return i2c_read(hi2c, &request, p_data, size);
1368 }
1369 
1370 bool stm32_i2c_is_device_ready(struct i2c_handle_s *hi2c, uint32_t dev_addr,
1371 			       unsigned int trials, unsigned int timeout_ms)
1372 {
1373 	vaddr_t base = get_base(hi2c);
1374 	unsigned int i2c_trials = 0U;
1375 	bool rc = false;
1376 
1377 	if (hi2c->i2c_state != I2C_STATE_READY)
1378 		return rc;
1379 
1380 	stm32_clock_enable(hi2c->clock);
1381 
1382 	if (io_read32(base + I2C_ISR) & I2C_ISR_BUSY)
1383 		goto bail;
1384 
1385 	hi2c->i2c_state = I2C_STATE_BUSY;
1386 	hi2c->i2c_err = I2C_ERROR_NONE;
1387 
1388 	do {
1389 		uint64_t timeout_ref = 0;
1390 		vaddr_t isr = base + I2C_ISR;
1391 
1392 		/* Generate Start */
1393 		if ((io_read32(base + I2C_OAR1) & I2C_OAR1_OA1MODE) == 0)
1394 			io_write32(base + I2C_CR2,
1395 				   ((dev_addr & I2C_CR2_SADD) |
1396 				    I2C_CR2_START | I2C_CR2_AUTOEND) &
1397 				   ~I2C_CR2_RD_WRN);
1398 		else
1399 			io_write32(base + I2C_CR2,
1400 				   ((dev_addr & I2C_CR2_SADD) |
1401 				    I2C_CR2_START | I2C_CR2_ADD10) &
1402 				   ~I2C_CR2_RD_WRN);
1403 
1404 		/*
1405 		 * No need to Check TC flag, with AUTOEND mode the stop
1406 		 * is automatically generated.
1407 		 * Wait until STOPF flag is set or a NACK flag is set.
1408 		 */
1409 		timeout_ref = timeout_init_us(timeout_ms * 1000);
1410 		while (!timeout_elapsed(timeout_ref))
1411 			if (io_read32(isr) & (I2C_ISR_STOPF | I2C_ISR_NACKF))
1412 				break;
1413 
1414 		if ((io_read32(isr) & (I2C_ISR_STOPF | I2C_ISR_NACKF)) == 0) {
1415 			notif_i2c_timeout(hi2c);
1416 			goto bail;
1417 		}
1418 
1419 		if ((io_read32(base + I2C_ISR) & I2C_ISR_NACKF) == 0U) {
1420 			if (wait_isr_event(hi2c, I2C_ISR_STOPF, 1, timeout_ref))
1421 				goto bail;
1422 
1423 			io_write32(base + I2C_ICR, I2C_ISR_STOPF);
1424 
1425 			hi2c->i2c_state = I2C_STATE_READY;
1426 
1427 			rc = true;
1428 			goto bail;
1429 		}
1430 
1431 		if (wait_isr_event(hi2c, I2C_ISR_STOPF, 1, timeout_ref))
1432 			goto bail;
1433 
1434 		io_write32(base + I2C_ICR, I2C_ISR_NACKF);
1435 		io_write32(base + I2C_ICR, I2C_ISR_STOPF);
1436 
1437 		if (i2c_trials == trials) {
1438 			io_setbits32(base + I2C_CR2, I2C_CR2_STOP);
1439 
1440 			if (wait_isr_event(hi2c, I2C_ISR_STOPF, 1, timeout_ref))
1441 				goto bail;
1442 
1443 			io_write32(base + I2C_ICR, I2C_ISR_STOPF);
1444 		}
1445 
1446 		i2c_trials++;
1447 	} while (i2c_trials < trials);
1448 
1449 	notif_i2c_timeout(hi2c);
1450 
1451 bail:
1452 	stm32_clock_disable(hi2c->clock);
1453 
1454 	return rc;
1455 }
1456 
1457 void stm32_i2c_resume(struct i2c_handle_s *hi2c)
1458 {
1459 	if (hi2c->i2c_state == I2C_STATE_READY)
1460 		return;
1461 
1462 	if ((hi2c->i2c_state != I2C_STATE_RESET) &&
1463 	    (hi2c->i2c_state != I2C_STATE_SUSPENDED))
1464 		panic();
1465 
1466 	stm32_pinctrl_load_active_cfg(hi2c->pinctrl, hi2c->pinctrl_count);
1467 
1468 	if (hi2c->i2c_state == I2C_STATE_RESET) {
1469 		/* There is no valid I2C configuration to be loaded yet */
1470 		return;
1471 	}
1472 
1473 	restore_cfg(hi2c, &hi2c->sec_cfg);
1474 
1475 	hi2c->i2c_state = I2C_STATE_READY;
1476 }
1477 
1478 void stm32_i2c_suspend(struct i2c_handle_s *hi2c)
1479 {
1480 	if (hi2c->i2c_state == I2C_STATE_SUSPENDED)
1481 		return;
1482 
1483 	if (hi2c->i2c_state != I2C_STATE_READY)
1484 		panic();
1485 
1486 	save_cfg(hi2c, &hi2c->sec_cfg);
1487 	stm32_pinctrl_load_standby_cfg(hi2c->pinctrl, hi2c->pinctrl_count);
1488 
1489 	hi2c->i2c_state = I2C_STATE_SUSPENDED;
1490 }
1491