1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (c) 2017-2019, STMicroelectronics 4 * 5 * The driver API is defined in header file stm32_i2c.h. 6 * 7 * I2C bus driver does not register to the PM framework. It is the 8 * responsibility of the bus owner to call the related STM32 I2C driver 9 * API functions when bus suspends or resumes. 10 */ 11 12 #include <arm.h> 13 #include <drivers/clk.h> 14 #include <drivers/clk_dt.h> 15 #include <drivers/pinctrl.h> 16 #include <drivers/stm32_gpio.h> 17 #include <drivers/stm32_i2c.h> 18 #include <io.h> 19 #include <kernel/delay.h> 20 #include <kernel/dt.h> 21 #include <kernel/dt_driver.h> 22 #include <kernel/boot.h> 23 #include <kernel/panic.h> 24 #include <libfdt.h> 25 #include <stdbool.h> 26 #include <stdlib.h> 27 #include <stm32_util.h> 28 #include <trace.h> 29 30 /* STM32 I2C registers offsets */ 31 #define I2C_CR1 0x00U 32 #define I2C_CR2 0x04U 33 #define I2C_OAR1 0x08U 34 #define I2C_OAR2 0x0CU 35 #define I2C_TIMINGR 0x10U 36 #define I2C_TIMEOUTR 0x14U 37 #define I2C_ISR 0x18U 38 #define I2C_ICR 0x1CU 39 #define I2C_PECR 0x20U 40 #define I2C_RXDR 0x24U 41 #define I2C_TXDR 0x28U 42 #define I2C_SIZE 0x2CU 43 44 /* Bit definition for I2C_CR1 register */ 45 #define I2C_CR1_PE BIT(0) 46 #define I2C_CR1_TXIE BIT(1) 47 #define I2C_CR1_RXIE BIT(2) 48 #define I2C_CR1_ADDRIE BIT(3) 49 #define I2C_CR1_NACKIE BIT(4) 50 #define I2C_CR1_STOPIE BIT(5) 51 #define I2C_CR1_TCIE BIT(6) 52 #define I2C_CR1_ERRIE BIT(7) 53 #define I2C_CR1_DNF GENMASK_32(11, 8) 54 #define I2C_CR1_ANFOFF BIT(12) 55 #define I2C_CR1_SWRST BIT(13) 56 #define I2C_CR1_TXDMAEN BIT(14) 57 #define I2C_CR1_RXDMAEN BIT(15) 58 #define I2C_CR1_SBC BIT(16) 59 #define I2C_CR1_NOSTRETCH BIT(17) 60 #define I2C_CR1_WUPEN BIT(18) 61 #define I2C_CR1_GCEN BIT(19) 62 #define I2C_CR1_SMBHEN BIT(22) 63 #define I2C_CR1_SMBDEN BIT(21) 64 #define I2C_CR1_ALERTEN BIT(22) 65 #define I2C_CR1_PECEN BIT(23) 66 67 /* Bit definition for I2C_CR2 register */ 68 #define I2C_CR2_SADD GENMASK_32(9, 0) 69 #define I2C_CR2_RD_WRN BIT(10) 70 #define I2C_CR2_RD_WRN_OFFSET 10U 71 #define I2C_CR2_ADD10 BIT(11) 72 #define I2C_CR2_HEAD10R BIT(12) 73 #define I2C_CR2_START BIT(13) 74 #define I2C_CR2_STOP BIT(14) 75 #define I2C_CR2_NACK BIT(15) 76 #define I2C_CR2_NBYTES GENMASK_32(23, 16) 77 #define I2C_CR2_NBYTES_OFFSET 16U 78 #define I2C_CR2_RELOAD BIT(24) 79 #define I2C_CR2_AUTOEND BIT(25) 80 #define I2C_CR2_PECBYTE BIT(26) 81 82 /* Bit definition for I2C_OAR1 register */ 83 #define I2C_OAR1_OA1 GENMASK_32(9, 0) 84 #define I2C_OAR1_OA1MODE BIT(10) 85 #define I2C_OAR1_OA1EN BIT(15) 86 87 /* Bit definition for I2C_OAR2 register */ 88 #define I2C_OAR2_OA2 GENMASK_32(7, 1) 89 #define I2C_OAR2_OA2MSK GENMASK_32(10, 8) 90 #define I2C_OAR2_OA2NOMASK 0 91 #define I2C_OAR2_OA2MASK01 BIT(8) 92 #define I2C_OAR2_OA2MASK02 BIT(9) 93 #define I2C_OAR2_OA2MASK03 GENMASK_32(9, 8) 94 #define I2C_OAR2_OA2MASK04 BIT(10) 95 #define I2C_OAR2_OA2MASK05 (BIT(8) | BIT(10)) 96 #define I2C_OAR2_OA2MASK06 (BIT(9) | BIT(10)) 97 #define I2C_OAR2_OA2MASK07 GENMASK_32(10, 8) 98 #define I2C_OAR2_OA2EN BIT(15) 99 100 /* Bit definition for I2C_TIMINGR register */ 101 #define I2C_TIMINGR_SCLL GENMASK_32(7, 0) 102 #define I2C_TIMINGR_SCLH GENMASK_32(15, 8) 103 #define I2C_TIMINGR_SDADEL GENMASK_32(19, 16) 104 #define I2C_TIMINGR_SCLDEL GENMASK_32(23, 20) 105 #define I2C_TIMINGR_PRESC GENMASK_32(31, 28) 106 #define I2C_TIMINGR_SCLL_MAX (I2C_TIMINGR_SCLL + 1) 107 #define I2C_TIMINGR_SCLH_MAX ((I2C_TIMINGR_SCLH >> 8) + 1) 108 #define I2C_TIMINGR_SDADEL_MAX ((I2C_TIMINGR_SDADEL >> 16) + 1) 109 #define I2C_TIMINGR_SCLDEL_MAX ((I2C_TIMINGR_SCLDEL >> 20) + 1) 110 #define I2C_TIMINGR_PRESC_MAX ((I2C_TIMINGR_PRESC >> 28) + 1) 111 #define I2C_SET_TIMINGR_SCLL(n) ((n) & \ 112 (I2C_TIMINGR_SCLL_MAX - 1)) 113 #define I2C_SET_TIMINGR_SCLH(n) (((n) & \ 114 (I2C_TIMINGR_SCLH_MAX - 1)) << 8) 115 #define I2C_SET_TIMINGR_SDADEL(n) (((n) & \ 116 (I2C_TIMINGR_SDADEL_MAX - 1)) << 16) 117 #define I2C_SET_TIMINGR_SCLDEL(n) (((n) & \ 118 (I2C_TIMINGR_SCLDEL_MAX - 1)) << 20) 119 #define I2C_SET_TIMINGR_PRESC(n) (((n) & \ 120 (I2C_TIMINGR_PRESC_MAX - 1)) << 28) 121 122 /* Bit definition for I2C_TIMEOUTR register */ 123 #define I2C_TIMEOUTR_TIMEOUTA GENMASK_32(11, 0) 124 #define I2C_TIMEOUTR_TIDLE BIT(12) 125 #define I2C_TIMEOUTR_TIMOUTEN BIT(15) 126 #define I2C_TIMEOUTR_TIMEOUTB GENMASK_32(27, 16) 127 #define I2C_TIMEOUTR_TEXTEN BIT(31) 128 129 /* Bit definition for I2C_ISR register */ 130 #define I2C_ISR_TXE BIT(0) 131 #define I2C_ISR_TXIS BIT(1) 132 #define I2C_ISR_RXNE BIT(2) 133 #define I2C_ISR_ADDR BIT(3) 134 #define I2C_ISR_NACKF BIT(4) 135 #define I2C_ISR_STOPF BIT(5) 136 #define I2C_ISR_TC BIT(6) 137 #define I2C_ISR_TCR BIT(7) 138 #define I2C_ISR_BERR BIT(8) 139 #define I2C_ISR_ARLO BIT(9) 140 #define I2C_ISR_OVR BIT(10) 141 #define I2C_ISR_PECERR BIT(11) 142 #define I2C_ISR_TIMEOUT BIT(12) 143 #define I2C_ISR_ALERT BIT(13) 144 #define I2C_ISR_BUSY BIT(15) 145 #define I2C_ISR_DIR BIT(16) 146 #define I2C_ISR_ADDCODE GENMASK_32(23, 17) 147 148 /* Bit definition for I2C_ICR register */ 149 #define I2C_ICR_ADDRCF BIT(3) 150 #define I2C_ICR_NACKCF BIT(4) 151 #define I2C_ICR_STOPCF BIT(5) 152 #define I2C_ICR_BERRCF BIT(8) 153 #define I2C_ICR_ARLOCF BIT(9) 154 #define I2C_ICR_OVRCF BIT(10) 155 #define I2C_ICR_PECCF BIT(11) 156 #define I2C_ICR_TIMOUTCF BIT(12) 157 #define I2C_ICR_ALERTCF BIT(13) 158 159 /* Max data size for a single I2C transfer */ 160 #define MAX_NBYTE_SIZE 255U 161 162 #define I2C_NSEC_PER_SEC 1000000000UL 163 #define I2C_TIMEOUT_BUSY_MS 25 164 #define I2C_TIMEOUT_BUSY_US (I2C_TIMEOUT_BUSY_MS * 1000) 165 #define I2C_TIMEOUT_RXNE_MS 5 166 167 #define I2C_TIMEOUT_DEFAULT_MS 100 168 169 #define CR2_RESET_MASK (I2C_CR2_SADD | I2C_CR2_HEAD10R | \ 170 I2C_CR2_NBYTES | I2C_CR2_RELOAD | \ 171 I2C_CR2_RD_WRN) 172 173 #define TIMINGR_CLEAR_MASK (I2C_TIMINGR_SCLL | I2C_TIMINGR_SCLH | \ 174 I2C_TIMINGR_SDADEL | \ 175 I2C_TIMINGR_SCLDEL | I2C_TIMINGR_PRESC) 176 177 /* 178 * I2C transfer modes 179 * I2C_RELOAD: Enable Reload mode 180 * I2C_AUTOEND_MODE: Enable automatic end mode 181 * I2C_SOFTEND_MODE: Enable software end mode 182 */ 183 #define I2C_RELOAD_MODE I2C_CR2_RELOAD 184 #define I2C_AUTOEND_MODE I2C_CR2_AUTOEND 185 #define I2C_SOFTEND_MODE 0x0 186 187 /* 188 * Start/restart/stop I2C transfer requests. 189 * 190 * I2C_NO_STARTSTOP: Don't Generate stop and start condition 191 * I2C_GENERATE_STOP: Generate stop condition (size should be set to 0) 192 * I2C_GENERATE_START_READ: Generate Restart for read request. 193 * I2C_GENERATE_START_WRITE: Generate Restart for write request 194 */ 195 #define I2C_NO_STARTSTOP 0x0 196 #define I2C_GENERATE_STOP (BIT(31) | I2C_CR2_STOP) 197 #define I2C_GENERATE_START_READ (BIT(31) | I2C_CR2_START | \ 198 I2C_CR2_RD_WRN) 199 #define I2C_GENERATE_START_WRITE (BIT(31) | I2C_CR2_START) 200 201 /* Memory address byte sizes */ 202 #define I2C_MEMADD_SIZE_8BIT 1 203 #define I2C_MEMADD_SIZE_16BIT 2 204 205 /* Effective rate cannot be lower than 80% target rate */ 206 #define RATE_MIN(rate) (((rate) * 80U) / 100U) 207 208 /* 209 * struct i2c_spec_s - Private I2C timing specifications. 210 * @rate: I2C bus speed (Hz) 211 * @fall_max: Max fall time of both SDA and SCL signals (ns) 212 * @rise_max: Max rise time of both SDA and SCL signals (ns) 213 * @hddat_min: Min data hold time (ns) 214 * @vddat_max: Max data valid time (ns) 215 * @sudat_min: Min data setup time (ns) 216 * @l_min: Min low period of the SCL clock (ns) 217 * @h_min: Min high period of the SCL clock (ns) 218 */ 219 struct i2c_spec_s { 220 uint32_t rate; 221 uint32_t fall_max; 222 uint32_t rise_max; 223 uint32_t hddat_min; 224 uint32_t vddat_max; 225 uint32_t sudat_min; 226 uint32_t l_min; 227 uint32_t h_min; 228 }; 229 230 /* 231 * struct i2c_timing_s - Private I2C output parameters. 232 * @scldel: Data setup time 233 * @sdadel: Data hold time 234 * @sclh: SCL high period (master mode) 235 * @sclh: SCL low period (master mode) 236 * @is_saved: True if relating to a configuration candidate 237 */ 238 struct i2c_timing_s { 239 uint8_t scldel; 240 uint8_t sdadel; 241 uint8_t sclh; 242 uint8_t scll; 243 bool is_saved; 244 }; 245 246 /* This table must be sorted in increasing value for field @rate */ 247 static const struct i2c_spec_s i2c_specs[] = { 248 /* Standard - 100KHz */ 249 { 250 .rate = I2C_STANDARD_RATE, 251 .fall_max = 300, 252 .rise_max = 1000, 253 .hddat_min = 0, 254 .vddat_max = 3450, 255 .sudat_min = 250, 256 .l_min = 4700, 257 .h_min = 4000, 258 }, 259 /* Fast - 400KHz */ 260 { 261 .rate = I2C_FAST_RATE, 262 .fall_max = 300, 263 .rise_max = 300, 264 .hddat_min = 0, 265 .vddat_max = 900, 266 .sudat_min = 100, 267 .l_min = 1300, 268 .h_min = 600, 269 }, 270 /* FastPlus - 1MHz */ 271 { 272 .rate = I2C_FAST_PLUS_RATE, 273 .fall_max = 100, 274 .rise_max = 120, 275 .hddat_min = 0, 276 .vddat_max = 450, 277 .sudat_min = 50, 278 .l_min = 500, 279 .h_min = 260, 280 }, 281 }; 282 283 /* 284 * I2C request parameters 285 * @dev_addr: I2C address of the target device 286 * @mode: Communication mode, one of I2C_MODE_(MASTER|MEM) 287 * @mem_addr: Target memory cell accessed in device (memory mode) 288 * @mem_addr_size: Byte size of the memory cell address (memory mode) 289 * @timeout_ms: Timeout in millisenconds for the request 290 */ 291 struct i2c_request { 292 uint32_t dev_addr; 293 enum i2c_mode_e mode; 294 uint32_t mem_addr; 295 uint32_t mem_addr_size; 296 unsigned int timeout_ms; 297 }; 298 299 static vaddr_t get_base(struct i2c_handle_s *hi2c) 300 { 301 return io_pa_or_va_secure(&hi2c->base, hi2c->reg_size); 302 } 303 304 static void notif_i2c_timeout(struct i2c_handle_s *hi2c) 305 { 306 hi2c->i2c_err |= I2C_ERROR_TIMEOUT; 307 hi2c->i2c_state = I2C_STATE_READY; 308 } 309 310 static const struct i2c_spec_s *get_specs(uint32_t rate) 311 { 312 size_t i = 0; 313 314 for (i = 0; i < ARRAY_SIZE(i2c_specs); i++) 315 if (rate <= i2c_specs[i].rate) 316 return i2c_specs + i; 317 318 return NULL; 319 } 320 321 static void save_cfg(struct i2c_handle_s *hi2c, struct i2c_cfg *cfg) 322 { 323 vaddr_t base = get_base(hi2c); 324 325 clk_enable(hi2c->clock); 326 327 cfg->cr1 = io_read32(base + I2C_CR1); 328 cfg->cr2 = io_read32(base + I2C_CR2); 329 cfg->oar1 = io_read32(base + I2C_OAR1); 330 cfg->oar2 = io_read32(base + I2C_OAR2); 331 cfg->timingr = io_read32(base + I2C_TIMINGR); 332 333 clk_disable(hi2c->clock); 334 } 335 336 static void restore_cfg(struct i2c_handle_s *hi2c, struct i2c_cfg *cfg) 337 { 338 vaddr_t base = get_base(hi2c); 339 340 clk_enable(hi2c->clock); 341 342 io_clrbits32(base + I2C_CR1, I2C_CR1_PE); 343 io_write32(base + I2C_TIMINGR, cfg->timingr & TIMINGR_CLEAR_MASK); 344 io_write32(base + I2C_OAR1, cfg->oar1); 345 io_write32(base + I2C_CR2, cfg->cr2); 346 io_write32(base + I2C_OAR2, cfg->oar2); 347 io_write32(base + I2C_CR1, cfg->cr1 & ~I2C_CR1_PE); 348 io_setbits32(base + I2C_CR1, cfg->cr1 & I2C_CR1_PE); 349 350 clk_disable(hi2c->clock); 351 } 352 353 static void __maybe_unused dump_cfg(struct i2c_cfg *cfg __maybe_unused) 354 { 355 DMSG("CR1: %#"PRIx32, cfg->cr1); 356 DMSG("CR2: %#"PRIx32, cfg->cr2); 357 DMSG("OAR1: %#"PRIx32, cfg->oar1); 358 DMSG("OAR2: %#"PRIx32, cfg->oar2); 359 DMSG("TIM: %#"PRIx32, cfg->timingr); 360 } 361 362 static void __maybe_unused dump_i2c(struct i2c_handle_s *hi2c) 363 { 364 vaddr_t __maybe_unused base = get_base(hi2c); 365 366 clk_enable(hi2c->clock); 367 368 DMSG("CR1: %#"PRIx32, io_read32(base + I2C_CR1)); 369 DMSG("CR2: %#"PRIx32, io_read32(base + I2C_CR2)); 370 DMSG("OAR1: %#"PRIx32, io_read32(base + I2C_OAR1)); 371 DMSG("OAR2: %#"PRIx32, io_read32(base + I2C_OAR2)); 372 DMSG("TIM: %#"PRIx32, io_read32(base + I2C_TIMINGR)); 373 374 clk_disable(hi2c->clock); 375 } 376 377 /* 378 * Compute the I2C device timings 379 * 380 * @init: Ref to the initialization configuration structure 381 * @clock_src: I2C clock source frequency (Hz) 382 * @timing: Pointer to the final computed timing result 383 * Return 0 on success or a negative value 384 */ 385 static int i2c_compute_timing(struct stm32_i2c_init_s *init, 386 unsigned long clock_src, uint32_t *timing) 387 { 388 const struct i2c_spec_s *specs = NULL; 389 uint32_t speed_freq = 0; 390 uint32_t i2cbus = UDIV_ROUND_NEAREST(I2C_NSEC_PER_SEC, speed_freq); 391 uint32_t i2cclk = UDIV_ROUND_NEAREST(I2C_NSEC_PER_SEC, clock_src); 392 uint32_t p_prev = I2C_TIMINGR_PRESC_MAX; 393 uint32_t af_delay_min = 0; 394 uint32_t af_delay_max = 0; 395 uint32_t dnf_delay = 0; 396 uint32_t tsync = 0; 397 uint32_t clk_min = 0; 398 uint32_t clk_max = 0; 399 int clk_error_prev = 0; 400 uint16_t p = 0; 401 uint16_t l = 0; 402 uint16_t a = 0; 403 uint16_t h = 0; 404 unsigned int sdadel_min = 0; 405 unsigned int sdadel_max = 0; 406 unsigned int scldel_min = 0; 407 unsigned int delay = 0; 408 int s = -1; 409 struct i2c_timing_s solutions[I2C_TIMINGR_PRESC_MAX] = { 0 }; 410 411 specs = get_specs(init->bus_rate); 412 if (!specs) { 413 DMSG("I2C speed out of bound: %"PRId32"Hz", init->bus_rate); 414 return -1; 415 } 416 417 speed_freq = specs->rate; 418 i2cbus = UDIV_ROUND_NEAREST(I2C_NSEC_PER_SEC, speed_freq); 419 clk_error_prev = INT_MAX; 420 421 if (init->rise_time > specs->rise_max || 422 init->fall_time > specs->fall_max) { 423 DMSG("I2C rise{%"PRId32">%"PRId32"}/fall{%"PRId32">%"PRId32"}", 424 init->rise_time, specs->rise_max, 425 init->fall_time, specs->fall_max); 426 return -1; 427 } 428 429 if (init->digital_filter_coef > STM32_I2C_DIGITAL_FILTER_MAX) { 430 DMSG("DNF out of bound %"PRId8"/%d", 431 init->digital_filter_coef, STM32_I2C_DIGITAL_FILTER_MAX); 432 return -1; 433 } 434 435 /* Analog and Digital Filters */ 436 if (init->analog_filter) { 437 af_delay_min = STM32_I2C_ANALOG_FILTER_DELAY_MIN; 438 af_delay_max = STM32_I2C_ANALOG_FILTER_DELAY_MAX; 439 } 440 dnf_delay = init->digital_filter_coef * i2cclk; 441 442 sdadel_min = specs->hddat_min + init->fall_time; 443 delay = af_delay_min - ((init->digital_filter_coef + 3) * i2cclk); 444 if (SUB_OVERFLOW(sdadel_min, delay, &sdadel_min)) 445 sdadel_min = 0; 446 447 sdadel_max = specs->vddat_max - init->rise_time; 448 delay = af_delay_max - ((init->digital_filter_coef + 4) * i2cclk); 449 if (SUB_OVERFLOW(sdadel_max, delay, &sdadel_max)) 450 sdadel_max = 0; 451 452 scldel_min = init->rise_time + specs->sudat_min; 453 454 DMSG("I2C SDADEL(min/max): %u/%u, SCLDEL(Min): %u", 455 sdadel_min, sdadel_max, scldel_min); 456 457 /* Compute possible values for PRESC, SCLDEL and SDADEL */ 458 for (p = 0; p < I2C_TIMINGR_PRESC_MAX; p++) { 459 for (l = 0; l < I2C_TIMINGR_SCLDEL_MAX; l++) { 460 uint32_t scldel = (l + 1) * (p + 1) * i2cclk; 461 462 if (scldel < scldel_min) 463 continue; 464 465 for (a = 0; a < I2C_TIMINGR_SDADEL_MAX; a++) { 466 uint32_t sdadel = (a * (p + 1) + 1) * i2cclk; 467 468 if ((sdadel >= sdadel_min) && 469 (sdadel <= sdadel_max) && 470 (p != p_prev)) { 471 solutions[p].scldel = l; 472 solutions[p].sdadel = a; 473 solutions[p].is_saved = true; 474 p_prev = p; 475 break; 476 } 477 } 478 479 if (p_prev == p) 480 break; 481 } 482 } 483 484 if (p_prev == I2C_TIMINGR_PRESC_MAX) { 485 DMSG("I2C no Prescaler solution"); 486 return -1; 487 } 488 489 tsync = af_delay_min + dnf_delay + (2 * i2cclk); 490 clk_max = I2C_NSEC_PER_SEC / RATE_MIN(specs->rate); 491 clk_min = I2C_NSEC_PER_SEC / specs->rate; 492 493 /* 494 * Among prescaler possibilities discovered above figures out SCL Low 495 * and High Period. Provided: 496 * - SCL Low Period has to be higher than Low Period of the SCL Clock 497 * defined by I2C Specification. I2C Clock has to be lower than 498 * (SCL Low Period - Analog/Digital filters) / 4. 499 * - SCL High Period has to be lower than High Period of the SCL Clock 500 * defined by I2C Specification. 501 * - I2C Clock has to be lower than SCL High Period. 502 */ 503 for (p = 0; p < I2C_TIMINGR_PRESC_MAX; p++) { 504 uint32_t prescaler = (p + 1) * i2cclk; 505 506 if (!solutions[p].is_saved) 507 continue; 508 509 for (l = 0; l < I2C_TIMINGR_SCLL_MAX; l++) { 510 uint32_t tscl_l = ((l + 1) * prescaler) + tsync; 511 512 if (tscl_l < specs->l_min || 513 i2cclk >= ((tscl_l - af_delay_min - dnf_delay) / 4)) 514 continue; 515 516 for (h = 0; h < I2C_TIMINGR_SCLH_MAX; h++) { 517 uint32_t tscl_h = ((h + 1) * prescaler) + tsync; 518 uint32_t tscl = tscl_l + tscl_h + 519 init->rise_time + 520 init->fall_time; 521 522 if (tscl >= clk_min && tscl <= clk_max && 523 tscl_h >= specs->h_min && i2cclk < tscl_h) { 524 int clk_error = tscl - i2cbus; 525 526 if (clk_error < 0) 527 clk_error = -clk_error; 528 529 if (clk_error < clk_error_prev) { 530 clk_error_prev = clk_error; 531 solutions[p].scll = l; 532 solutions[p].sclh = h; 533 s = p; 534 } 535 } 536 } 537 } 538 } 539 540 if (s < 0) { 541 DMSG("I2C no solution at all"); 542 return -1; 543 } 544 545 /* Finalize timing settings */ 546 *timing = I2C_SET_TIMINGR_PRESC(s) | 547 I2C_SET_TIMINGR_SCLDEL(solutions[s].scldel) | 548 I2C_SET_TIMINGR_SDADEL(solutions[s].sdadel) | 549 I2C_SET_TIMINGR_SCLH(solutions[s].sclh) | 550 I2C_SET_TIMINGR_SCLL(solutions[s].scll); 551 552 DMSG("I2C TIMINGR (PRESC/SCLDEL/SDADEL): %i/%"PRIu8"/%"PRIu8, 553 s, solutions[s].scldel, solutions[s].sdadel); 554 DMSG("I2C TIMINGR (SCLH/SCLL): %"PRIu8"/%"PRIu8, 555 solutions[s].sclh, solutions[s].scll); 556 DMSG("I2C TIMINGR: 0x%"PRIx32, *timing); 557 558 return 0; 559 } 560 561 /* i2c_specs[] must be sorted by increasing rate */ 562 static bool __maybe_unused i2c_specs_is_consistent(void) 563 { 564 size_t i = 0; 565 566 COMPILE_TIME_ASSERT(ARRAY_SIZE(i2c_specs)); 567 568 for (i = 1; i < ARRAY_SIZE(i2c_specs); i++) 569 if (i2c_specs[i - 1].rate >= i2c_specs[i].rate) 570 return false; 571 572 return true; 573 } 574 575 /* 576 * @brief From requested rate, get the closest I2C rate without exceeding it, 577 * within I2C specification values defined in @i2c_specs. 578 * @param rate: The requested rate. 579 * @retval Found rate, else the lowest value supported by platform. 580 */ 581 static uint32_t get_lower_rate(uint32_t rate) 582 { 583 size_t i = 0; 584 585 for (i = ARRAY_SIZE(i2c_specs); i > 0; i--) 586 if (rate > i2c_specs[i - 1].rate) 587 return i2c_specs[i - 1].rate; 588 589 return i2c_specs[0].rate; 590 } 591 592 /* 593 * Setup the I2C device timings 594 * 595 * @hi2c: I2C handle structure 596 * @init: Ref to the initialization configuration structure 597 * @timing: Output TIMINGR register configuration value 598 * @retval 0 if OK, negative value else 599 */ 600 static int i2c_setup_timing(struct i2c_handle_s *hi2c, 601 struct stm32_i2c_init_s *init, 602 uint32_t *timing) 603 { 604 int rc = 0; 605 unsigned long clock_src = 0; 606 607 assert(i2c_specs_is_consistent()); 608 609 clock_src = clk_get_rate(hi2c->clock); 610 if (!clock_src) { 611 DMSG("Null I2C clock rate"); 612 return -1; 613 } 614 615 /* 616 * If the timing has already been computed, and the frequency is the 617 * same as when it was computed, then use the saved timing. 618 */ 619 if (clock_src == hi2c->saved_frequency) { 620 *timing = hi2c->saved_timing; 621 return 0; 622 } 623 624 do { 625 rc = i2c_compute_timing(init, clock_src, timing); 626 if (rc) { 627 DMSG("Failed to compute I2C timings"); 628 if (init->bus_rate > I2C_STANDARD_RATE) { 629 init->bus_rate = get_lower_rate(init->bus_rate); 630 IMSG("Downgrade I2C speed to %"PRIu32"Hz)", 631 init->bus_rate); 632 } else { 633 break; 634 } 635 } 636 } while (rc); 637 638 if (rc) { 639 DMSG("Impossible to compute I2C timings"); 640 return rc; 641 } 642 643 DMSG("I2C Freq(%"PRIu32"Hz), Clk Source(%lu)", 644 init->bus_rate, clock_src); 645 DMSG("I2C Rise(%"PRId32") and Fall(%"PRId32") Time", 646 init->rise_time, init->fall_time); 647 DMSG("I2C Analog Filter(%s), DNF(%"PRIu8")", 648 init->analog_filter ? "On" : "Off", init->digital_filter_coef); 649 650 hi2c->saved_timing = *timing; 651 hi2c->saved_frequency = clock_src; 652 653 return 0; 654 } 655 656 /* 657 * Configure I2C Analog noise filter. 658 * @hi2c: I2C handle structure 659 * @analog_filter_on: True if enabling analog filter, false otherwise 660 */ 661 static void i2c_config_analog_filter(struct i2c_handle_s *hi2c, 662 bool analog_filter_on) 663 { 664 vaddr_t base = get_base(hi2c); 665 666 /* Disable the selected I2C peripheral */ 667 io_clrbits32(base + I2C_CR1, I2C_CR1_PE); 668 669 /* Reset I2Cx ANOFF bit */ 670 io_clrbits32(base + I2C_CR1, I2C_CR1_ANFOFF); 671 672 /* Set analog filter bit if filter is disabled */ 673 if (!analog_filter_on) 674 io_setbits32(base + I2C_CR1, I2C_CR1_ANFOFF); 675 676 /* Enable the selected I2C peripheral */ 677 io_setbits32(base + I2C_CR1, I2C_CR1_PE); 678 } 679 680 TEE_Result stm32_i2c_get_setup_from_fdt(void *fdt, int node, 681 struct stm32_i2c_init_s *init, 682 struct pinctrl_state **pinctrl, 683 struct pinctrl_state **pinctrl_sleep) 684 { 685 TEE_Result res = TEE_ERROR_GENERIC; 686 const fdt32_t *cuint = NULL; 687 struct dt_node_info info = { .status = 0 }; 688 int __maybe_unused count = 0; 689 690 /* Default STM32 specific configs caller may need to overwrite */ 691 memset(init, 0, sizeof(*init)); 692 693 fdt_fill_device_info(fdt, &info, node); 694 assert(info.reg != DT_INFO_INVALID_REG && 695 info.reg_size != DT_INFO_INVALID_REG_SIZE); 696 697 init->dt_status = info.status; 698 init->pbase = info.reg; 699 init->reg_size = info.reg_size; 700 701 res = clk_dt_get_by_index(fdt, node, 0, &init->clock); 702 if (res) 703 return res; 704 705 cuint = fdt_getprop(fdt, node, "i2c-scl-rising-time-ns", NULL); 706 if (cuint) 707 init->rise_time = fdt32_to_cpu(*cuint); 708 else 709 init->rise_time = STM32_I2C_RISE_TIME_DEFAULT; 710 711 cuint = fdt_getprop(fdt, node, "i2c-scl-falling-time-ns", NULL); 712 if (cuint) 713 init->fall_time = fdt32_to_cpu(*cuint); 714 else 715 init->fall_time = STM32_I2C_FALL_TIME_DEFAULT; 716 717 cuint = fdt_getprop(fdt, node, "clock-frequency", NULL); 718 if (cuint) { 719 init->bus_rate = fdt32_to_cpu(*cuint); 720 721 if (init->bus_rate > I2C_FAST_PLUS_RATE) { 722 DMSG("Invalid bus speed (%"PRIu32" > %i)", 723 init->bus_rate, I2C_FAST_PLUS_RATE); 724 return TEE_ERROR_GENERIC; 725 } 726 } else { 727 init->bus_rate = I2C_STANDARD_RATE; 728 } 729 730 if (pinctrl) { 731 res = pinctrl_get_state_by_name(fdt, node, "default", pinctrl); 732 if (res) 733 return res; 734 } 735 736 if (pinctrl_sleep) { 737 res = pinctrl_get_state_by_name(fdt, node, "sleep", 738 pinctrl_sleep); 739 if (res == TEE_ERROR_ITEM_NOT_FOUND) 740 res = TEE_SUCCESS; 741 if (res) 742 return res; 743 } 744 745 return TEE_SUCCESS; 746 } 747 748 int stm32_i2c_init(struct i2c_handle_s *hi2c, 749 struct stm32_i2c_init_s *init_data) 750 { 751 int rc = 0; 752 uint32_t timing = 0; 753 vaddr_t base = 0; 754 uint32_t val = 0; 755 756 rc = i2c_setup_timing(hi2c, init_data, &timing); 757 if (rc) 758 return rc; 759 760 clk_enable(hi2c->clock); 761 762 base = get_base(hi2c); 763 hi2c->i2c_state = I2C_STATE_BUSY; 764 765 /* Disable the selected I2C peripheral */ 766 io_clrbits32(base + I2C_CR1, I2C_CR1_PE); 767 768 /* Configure I2Cx: Frequency range */ 769 io_write32(base + I2C_TIMINGR, timing & TIMINGR_CLEAR_MASK); 770 771 /* Disable Own Address1 before set the Own Address1 configuration */ 772 io_write32(base + I2C_OAR1, 0); 773 774 /* Configure I2Cx: Own Address1 and ack own address1 mode */ 775 if (init_data->addr_mode_10b_not_7b) 776 io_write32(base + I2C_OAR1, 777 I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE | 778 init_data->own_address1); 779 else 780 io_write32(base + I2C_OAR1, 781 I2C_OAR1_OA1EN | init_data->own_address1); 782 783 /* Configure I2Cx: Addressing Master mode */ 784 io_write32(base + I2C_CR2, 0); 785 if (init_data->addr_mode_10b_not_7b) 786 io_setbits32(base + I2C_CR2, I2C_CR2_ADD10); 787 788 /* 789 * Enable the AUTOEND by default, and enable NACK 790 * (should be disabled only during Slave process). 791 */ 792 io_setbits32(base + I2C_CR2, I2C_CR2_AUTOEND | I2C_CR2_NACK); 793 794 /* Disable Own Address2 before set the Own Address2 configuration */ 795 io_write32(base + I2C_OAR2, 0); 796 797 /* Configure I2Cx: Dual mode and Own Address2 */ 798 if (init_data->dual_address_mode) 799 io_write32(base + I2C_OAR2, 800 I2C_OAR2_OA2EN | init_data->own_address2 | 801 (init_data->own_address2_masks << 8)); 802 803 /* Configure I2Cx: Generalcall and NoStretch mode */ 804 val = 0; 805 if (init_data->general_call_mode) 806 val |= I2C_CR1_GCEN; 807 if (init_data->no_stretch_mode) 808 val |= I2C_CR1_NOSTRETCH; 809 io_write32(base + I2C_CR1, val); 810 811 /* Enable the selected I2C peripheral */ 812 io_setbits32(base + I2C_CR1, I2C_CR1_PE); 813 814 hi2c->i2c_err = I2C_ERROR_NONE; 815 hi2c->i2c_state = I2C_STATE_READY; 816 817 i2c_config_analog_filter(hi2c, init_data->analog_filter); 818 819 if (IS_ENABLED(CFG_STM32MP13)) 820 stm32_pinctrl_set_secure_cfg(hi2c->pinctrl, true); 821 822 clk_disable(hi2c->clock); 823 824 return 0; 825 } 826 827 /* I2C transmit (TX) data register flush sequence */ 828 static void i2c_flush_txdr(struct i2c_handle_s *hi2c) 829 { 830 vaddr_t base = get_base(hi2c); 831 832 /* 833 * If a pending TXIS flag is set, 834 * write a dummy data in TXDR to clear it. 835 */ 836 if (io_read32(base + I2C_ISR) & I2C_ISR_TXIS) 837 io_write32(base + I2C_TXDR, 0); 838 839 /* Flush TX register if not empty */ 840 if ((io_read32(base + I2C_ISR) & I2C_ISR_TXE) == 0) 841 io_setbits32(base + I2C_ISR, I2C_ISR_TXE); 842 } 843 844 /* 845 * Wait for a single target I2C_ISR bit to reach an awaited value (0 or 1) 846 * 847 * @hi2c: I2C handle structure 848 * @bit_mask: Bit mask for the target single bit position to consider 849 * @awaited_value: Awaited value of the target bit in I2C_ISR, 0 or 1 850 * @timeout_ref: Expriation timeout reference 851 * Return 0 on success and a non-zero value on timeout 852 */ 853 static int wait_isr_event(struct i2c_handle_s *hi2c, uint32_t bit_mask, 854 unsigned int awaited_value, uint64_t timeout_ref) 855 { 856 vaddr_t isr = get_base(hi2c) + I2C_ISR; 857 858 assert(IS_POWER_OF_TWO(bit_mask) && !(awaited_value & ~1U)); 859 860 /* May timeout while TEE thread is suspended */ 861 while (!timeout_elapsed(timeout_ref)) 862 if (!!(io_read32(isr) & bit_mask) == awaited_value) 863 break; 864 865 if (!!(io_read32(isr) & bit_mask) == awaited_value) 866 return 0; 867 868 notif_i2c_timeout(hi2c); 869 return -1; 870 } 871 872 /* Handle Acknowledge-Failed sequence detection during an I2C Communication */ 873 static int i2c_ack_failed(struct i2c_handle_s *hi2c, uint64_t timeout_ref) 874 { 875 vaddr_t base = get_base(hi2c); 876 877 if ((io_read32(base + I2C_ISR) & I2C_ISR_NACKF) == 0U) 878 return 0; 879 880 /* 881 * Wait until STOP Flag is reset. Use polling method. 882 * AutoEnd should be initiate after AF. 883 * Timeout may elpased while TEE thread is suspended. 884 */ 885 while (!timeout_elapsed(timeout_ref)) 886 if (io_read32(base + I2C_ISR) & I2C_ISR_STOPF) 887 break; 888 889 if ((io_read32(base + I2C_ISR) & I2C_ISR_STOPF) == 0) { 890 notif_i2c_timeout(hi2c); 891 return -1; 892 } 893 894 io_write32(base + I2C_ICR, I2C_ISR_NACKF); 895 896 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 897 898 i2c_flush_txdr(hi2c); 899 900 io_clrbits32(base + I2C_CR2, CR2_RESET_MASK); 901 902 hi2c->i2c_err |= I2C_ERROR_ACKF; 903 hi2c->i2c_state = I2C_STATE_READY; 904 905 return -1; 906 } 907 908 /* Wait TXIS bit is 1 in I2C_ISR register */ 909 static int i2c_wait_txis(struct i2c_handle_s *hi2c, uint64_t timeout_ref) 910 { 911 while (!timeout_elapsed(timeout_ref)) { 912 if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_TXIS) 913 break; 914 if (i2c_ack_failed(hi2c, timeout_ref)) 915 return -1; 916 } 917 918 if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_TXIS) 919 return 0; 920 921 if (i2c_ack_failed(hi2c, timeout_ref)) 922 return -1; 923 924 notif_i2c_timeout(hi2c); 925 return -1; 926 } 927 928 /* Wait STOPF bit is 1 in I2C_ISR register */ 929 static int i2c_wait_stop(struct i2c_handle_s *hi2c, uint64_t timeout_ref) 930 { 931 while (!timeout_elapsed(timeout_ref)) { 932 if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_STOPF) 933 break; 934 935 if (i2c_ack_failed(hi2c, timeout_ref)) 936 return -1; 937 } 938 939 if (io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_STOPF) 940 return 0; 941 942 if (i2c_ack_failed(hi2c, timeout_ref)) 943 return -1; 944 945 notif_i2c_timeout(hi2c); 946 return -1; 947 } 948 949 /* 950 * Load I2C_CR2 register for a I2C transfer 951 * 952 * @hi2c: I2C handle structure 953 * @dev_addr: Slave address to be transferred 954 * @size: Number of bytes to be transferred 955 * @i2c_mode: One of I2C_{RELOAD|AUTOEND|SOFTEND}_MODE: Enable Reload mode. 956 * @startstop: One of I2C_NO_STARTSTOP, I2C_GENERATE_STOP, 957 * I2C_GENERATE_START_{READ|WRITE} 958 */ 959 static void i2c_transfer_config(struct i2c_handle_s *hi2c, uint32_t dev_addr, 960 uint32_t size, uint32_t i2c_mode, 961 uint32_t startstop) 962 { 963 uint32_t clr_value = I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD | 964 I2C_CR2_AUTOEND | I2C_CR2_START | I2C_CR2_STOP | 965 (I2C_CR2_RD_WRN & 966 (startstop >> (31U - I2C_CR2_RD_WRN_OFFSET))); 967 uint32_t set_value = (dev_addr & I2C_CR2_SADD) | 968 ((size << I2C_CR2_NBYTES_OFFSET) & 969 I2C_CR2_NBYTES) | 970 i2c_mode | startstop; 971 972 io_clrsetbits32(get_base(hi2c) + I2C_CR2, clr_value, set_value); 973 } 974 975 /* 976 * Master sends target device address followed by internal memory 977 * address for a memory write request. 978 * Function returns 0 on success or a negative value. 979 */ 980 static int i2c_request_mem_write(struct i2c_handle_s *hi2c, 981 struct i2c_request *request, 982 uint64_t timeout_ref) 983 { 984 vaddr_t base = get_base(hi2c); 985 986 i2c_transfer_config(hi2c, request->dev_addr, request->mem_addr_size, 987 I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); 988 989 if (i2c_wait_txis(hi2c, timeout_ref)) 990 return -1; 991 992 if (request->mem_addr_size == I2C_MEMADD_SIZE_8BIT) { 993 /* Send memory address */ 994 io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU); 995 } else { 996 /* Send MSB of memory address */ 997 io_write8(base + I2C_TXDR, (request->mem_addr & 0xFF00U) >> 8); 998 999 if (i2c_wait_txis(hi2c, timeout_ref)) 1000 return -1; 1001 1002 /* Send LSB of memory address */ 1003 io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU); 1004 } 1005 1006 if (wait_isr_event(hi2c, I2C_ISR_TCR, 1, timeout_ref)) 1007 return -1; 1008 1009 return 0; 1010 } 1011 1012 /* 1013 * Master sends target device address followed by internal memory 1014 * address to prepare a memory read request. 1015 * Function returns 0 on success or a negative value. 1016 */ 1017 static int i2c_request_mem_read(struct i2c_handle_s *hi2c, 1018 struct i2c_request *request, 1019 uint64_t timeout_ref) 1020 { 1021 vaddr_t base = get_base(hi2c); 1022 1023 i2c_transfer_config(hi2c, request->dev_addr, request->mem_addr_size, 1024 I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE); 1025 1026 if (i2c_wait_txis(hi2c, timeout_ref)) 1027 return -1; 1028 1029 if (request->mem_addr_size == I2C_MEMADD_SIZE_8BIT) { 1030 /* Send memory address */ 1031 io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU); 1032 } else { 1033 /* Send MSB of memory address */ 1034 io_write8(base + I2C_TXDR, (request->mem_addr & 0xFF00U) >> 8); 1035 1036 if (i2c_wait_txis(hi2c, timeout_ref)) 1037 return -1; 1038 1039 /* Send LSB of memory address */ 1040 io_write8(base + I2C_TXDR, request->mem_addr & 0x00FFU); 1041 } 1042 1043 if (wait_isr_event(hi2c, I2C_ISR_TC, 1, timeout_ref)) 1044 return -1; 1045 1046 return 0; 1047 } 1048 1049 /* 1050 * Write an amount of data in blocking mode 1051 * 1052 * @hi2c: Reference to struct i2c_handle_s 1053 * @request: I2C request parameters 1054 * @p_data: Pointer to data buffer 1055 * @size: Amount of data to be sent 1056 * Return 0 on success or a negative value 1057 */ 1058 static int do_write(struct i2c_handle_s *hi2c, struct i2c_request *request, 1059 uint8_t *p_data, uint16_t size) 1060 { 1061 uint64_t timeout_ref = 0; 1062 vaddr_t base = get_base(hi2c); 1063 int rc = -1; 1064 uint8_t *p_buff = p_data; 1065 size_t xfer_size = 0; 1066 size_t xfer_count = size; 1067 1068 if (request->mode != I2C_MODE_MASTER && request->mode != I2C_MODE_MEM) 1069 return -1; 1070 1071 if (hi2c->i2c_state != I2C_STATE_READY) 1072 return -1; 1073 1074 if (!p_data || !size) 1075 return -1; 1076 1077 clk_enable(hi2c->clock); 1078 1079 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_MS * 1000); 1080 if (wait_isr_event(hi2c, I2C_ISR_BUSY, 0, timeout_ref)) 1081 goto bail; 1082 1083 hi2c->i2c_state = I2C_STATE_BUSY_TX; 1084 hi2c->i2c_err = I2C_ERROR_NONE; 1085 timeout_ref = timeout_init_us(request->timeout_ms * 1000); 1086 1087 if (request->mode == I2C_MODE_MEM) { 1088 /* In memory mode, send slave address and memory address */ 1089 if (i2c_request_mem_write(hi2c, request, timeout_ref)) 1090 goto bail; 1091 1092 if (xfer_count > MAX_NBYTE_SIZE) { 1093 xfer_size = MAX_NBYTE_SIZE; 1094 i2c_transfer_config(hi2c, request->dev_addr, xfer_size, 1095 I2C_RELOAD_MODE, I2C_NO_STARTSTOP); 1096 } else { 1097 xfer_size = xfer_count; 1098 i2c_transfer_config(hi2c, request->dev_addr, xfer_size, 1099 I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); 1100 } 1101 } else { 1102 /* In master mode, send slave address */ 1103 if (xfer_count > MAX_NBYTE_SIZE) { 1104 xfer_size = MAX_NBYTE_SIZE; 1105 i2c_transfer_config(hi2c, request->dev_addr, xfer_size, 1106 I2C_RELOAD_MODE, 1107 I2C_GENERATE_START_WRITE); 1108 } else { 1109 xfer_size = xfer_count; 1110 i2c_transfer_config(hi2c, request->dev_addr, xfer_size, 1111 I2C_AUTOEND_MODE, 1112 I2C_GENERATE_START_WRITE); 1113 } 1114 } 1115 1116 do { 1117 if (i2c_wait_txis(hi2c, timeout_ref)) 1118 goto bail; 1119 1120 io_write8(base + I2C_TXDR, *p_buff); 1121 p_buff++; 1122 xfer_count--; 1123 xfer_size--; 1124 1125 if (xfer_count && !xfer_size) { 1126 /* Wait until TCR flag is set */ 1127 if (wait_isr_event(hi2c, I2C_ISR_TCR, 1, timeout_ref)) 1128 goto bail; 1129 1130 if (xfer_count > MAX_NBYTE_SIZE) { 1131 xfer_size = MAX_NBYTE_SIZE; 1132 i2c_transfer_config(hi2c, request->dev_addr, 1133 xfer_size, 1134 I2C_RELOAD_MODE, 1135 I2C_NO_STARTSTOP); 1136 } else { 1137 xfer_size = xfer_count; 1138 i2c_transfer_config(hi2c, request->dev_addr, 1139 xfer_size, 1140 I2C_AUTOEND_MODE, 1141 I2C_NO_STARTSTOP); 1142 } 1143 } 1144 1145 } while (xfer_count > 0U); 1146 1147 /* 1148 * No need to Check TC flag, with AUTOEND mode the stop 1149 * is automatically generated. 1150 * Wait until STOPF flag is reset. 1151 */ 1152 if (i2c_wait_stop(hi2c, timeout_ref)) 1153 goto bail; 1154 1155 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 1156 1157 io_clrbits32(base + I2C_CR2, CR2_RESET_MASK); 1158 1159 hi2c->i2c_state = I2C_STATE_READY; 1160 1161 rc = 0; 1162 1163 bail: 1164 clk_disable(hi2c->clock); 1165 1166 return rc; 1167 } 1168 1169 int stm32_i2c_mem_write(struct i2c_handle_s *hi2c, uint32_t dev_addr, 1170 uint32_t mem_addr, uint32_t mem_addr_size, 1171 uint8_t *p_data, size_t size, unsigned int timeout_ms) 1172 { 1173 struct i2c_request request = { 1174 .dev_addr = dev_addr, 1175 .mode = I2C_MODE_MEM, 1176 .mem_addr = mem_addr, 1177 .mem_addr_size = mem_addr_size, 1178 .timeout_ms = timeout_ms, 1179 }; 1180 1181 return do_write(hi2c, &request, p_data, size); 1182 } 1183 1184 int stm32_i2c_master_transmit(struct i2c_handle_s *hi2c, uint32_t dev_addr, 1185 uint8_t *p_data, size_t size, 1186 unsigned int timeout_ms) 1187 { 1188 struct i2c_request request = { 1189 .dev_addr = dev_addr, 1190 .mode = I2C_MODE_MASTER, 1191 .timeout_ms = timeout_ms, 1192 }; 1193 1194 return do_write(hi2c, &request, p_data, size); 1195 } 1196 1197 int stm32_i2c_read_write_membyte(struct i2c_handle_s *hi2c, uint16_t dev_addr, 1198 unsigned int mem_addr, uint8_t *p_data, 1199 bool write) 1200 { 1201 uint64_t timeout_ref = 0; 1202 uintptr_t base = get_base(hi2c); 1203 int rc = -1; 1204 uint8_t *p_buff = p_data; 1205 uint32_t event_mask = 0; 1206 1207 if (hi2c->i2c_state != I2C_STATE_READY || !p_data) 1208 return -1; 1209 1210 clk_enable(hi2c->clock); 1211 1212 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US); 1213 if (wait_isr_event(hi2c, I2C_ISR_BUSY, 0, timeout_ref)) 1214 goto bail; 1215 1216 hi2c->i2c_state = write ? I2C_STATE_BUSY_TX : I2C_STATE_BUSY_RX; 1217 hi2c->i2c_err = I2C_ERROR_NONE; 1218 1219 i2c_transfer_config(hi2c, dev_addr, I2C_MEMADD_SIZE_8BIT, 1220 write ? I2C_RELOAD_MODE : I2C_SOFTEND_MODE, 1221 I2C_GENERATE_START_WRITE); 1222 1223 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US); 1224 if (i2c_wait_txis(hi2c, timeout_ref)) 1225 goto bail; 1226 1227 io_write8(base + I2C_TXDR, mem_addr); 1228 1229 if (write) 1230 event_mask = I2C_ISR_TCR; 1231 else 1232 event_mask = I2C_ISR_TC; 1233 1234 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US); 1235 if (wait_isr_event(hi2c, event_mask, 1, timeout_ref)) 1236 goto bail; 1237 1238 i2c_transfer_config(hi2c, dev_addr, I2C_MEMADD_SIZE_8BIT, 1239 I2C_AUTOEND_MODE, 1240 write ? I2C_NO_STARTSTOP : I2C_GENERATE_START_READ); 1241 1242 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US); 1243 if (write) { 1244 if (i2c_wait_txis(hi2c, timeout_ref)) 1245 goto bail; 1246 1247 io_write8(base + I2C_TXDR, *p_buff); 1248 } else { 1249 if (wait_isr_event(hi2c, I2C_ISR_RXNE, 1, timeout_ref)) 1250 goto bail; 1251 1252 *p_buff = io_read8(base + I2C_RXDR); 1253 } 1254 1255 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_US); 1256 if (i2c_wait_stop(hi2c, timeout_ref)) 1257 goto bail; 1258 1259 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 1260 io_clrbits32(base + I2C_CR2, CR2_RESET_MASK); 1261 1262 hi2c->i2c_state = I2C_STATE_READY; 1263 1264 rc = 0; 1265 1266 bail: 1267 clk_disable(hi2c->clock); 1268 1269 return rc; 1270 } 1271 1272 /* 1273 * Read an amount of data in blocking mode 1274 * 1275 * @hi2c: Reference to struct i2c_handle_s 1276 * @request: I2C request parameters 1277 * @p_data: Pointer to data buffer 1278 * @size: Amount of data to be sent 1279 * Return 0 on success or a negative value 1280 */ 1281 static int do_read(struct i2c_handle_s *hi2c, struct i2c_request *request, 1282 uint8_t *p_data, uint32_t size) 1283 { 1284 vaddr_t base = get_base(hi2c); 1285 uint64_t timeout_ref = 0; 1286 int rc = -1; 1287 uint8_t *p_buff = p_data; 1288 size_t xfer_count = size; 1289 size_t xfer_size = 0; 1290 1291 if (request->mode != I2C_MODE_MASTER && request->mode != I2C_MODE_MEM) 1292 return -1; 1293 1294 if (hi2c->i2c_state != I2C_STATE_READY) 1295 return -1; 1296 1297 if (!p_data || !size) 1298 return -1; 1299 1300 clk_enable(hi2c->clock); 1301 1302 timeout_ref = timeout_init_us(I2C_TIMEOUT_BUSY_MS * 1000); 1303 if (wait_isr_event(hi2c, I2C_ISR_BUSY, 0, timeout_ref)) 1304 goto bail; 1305 1306 hi2c->i2c_state = I2C_STATE_BUSY_RX; 1307 hi2c->i2c_err = I2C_ERROR_NONE; 1308 timeout_ref = timeout_init_us(request->timeout_ms * 1000); 1309 1310 if (request->mode == I2C_MODE_MEM) { 1311 /* Send memory address */ 1312 if (i2c_request_mem_read(hi2c, request, timeout_ref)) 1313 goto bail; 1314 } 1315 1316 /* 1317 * Send slave address. 1318 * Set NBYTES to write and reload if xfer_count > MAX_NBYTE_SIZE 1319 * and generate RESTART. 1320 */ 1321 if (xfer_count > MAX_NBYTE_SIZE) { 1322 xfer_size = MAX_NBYTE_SIZE; 1323 i2c_transfer_config(hi2c, request->dev_addr, xfer_size, 1324 I2C_RELOAD_MODE, I2C_GENERATE_START_READ); 1325 } else { 1326 xfer_size = xfer_count; 1327 i2c_transfer_config(hi2c, request->dev_addr, xfer_size, 1328 I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); 1329 } 1330 1331 do { 1332 if (wait_isr_event(hi2c, I2C_ISR_RXNE, 1, 1333 timeout_init_us(I2C_TIMEOUT_RXNE_MS * 1000))) 1334 goto bail; 1335 1336 *p_buff = io_read8(base + I2C_RXDR); 1337 p_buff++; 1338 xfer_size--; 1339 xfer_count--; 1340 1341 if (xfer_count && !xfer_size) { 1342 if (wait_isr_event(hi2c, I2C_ISR_TCR, 1, timeout_ref)) 1343 goto bail; 1344 1345 if (xfer_count > MAX_NBYTE_SIZE) { 1346 xfer_size = MAX_NBYTE_SIZE; 1347 i2c_transfer_config(hi2c, request->dev_addr, 1348 xfer_size, 1349 I2C_RELOAD_MODE, 1350 I2C_NO_STARTSTOP); 1351 } else { 1352 xfer_size = xfer_count; 1353 i2c_transfer_config(hi2c, request->dev_addr, 1354 xfer_size, 1355 I2C_AUTOEND_MODE, 1356 I2C_NO_STARTSTOP); 1357 } 1358 } 1359 } while (xfer_count > 0U); 1360 1361 /* 1362 * No need to Check TC flag, with AUTOEND mode the stop 1363 * is automatically generated. 1364 * Wait until STOPF flag is reset. 1365 */ 1366 if (i2c_wait_stop(hi2c, timeout_ref)) 1367 goto bail; 1368 1369 /* Clear the NACK generated at the end of the transfer */ 1370 if ((io_read32(get_base(hi2c) + I2C_ISR) & I2C_ISR_NACKF)) 1371 io_write32(get_base(hi2c) + I2C_ICR, I2C_ICR_NACKCF); 1372 1373 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 1374 1375 io_clrbits32(base + I2C_CR2, CR2_RESET_MASK); 1376 1377 hi2c->i2c_state = I2C_STATE_READY; 1378 1379 rc = 0; 1380 1381 bail: 1382 clk_disable(hi2c->clock); 1383 1384 return rc; 1385 } 1386 1387 int stm32_i2c_mem_read(struct i2c_handle_s *hi2c, uint32_t dev_addr, 1388 uint32_t mem_addr, uint32_t mem_addr_size, 1389 uint8_t *p_data, size_t size, unsigned int timeout_ms) 1390 { 1391 struct i2c_request request = { 1392 .dev_addr = dev_addr, 1393 .mode = I2C_MODE_MEM, 1394 .mem_addr = mem_addr, 1395 .mem_addr_size = mem_addr_size, 1396 .timeout_ms = timeout_ms, 1397 }; 1398 1399 return do_read(hi2c, &request, p_data, size); 1400 } 1401 1402 int stm32_i2c_master_receive(struct i2c_handle_s *hi2c, uint32_t dev_addr, 1403 uint8_t *p_data, size_t size, 1404 unsigned int timeout_ms) 1405 { 1406 struct i2c_request request = { 1407 .dev_addr = dev_addr, 1408 .mode = I2C_MODE_MASTER, 1409 .timeout_ms = timeout_ms, 1410 }; 1411 1412 return do_read(hi2c, &request, p_data, size); 1413 } 1414 1415 static struct i2c_handle_s *stm32_i2c_dev_to_handle(struct i2c_dev *i2c_dev) 1416 { 1417 struct stm32_i2c_dev *dev = container_of(i2c_dev, struct stm32_i2c_dev, 1418 i2c_dev); 1419 1420 return dev->handle; 1421 } 1422 1423 static TEE_Result stm32_i2c_read_data(struct i2c_dev *i2c_dev, uint8_t *buf, 1424 size_t len) 1425 { 1426 struct i2c_handle_s *i2c_handle = stm32_i2c_dev_to_handle(i2c_dev); 1427 int rc = 0; 1428 1429 rc = stm32_i2c_master_receive(i2c_handle, i2c_dev->addr, buf, len, 1430 I2C_TIMEOUT_DEFAULT_MS); 1431 if (!rc) 1432 return TEE_SUCCESS; 1433 else 1434 return TEE_ERROR_GENERIC; 1435 } 1436 1437 static TEE_Result stm32_i2c_write_data(struct i2c_dev *i2c_dev, 1438 const uint8_t *buf, size_t len) 1439 { 1440 struct i2c_handle_s *i2c_handle = stm32_i2c_dev_to_handle(i2c_dev); 1441 uint8_t *buf2 = (uint8_t *)buf; 1442 int rc = 0; 1443 1444 rc = stm32_i2c_master_transmit(i2c_handle, i2c_dev->addr, buf2, len, 1445 I2C_TIMEOUT_DEFAULT_MS); 1446 if (!rc) 1447 return TEE_SUCCESS; 1448 else 1449 return TEE_ERROR_GENERIC; 1450 } 1451 1452 static const struct i2c_ctrl_ops stm32_i2c_ops = { 1453 .read = stm32_i2c_read_data, 1454 .write = stm32_i2c_write_data, 1455 }; 1456 1457 bool stm32_i2c_is_device_ready(struct i2c_handle_s *hi2c, uint32_t dev_addr, 1458 unsigned int trials, unsigned int timeout_ms) 1459 { 1460 vaddr_t base = get_base(hi2c); 1461 unsigned int i2c_trials = 0U; 1462 bool rc = false; 1463 1464 if (hi2c->i2c_state != I2C_STATE_READY) 1465 return rc; 1466 1467 clk_enable(hi2c->clock); 1468 1469 if (io_read32(base + I2C_ISR) & I2C_ISR_BUSY) 1470 goto bail; 1471 1472 hi2c->i2c_state = I2C_STATE_BUSY; 1473 hi2c->i2c_err = I2C_ERROR_NONE; 1474 1475 do { 1476 uint64_t timeout_ref = 0; 1477 vaddr_t isr = base + I2C_ISR; 1478 1479 /* Generate Start */ 1480 if ((io_read32(base + I2C_OAR1) & I2C_OAR1_OA1MODE) == 0) 1481 io_write32(base + I2C_CR2, 1482 ((dev_addr & I2C_CR2_SADD) | 1483 I2C_CR2_START | I2C_CR2_AUTOEND) & 1484 ~I2C_CR2_RD_WRN); 1485 else 1486 io_write32(base + I2C_CR2, 1487 ((dev_addr & I2C_CR2_SADD) | 1488 I2C_CR2_START | I2C_CR2_ADD10) & 1489 ~I2C_CR2_RD_WRN); 1490 1491 /* 1492 * No need to Check TC flag, with AUTOEND mode the stop 1493 * is automatically generated. 1494 * Wait until STOPF flag is set or a NACK flag is set. 1495 */ 1496 timeout_ref = timeout_init_us(timeout_ms * 1000); 1497 while (!timeout_elapsed(timeout_ref)) 1498 if (io_read32(isr) & (I2C_ISR_STOPF | I2C_ISR_NACKF)) 1499 break; 1500 1501 if ((io_read32(isr) & (I2C_ISR_STOPF | I2C_ISR_NACKF)) == 0) { 1502 notif_i2c_timeout(hi2c); 1503 goto bail; 1504 } 1505 1506 if ((io_read32(base + I2C_ISR) & I2C_ISR_NACKF) == 0U) { 1507 if (wait_isr_event(hi2c, I2C_ISR_STOPF, 1, timeout_ref)) 1508 goto bail; 1509 1510 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 1511 1512 hi2c->i2c_state = I2C_STATE_READY; 1513 1514 rc = true; 1515 goto bail; 1516 } 1517 1518 if (wait_isr_event(hi2c, I2C_ISR_STOPF, 1, timeout_ref)) 1519 goto bail; 1520 1521 io_write32(base + I2C_ICR, I2C_ISR_NACKF); 1522 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 1523 1524 if (i2c_trials == trials) { 1525 io_setbits32(base + I2C_CR2, I2C_CR2_STOP); 1526 1527 if (wait_isr_event(hi2c, I2C_ISR_STOPF, 1, timeout_ref)) 1528 goto bail; 1529 1530 io_write32(base + I2C_ICR, I2C_ISR_STOPF); 1531 } 1532 1533 i2c_trials++; 1534 } while (i2c_trials < trials); 1535 1536 notif_i2c_timeout(hi2c); 1537 1538 bail: 1539 clk_disable(hi2c->clock); 1540 1541 return rc; 1542 } 1543 1544 void stm32_i2c_resume(struct i2c_handle_s *hi2c) 1545 { 1546 if (hi2c->i2c_state == I2C_STATE_READY) 1547 return; 1548 1549 if ((hi2c->i2c_state != I2C_STATE_RESET) && 1550 (hi2c->i2c_state != I2C_STATE_SUSPENDED)) 1551 panic(); 1552 1553 if (pinctrl_apply_state(hi2c->pinctrl)) 1554 panic(); 1555 1556 if (hi2c->i2c_state == I2C_STATE_RESET) { 1557 /* There is no valid I2C configuration to be loaded yet */ 1558 return; 1559 } 1560 1561 restore_cfg(hi2c, &hi2c->sec_cfg); 1562 1563 if (IS_ENABLED(CFG_STM32MP13)) 1564 stm32_pinctrl_set_secure_cfg(hi2c->pinctrl, true); 1565 1566 hi2c->i2c_state = I2C_STATE_READY; 1567 } 1568 1569 void stm32_i2c_suspend(struct i2c_handle_s *hi2c) 1570 { 1571 if (hi2c->i2c_state == I2C_STATE_SUSPENDED) 1572 return; 1573 1574 if (hi2c->i2c_state != I2C_STATE_READY) 1575 panic(); 1576 1577 save_cfg(hi2c, &hi2c->sec_cfg); 1578 1579 if (hi2c->pinctrl_sleep && pinctrl_apply_state(hi2c->pinctrl_sleep)) 1580 panic(); 1581 1582 hi2c->i2c_state = I2C_STATE_SUSPENDED; 1583 } 1584 1585 static TEE_Result stm32_get_i2c_dev(struct dt_pargs *args, void *data, 1586 struct i2c_dev **out_device) 1587 { 1588 struct stm32_i2c_dev *stm32_i2c_dev = NULL; 1589 paddr_t addr = 0; 1590 1591 addr = fdt_reg_base_address(args->fdt, args->phandle_node); 1592 if (addr == DT_INFO_INVALID_REG) { 1593 DMSG("Can't get device I2C address"); 1594 return TEE_ERROR_GENERIC; 1595 } 1596 1597 stm32_i2c_dev = calloc(1, sizeof(*stm32_i2c_dev)); 1598 if (!stm32_i2c_dev) 1599 return TEE_ERROR_OUT_OF_MEMORY; 1600 1601 stm32_i2c_dev->handle = data; 1602 stm32_i2c_dev->i2c_dev.addr = addr; 1603 stm32_i2c_dev->i2c_ctrl.ops = &stm32_i2c_ops; 1604 stm32_i2c_dev->i2c_dev.ctrl = &stm32_i2c_dev->i2c_ctrl; 1605 1606 *out_device = &stm32_i2c_dev->i2c_dev; 1607 1608 return TEE_SUCCESS; 1609 } 1610 1611 static TEE_Result stm32_i2c_probe(const void *fdt, int node, 1612 const void *compat_data __unused) 1613 { 1614 TEE_Result res = TEE_SUCCESS; 1615 int subnode = 0; 1616 struct i2c_handle_s *i2c_handle_p = NULL; 1617 struct stm32_i2c_init_s init_data = { }; 1618 struct pinctrl_state *pinctrl_active = NULL; 1619 struct pinctrl_state *pinctrl_idle = NULL; 1620 1621 res = stm32_i2c_get_setup_from_fdt((void *)fdt, node, &init_data, 1622 &pinctrl_active, &pinctrl_idle); 1623 if (res) 1624 return res; 1625 1626 i2c_handle_p = calloc(1, sizeof(struct i2c_handle_s)); 1627 if (!i2c_handle_p) 1628 return TEE_ERROR_OUT_OF_MEMORY; 1629 1630 i2c_handle_p->dt_status = init_data.dt_status; 1631 i2c_handle_p->reg_size = init_data.reg_size; 1632 i2c_handle_p->clock = init_data.clock; 1633 i2c_handle_p->base.pa = init_data.pbase; 1634 i2c_handle_p->base.va = io_pa_or_va(&i2c_handle_p->base, 1635 init_data.reg_size); 1636 assert(i2c_handle_p->base.va); 1637 i2c_handle_p->clock = init_data.clock; 1638 i2c_handle_p->i2c_state = I2C_STATE_RESET; 1639 i2c_handle_p->pinctrl = pinctrl_active; 1640 i2c_handle_p->pinctrl_sleep = pinctrl_idle; 1641 1642 init_data.analog_filter = true; 1643 init_data.digital_filter_coef = 0; 1644 1645 res = stm32_i2c_init(i2c_handle_p, &init_data); 1646 if (res) 1647 panic("Couldn't initialise I2C"); 1648 1649 res = i2c_register_provider(fdt, node, stm32_get_i2c_dev, i2c_handle_p); 1650 if (res) 1651 panic("Couldn't register I2C provider"); 1652 1653 fdt_for_each_subnode(subnode, fdt, node) { 1654 res = dt_driver_maybe_add_probe_node(fdt, subnode); 1655 if (res) { 1656 EMSG("Failed on node %s with %#"PRIx32, 1657 fdt_get_name(fdt, subnode, NULL), res); 1658 panic(); 1659 } 1660 } 1661 1662 return res; 1663 } 1664 1665 static const struct dt_device_match stm32_i2c_match_table[] = { 1666 { .compatible = "st,stm32mp15-i2c" }, 1667 { .compatible = "st,stm32mp13-i2c" }, 1668 { .compatible = "st,stm32mp15-i2c-non-secure" }, 1669 { } 1670 }; 1671 1672 DEFINE_DT_DRIVER(stm32_i2c_dt_driver) = { 1673 .name = "stm32_i2c", 1674 .match_table = stm32_i2c_match_table, 1675 .probe = stm32_i2c_probe, 1676 .type = DT_DRIVER_I2C 1677 }; 1678