xref: /optee_os/core/drivers/regulator/regulator.c (revision ace929f0e4ddad4ff458a51661cd8524f39c79e8)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2023, STMicroelectronics
4  */
5 
6 #include <assert.h>
7 #include <compiler.h>
8 #include <config.h>
9 #include <drivers/regulator.h>
10 #include <initcall.h>
11 #include <keep.h>
12 #include <kernel/boot.h>
13 #include <kernel/delay.h>
14 #include <kernel/mutex.h>
15 #include <kernel/panic.h>
16 #include <kernel/pm.h>
17 #include <kernel/tee_time.h>
18 #include <kernel/thread.h>
19 #include <libfdt.h>
20 #include <limits.h>
21 #include <stdint.h>
22 #include <stdio.h>
23 #include <string.h>
24 #include <util.h>
25 
26 static SLIST_HEAD(, regulator) regulator_device_list =
27 	SLIST_HEAD_INITIALIZER(regulator);
28 
29 static void lock_regulator(struct regulator *regulator)
30 {
31 	/*
32 	 * Regulator operation may occur at runtime and during specific
33 	 * system power transition: power off, PM suspend and resume.
34 	 * These operate upon fastcall entries, under PSCI services
35 	 * execution, where non-secure world is not operational. In these
36 	 * cases we cannot take a mutex and will expect the mutex is
37 	 * unlocked.
38 	 */
39 	if (thread_get_id_may_fail() == THREAD_ID_INVALID) {
40 		assert(!regulator->lock.state);
41 		return;
42 	}
43 
44 	mutex_lock(&regulator->lock);
45 }
46 
47 static void unlock_regulator(struct regulator *regulator)
48 {
49 	if (thread_get_id_may_fail() == THREAD_ID_INVALID) {
50 		/* Path for PM sequences when with local Monitor */
51 		return;
52 	}
53 
54 	mutex_unlock(&regulator->lock);
55 }
56 
57 static TEE_Result set_state(struct regulator *regulator, bool on_not_off)
58 {
59 	if (!regulator->ops->set_state)
60 		return TEE_SUCCESS;
61 
62 	return regulator->ops->set_state(regulator, on_not_off);
63 }
64 
65 static TEE_Result regulator_refcnt_enable(struct regulator *regulator)
66 {
67 	TEE_Result res = TEE_ERROR_GENERIC;
68 
69 	FMSG("%s", regulator_name(regulator));
70 
71 	if (regulator->supply) {
72 		res = regulator_enable(regulator->supply);
73 		if (res)
74 			return res;
75 	}
76 
77 	lock_regulator(regulator);
78 
79 	if (!regulator->refcount) {
80 		res = set_state(regulator, true);
81 		if (res) {
82 			EMSG("regul %s set state failed with %#"PRIx32,
83 			     regulator_name(regulator), res);
84 
85 			unlock_regulator(regulator);
86 
87 			if (regulator->supply &&
88 			    regulator_disable(regulator->supply))
89 				panic();
90 
91 			return res;
92 		}
93 	}
94 
95 	regulator->refcount++;
96 	if (!regulator->refcount)
97 		panic();
98 
99 	FMSG("%s refcount: %u", regulator_name(regulator), regulator->refcount);
100 
101 	unlock_regulator(regulator);
102 
103 	return TEE_SUCCESS;
104 }
105 
106 TEE_Result regulator_enable(struct regulator *regulator)
107 {
108 	assert(regulator);
109 	FMSG("%s", regulator_name(regulator));
110 
111 	if (regulator_is_always_on(regulator))
112 		return TEE_SUCCESS;
113 
114 	return regulator_refcnt_enable(regulator);
115 }
116 
117 static TEE_Result regulator_refcnt_disable(struct regulator *regulator)
118 {
119 	FMSG("%s", regulator_name(regulator));
120 
121 	lock_regulator(regulator);
122 
123 	if (regulator->refcount == 1) {
124 		TEE_Result res = set_state(regulator, false);
125 
126 		if (res) {
127 			EMSG("regul %s set state failed with %#"PRIx32,
128 			     regulator_name(regulator), res);
129 			unlock_regulator(regulator);
130 			return res;
131 		}
132 	}
133 
134 	if (!regulator->refcount) {
135 		EMSG("Unbalanced %s", regulator_name(regulator));
136 		panic();
137 	}
138 
139 	regulator->refcount--;
140 
141 	FMSG("%s refcount: %u", regulator_name(regulator), regulator->refcount);
142 
143 	unlock_regulator(regulator);
144 
145 	if (regulator->supply && regulator_disable(regulator->supply)) {
146 		/* We can't leave this unbalanced */
147 		EMSG("Can't disable %s", regulator_name(regulator->supply));
148 		panic();
149 	}
150 
151 	return TEE_SUCCESS;
152 }
153 
154 TEE_Result regulator_disable(struct regulator *regulator)
155 {
156 	assert(regulator);
157 	FMSG("%s", regulator_name(regulator));
158 
159 	if (regulator_is_always_on(regulator))
160 		return TEE_SUCCESS;
161 
162 	return regulator_refcnt_disable(regulator);
163 }
164 
165 bool regulator_is_enabled(struct regulator *regulator)
166 {
167 	TEE_Result res = TEE_SUCCESS;
168 	bool enabled = false;
169 
170 	if (!regulator->ops->get_state)
171 		return true;
172 
173 	lock_regulator(regulator);
174 	res = regulator->ops->get_state(regulator, &enabled);
175 	unlock_regulator(regulator);
176 
177 	if (res)
178 		EMSG("regul %s get state failed with %#"PRIx32,
179 		     regulator_name(regulator), res);
180 
181 	return !res && enabled;
182 }
183 
184 TEE_Result regulator_set_voltage(struct regulator *regulator, int level_uv)
185 {
186 	TEE_Result res = TEE_ERROR_GENERIC;
187 
188 	assert(regulator);
189 	FMSG("%s %duV", regulator_name(regulator), level_uv);
190 
191 	if (level_uv < regulator->min_uv || level_uv > regulator->max_uv)
192 		return TEE_ERROR_BAD_PARAMETERS;
193 
194 	if (level_uv == regulator->cur_uv)
195 		return TEE_SUCCESS;
196 
197 	if (!regulator->ops->set_voltage)
198 		return TEE_ERROR_NOT_SUPPORTED;
199 
200 	lock_regulator(regulator);
201 	res = regulator->ops->set_voltage(regulator, level_uv);
202 	unlock_regulator(regulator);
203 
204 	if (res) {
205 		EMSG("regul %s set volt failed with %#"PRIx32,
206 		     regulator_name(regulator), res);
207 		return res;
208 	}
209 
210 	regulator->cur_uv = level_uv;
211 
212 	return TEE_SUCCESS;
213 }
214 
215 TEE_Result regulator_supported_voltages(struct regulator *regulator,
216 					struct regulator_voltages_desc **desc,
217 					const int **levels)
218 {
219 	assert(regulator && desc && levels);
220 
221 	if (regulator->ops->supported_voltages) {
222 		TEE_Result res = TEE_ERROR_GENERIC;
223 
224 		res = regulator->ops->supported_voltages(regulator, desc,
225 							 levels);
226 		if (res == TEE_SUCCESS)
227 			return TEE_SUCCESS;
228 		if (res != TEE_ERROR_NOT_SUPPORTED)
229 			return res;
230 	}
231 
232 	*desc = &regulator->voltages_fallback.desc;
233 	*levels = regulator->voltages_fallback.levels;
234 
235 	return TEE_SUCCESS;
236 }
237 
238 TEE_Result regulator_register(struct regulator *regulator)
239 {
240 	TEE_Result res = TEE_SUCCESS;
241 	int min_uv = 0;
242 	int max_uv = 0;
243 	int uv = 0;
244 
245 	if (!regulator || !regulator->ops ||
246 	    regulator->flags & ~REGULATOR_FLAGS_MASK)
247 		return TEE_ERROR_BAD_PARAMETERS;
248 
249 	regulator_get_range(regulator, &min_uv, &max_uv);
250 	if (min_uv > max_uv)
251 		return TEE_ERROR_BAD_PARAMETERS;
252 
253 	/* Sanitize regulator effective level */
254 	if (regulator->ops->get_voltage) {
255 		res = regulator->ops->get_voltage(regulator, &uv);
256 		if (res)
257 			return res;
258 	} else {
259 		uv = min_uv;
260 	}
261 	regulator->cur_uv = uv;
262 
263 	if (uv < min_uv || uv > max_uv) {
264 		res = regulator_set_voltage(regulator, min_uv);
265 		if (res)
266 			return res;
267 	}
268 
269 	/* Unbalanced enable refcount to keep always-on regulators enabled */
270 	if (regulator_is_always_on(regulator)) {
271 		res = regulator_refcnt_enable(regulator);
272 		if (res)
273 			return res;
274 	}
275 
276 	/* Preset voltage list in case ops::supported_voltages is NULL */
277 	if (regulator->min_uv == regulator->max_uv) {
278 		regulator->voltages_fallback.desc.type = VOLTAGE_TYPE_FULL_LIST;
279 		regulator->voltages_fallback.desc.num_levels = 1;
280 		regulator->voltages_fallback.levels[0] = regulator->min_uv;
281 	} else {
282 		regulator->voltages_fallback.desc.type = VOLTAGE_TYPE_INCREMENT;
283 		regulator->voltages_fallback.levels[0] = regulator->min_uv;
284 		regulator->voltages_fallback.levels[1] = regulator->max_uv;
285 		regulator->voltages_fallback.levels[2] = 1;
286 	}
287 
288 	SLIST_INSERT_HEAD(&regulator_device_list, regulator, link);
289 
290 	return TEE_SUCCESS;
291 }
292 
293 /*
294  * Clean-up regulators that are not used.
295  */
296 static TEE_Result regulator_core_cleanup(void)
297 {
298 	struct regulator *regulator = NULL;
299 
300 	SLIST_FOREACH(regulator, &regulator_device_list, link) {
301 		if (!regulator->refcount) {
302 			DMSG("disable %s", regulator_name(regulator));
303 			lock_regulator(regulator);
304 			set_state(regulator, false /* disable */);
305 			unlock_regulator(regulator);
306 		}
307 	}
308 
309 	regulator_print_tree();
310 
311 	return TEE_SUCCESS;
312 }
313 
314 release_init_resource(regulator_core_cleanup);
315 
316 /* Return updated message buffer position of NULL on failure */
317 static __printf(3, 4) char *add_msg(char *cur, char *end, const char *fmt, ...)
318 {
319 	va_list ap = { };
320 	int max_len = end - cur;
321 	int ret = 0;
322 
323 	va_start(ap, fmt);
324 	ret = vsnprintf(cur, max_len, fmt, ap);
325 	va_end(ap);
326 
327 	if (ret < 0 || ret >= max_len)
328 		return NULL;
329 
330 	return cur + ret;
331 }
332 
333 static struct regulator *find_next_regulator(struct regulator *parent,
334 					     struct regulator *sibling)
335 {
336 	struct regulator *regulator = NULL;
337 
338 	if (sibling)
339 		regulator = SLIST_NEXT(sibling, link);
340 	else
341 		regulator = SLIST_FIRST(&regulator_device_list);
342 
343 	while (regulator && regulator->supply != parent)
344 		regulator = SLIST_NEXT(regulator, link);
345 
346 	return regulator;
347 }
348 
349 /* Regulator is the last supplied one by its supply in the registered list */
350 static bool regulator_is_supply_last_supplied(struct regulator *regulator)
351 {
352 	return !find_next_regulator(regulator->supply, regulator);
353 }
354 
355 /* Supply last node may already be printed for indentation level @cur_indent */
356 static bool indent_with_empty_string(struct regulator *node_regulator,
357 				     int node_indent, int cur_indent)
358 {
359 	struct regulator *r = node_regulator;
360 	int n = 0;
361 
362 	/* Find supply at indentation level @node_indent - @cur_indent - 1 */
363 	for (n = 0; n < node_indent - cur_indent - 1; n++)
364 		r = r->supply;
365 
366 	return regulator_is_supply_last_supplied(r);
367 }
368 
369 static void __maybe_unused print_regulator(struct regulator *regulator,
370 					   int indent)
371 {
372 	static const char * const level_unit[] = { "uV", "mV", "V" };
373 	int max_unit = ARRAY_SIZE(level_unit);
374 	int level_max = 0;
375 	int level_min = 0;
376 	int level_cur = 0;
377 	char msg_buf[128] = { };
378 	char *msg_end = msg_buf + sizeof(msg_buf);
379 	char *msg = msg_buf;
380 	int n_max = 0;
381 	int n_min = 0;
382 	int n_cur = 0;
383 	int n = 0;
384 
385 	if (indent) {
386 		/* Indent for root clock level */
387 		msg = add_msg(msg, msg_end, "   ");
388 		if (!msg)
389 			goto out;
390 
391 		/* Indent for root supply to regulator supply levels */
392 		for (n = 0; n < indent - 1; n++) {
393 			if (indent_with_empty_string(regulator, indent, n))
394 				msg = add_msg(msg, msg_end, "    ");
395 			else
396 				msg = add_msg(msg, msg_end, "|   ");
397 			if (!msg)
398 				goto out;
399 		}
400 
401 		/* Regulator indentation */
402 		if (regulator_is_supply_last_supplied(regulator))
403 			msg = add_msg(msg, msg_end, "`-- ");
404 		else
405 			msg = add_msg(msg, msg_end, "|-- ");
406 
407 		if (!msg)
408 			goto out;
409 	} else {
410 		/* Root supply indentation */
411 		msg = add_msg(msg, msg_end, "o- ");
412 	}
413 
414 	regulator_get_range(regulator, &level_min, &level_max);
415 	level_cur = regulator_get_voltage(regulator);
416 
417 	for (n_cur = 1; !(level_cur % 1000) && n_cur < max_unit; n_cur++)
418 		level_cur /= 1000;
419 	for (n_max = 1; !(level_max % 1000) && n_max < max_unit; n_max++)
420 		level_max /= 1000;
421 	for (n_min = 1; !(level_min % 1000) && n_min < max_unit; n_min++)
422 		level_min /= 1000;
423 
424 	msg = add_msg(msg, msg_end, "%s \t(%3s / refcnt %u / flags %#"PRIx32
425 		      " / %d %s ", regulator_name(regulator),
426 		      regulator_is_enabled(regulator) ? "on " : "off",
427 		      regulator->refcount, regulator->flags,
428 		      level_cur, level_unit[n_cur - 1]);
429 	if (!msg)
430 		goto out;
431 
432 	if (level_min == level_max)
433 		msg = add_msg(msg, msg_end, "fixed)");
434 	else if (level_max == INT_MAX)
435 		msg = add_msg(msg, msg_end, "[%d %s .. MAX])",
436 			      level_min, level_unit[n_min - 1]);
437 	else
438 		msg = add_msg(msg, msg_end, "[%d %s .. %d %s])",
439 			      level_min, level_unit[n_min - 1],
440 			      level_max, level_unit[n_max - 1]);
441 
442 out:
443 	if (!msg)
444 		snprintf(msg_end - 4, 4, "...");
445 
446 	DMSG("%s", msg_buf);
447 }
448 
449 static void print_tree(void)
450 {
451 	struct regulator *regulator = NULL;
452 	struct regulator *parent = NULL;
453 	struct regulator *next = NULL;
454 	int indent = -1;
455 
456 	while (true) {
457 		next = find_next_regulator(parent, regulator);
458 		if (next) {
459 			print_regulator(next, indent + 1);
460 			/* Enter the subtree of the next regulator */
461 			parent = next;
462 			indent++;
463 			regulator = NULL;
464 		} else {
465 			/*
466 			 * We've processed all children at this level.
467 			 * If parent is NULL we're at the top and are done.
468 			 */
469 			if (!parent)
470 				break;
471 			/*
472 			 * Move up one level to resume with the next
473 			 * regulator of the parent.
474 			 */
475 			regulator = parent;
476 			parent = regulator->supply;
477 			indent--;
478 		}
479 	}
480 }
481 
482 void regulator_print_tree(void)
483 {
484 	if (IS_ENABLED(CFG_DRIVERS_REGULATOR_PRINT_TREE) &&
485 	    TRACE_LEVEL >= TRACE_DEBUG) {
486 		DMSG("Regulator tree summary");
487 		if (SLIST_EMPTY(&regulator_device_list))
488 			DMSG("-- No registered regulator");
489 		else
490 			print_tree();
491 	}
492 }
493