xref: /optee_os/core/drivers/regulator/regulator.c (revision 2e02a7374b864506d2d244e64303b104ca41a05c)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2023, STMicroelectronics
4  */
5 
6 #include <assert.h>
7 #include <compiler.h>
8 #include <config.h>
9 #include <drivers/regulator.h>
10 #include <initcall.h>
11 #include <keep.h>
12 #include <kernel/boot.h>
13 #include <kernel/delay.h>
14 #include <kernel/mutex.h>
15 #include <kernel/panic.h>
16 #include <kernel/pm.h>
17 #include <kernel/tee_time.h>
18 #include <kernel/thread.h>
19 #include <libfdt.h>
20 #include <limits.h>
21 #include <stdint.h>
22 #include <stdio.h>
23 #include <string.h>
24 #include <util.h>
25 
26 static SLIST_HEAD(, regulator) regulator_device_list =
27 	SLIST_HEAD_INITIALIZER(regulator);
28 
29 static void lock_regulator(struct regulator *regulator)
30 {
31 	/*
32 	 * Regulator operation may occur at runtime and during specific
33 	 * system power transition: power off, PM suspend and resume.
34 	 * These operate upon fastcall entries, under PSCI services
35 	 * execution, where non-secure world is not operational. In these
36 	 * cases we cannot take a mutex and will expect the mutex is
37 	 * unlocked.
38 	 */
39 	if (thread_get_id_may_fail() == THREAD_ID_INVALID) {
40 		assert(!regulator->lock.state);
41 		return;
42 	}
43 
44 	mutex_lock(&regulator->lock);
45 }
46 
47 static void unlock_regulator(struct regulator *regulator)
48 {
49 	if (thread_get_id_may_fail() == THREAD_ID_INVALID) {
50 		/* Path for PM sequences when with local Monitor */
51 		return;
52 	}
53 
54 	mutex_unlock(&regulator->lock);
55 }
56 
57 static TEE_Result set_state(struct regulator *regulator, bool on_not_off)
58 {
59 	if (!regulator->ops->set_state)
60 		return TEE_SUCCESS;
61 
62 	return regulator->ops->set_state(regulator, on_not_off);
63 }
64 
65 static TEE_Result regulator_refcnt_enable(struct regulator *regulator)
66 {
67 	TEE_Result res = TEE_ERROR_GENERIC;
68 
69 	FMSG("%s", regulator_name(regulator));
70 
71 	if (regulator->supply) {
72 		res = regulator_enable(regulator->supply);
73 		if (res)
74 			return res;
75 	}
76 
77 	lock_regulator(regulator);
78 
79 	if (!regulator->refcount) {
80 		res = set_state(regulator, true);
81 		if (res) {
82 			EMSG("regul %s set state failed with %#"PRIx32,
83 			     regulator_name(regulator), res);
84 
85 			unlock_regulator(regulator);
86 
87 			if (regulator->supply &&
88 			    regulator_disable(regulator->supply))
89 				panic();
90 
91 			return res;
92 		}
93 	}
94 
95 	regulator->refcount++;
96 	if (!regulator->refcount)
97 		panic();
98 
99 	FMSG("%s refcount: %u", regulator_name(regulator), regulator->refcount);
100 
101 	unlock_regulator(regulator);
102 
103 	return TEE_SUCCESS;
104 }
105 
106 TEE_Result regulator_enable(struct regulator *regulator)
107 {
108 	assert(regulator);
109 	FMSG("%s", regulator_name(regulator));
110 
111 	if (regulator_is_always_on(regulator))
112 		return TEE_SUCCESS;
113 
114 	return regulator_refcnt_enable(regulator);
115 }
116 
117 static TEE_Result regulator_refcnt_disable(struct regulator *regulator)
118 {
119 	FMSG("%s", regulator_name(regulator));
120 
121 	lock_regulator(regulator);
122 
123 	if (regulator->refcount == 1) {
124 		TEE_Result res = set_state(regulator, false);
125 
126 		if (res) {
127 			EMSG("regul %s set state failed with %#"PRIx32,
128 			     regulator_name(regulator), res);
129 			unlock_regulator(regulator);
130 			return res;
131 		}
132 	}
133 
134 	if (!regulator->refcount) {
135 		EMSG("Unbalanced %s", regulator_name(regulator));
136 		panic();
137 	}
138 
139 	regulator->refcount--;
140 
141 	FMSG("%s refcount: %u", regulator_name(regulator), regulator->refcount);
142 
143 	unlock_regulator(regulator);
144 
145 	if (regulator->supply && regulator_disable(regulator->supply)) {
146 		/* We can't leave this unbalanced */
147 		EMSG("Can't disable %s", regulator_name(regulator->supply));
148 		panic();
149 	}
150 
151 	return TEE_SUCCESS;
152 }
153 
154 TEE_Result regulator_disable(struct regulator *regulator)
155 {
156 	assert(regulator);
157 	FMSG("%s", regulator_name(regulator));
158 
159 	if (regulator_is_always_on(regulator))
160 		return TEE_SUCCESS;
161 
162 	return regulator_refcnt_disable(regulator);
163 }
164 
165 bool regulator_is_enabled(struct regulator *regulator)
166 {
167 	TEE_Result res = TEE_SUCCESS;
168 	bool enabled = false;
169 
170 	if (!regulator->ops->get_state)
171 		return true;
172 
173 	lock_regulator(regulator);
174 	res = regulator->ops->get_state(regulator, &enabled);
175 	unlock_regulator(regulator);
176 
177 	if (res)
178 		EMSG("regul %s get state failed with %#"PRIx32,
179 		     regulator_name(regulator), res);
180 
181 	return !res && enabled;
182 }
183 
184 TEE_Result regulator_set_voltage(struct regulator *regulator, int level_uv)
185 {
186 	TEE_Result res = TEE_ERROR_GENERIC;
187 
188 	assert(regulator);
189 	FMSG("%s %duV", regulator_name(regulator), level_uv);
190 
191 	if (level_uv < regulator->min_uv || level_uv > regulator->max_uv)
192 		return TEE_ERROR_BAD_PARAMETERS;
193 
194 	if (level_uv == regulator->cur_uv)
195 		return TEE_SUCCESS;
196 
197 	if (!regulator->ops->set_voltage)
198 		return TEE_ERROR_NOT_SUPPORTED;
199 
200 	lock_regulator(regulator);
201 	res = regulator->ops->set_voltage(regulator, level_uv);
202 	unlock_regulator(regulator);
203 
204 	if (res) {
205 		EMSG("regul %s set volt failed with %#"PRIx32,
206 		     regulator_name(regulator), res);
207 		return res;
208 	}
209 
210 	regulator->cur_uv = level_uv;
211 
212 	return TEE_SUCCESS;
213 }
214 
215 TEE_Result regulator_supported_voltages(struct regulator *regulator,
216 					struct regulator_voltages **voltages)
217 {
218 	assert(regulator && voltages);
219 
220 	if (regulator->ops->supported_voltages) {
221 		TEE_Result res = TEE_ERROR_GENERIC;
222 
223 		res = regulator->ops->supported_voltages(regulator, voltages);
224 		if (res == TEE_SUCCESS)
225 			return TEE_SUCCESS;
226 		if (res != TEE_ERROR_NOT_SUPPORTED)
227 			return res;
228 	}
229 
230 	*voltages = &regulator->voltages_fallback.desc;
231 
232 	return TEE_SUCCESS;
233 }
234 
235 TEE_Result regulator_register(struct regulator *regulator)
236 {
237 	TEE_Result res = TEE_SUCCESS;
238 	int min_uv = 0;
239 	int max_uv = 0;
240 	int uv = 0;
241 
242 	if (!regulator || !regulator->ops ||
243 	    regulator->flags & ~REGULATOR_FLAGS_MASK)
244 		return TEE_ERROR_BAD_PARAMETERS;
245 
246 	regulator_get_range(regulator, &min_uv, &max_uv);
247 	if (min_uv > max_uv)
248 		return TEE_ERROR_BAD_PARAMETERS;
249 
250 	/* Sanitize regulator effective level */
251 	if (regulator->ops->get_voltage) {
252 		res = regulator->ops->get_voltage(regulator, &uv);
253 		if (res)
254 			return res;
255 	} else {
256 		uv = min_uv;
257 	}
258 	regulator->cur_uv = uv;
259 
260 	if (uv < min_uv || uv > max_uv) {
261 		res = regulator_set_voltage(regulator, min_uv);
262 		if (res)
263 			return res;
264 	}
265 
266 	/* Unbalanced enable refcount to keep always-on regulators enabled */
267 	if (regulator_is_always_on(regulator)) {
268 		res = regulator_refcnt_enable(regulator);
269 		if (res)
270 			return res;
271 	}
272 
273 	/* Preset voltage list in case ops::supported_voltages is NULL */
274 	if (regulator->min_uv == regulator->max_uv) {
275 		regulator->voltages_fallback.desc.type = VOLTAGE_TYPE_FULL_LIST;
276 		regulator->voltages_fallback.desc.num_levels = 1;
277 		regulator->voltages_fallback.levels[0] = regulator->min_uv;
278 	} else {
279 		regulator->voltages_fallback.desc.type = VOLTAGE_TYPE_INCREMENT;
280 		regulator->voltages_fallback.levels[0] = regulator->min_uv;
281 		regulator->voltages_fallback.levels[1] = regulator->max_uv;
282 		regulator->voltages_fallback.levels[2] = 1;
283 	}
284 
285 	SLIST_INSERT_HEAD(&regulator_device_list, regulator, link);
286 
287 	return TEE_SUCCESS;
288 }
289 
290 /*
291  * Clean-up regulators that are not used.
292  */
293 static TEE_Result regulator_core_cleanup(void)
294 {
295 	struct regulator *regulator = NULL;
296 
297 	SLIST_FOREACH(regulator, &regulator_device_list, link) {
298 		if (!regulator->refcount) {
299 			DMSG("disable %s", regulator_name(regulator));
300 			lock_regulator(regulator);
301 			set_state(regulator, false /* disable */);
302 			unlock_regulator(regulator);
303 		}
304 	}
305 
306 	regulator_print_tree();
307 
308 	return TEE_SUCCESS;
309 }
310 
311 release_init_resource(regulator_core_cleanup);
312 
313 /* Return updated message buffer position of NULL on failure */
314 static __printf(3, 4) char *add_msg(char *cur, char *end, const char *fmt, ...)
315 {
316 	va_list ap = { };
317 	int max_len = end - cur;
318 	int ret = 0;
319 
320 	va_start(ap, fmt);
321 	ret = vsnprintf(cur, max_len, fmt, ap);
322 	va_end(ap);
323 
324 	if (ret < 0 || ret >= max_len)
325 		return NULL;
326 
327 	return cur + ret;
328 }
329 
330 static struct regulator *find_next_regulator(struct regulator *parent,
331 					     struct regulator *sibling)
332 {
333 	struct regulator *regulator = NULL;
334 
335 	if (sibling)
336 		regulator = SLIST_NEXT(sibling, link);
337 	else
338 		regulator = SLIST_FIRST(&regulator_device_list);
339 
340 	while (regulator && regulator->supply != parent)
341 		regulator = SLIST_NEXT(regulator, link);
342 
343 	return regulator;
344 }
345 
346 /* Regulator is the last supplied one by its supply in the registered list */
347 static bool regulator_is_supply_last_supplied(struct regulator *regulator)
348 {
349 	return !find_next_regulator(regulator->supply, regulator);
350 }
351 
352 /* Supply last node may already be printed for indentation level @cur_indent */
353 static bool indent_with_empty_string(struct regulator *node_regulator,
354 				     int node_indent, int cur_indent)
355 {
356 	struct regulator *r = node_regulator;
357 	int n = 0;
358 
359 	/* Find supply at indentation level @node_indent - @cur_indent - 1 */
360 	for (n = 0; n < node_indent - cur_indent - 1; n++)
361 		r = r->supply;
362 
363 	return regulator_is_supply_last_supplied(r);
364 }
365 
366 static void __maybe_unused print_regulator(struct regulator *regulator,
367 					   int indent)
368 {
369 	static const char * const level_unit[] = { "uV", "mV", "V" };
370 	int max_unit = ARRAY_SIZE(level_unit);
371 	int level_max = 0;
372 	int level_min = 0;
373 	int level_cur = 0;
374 	char msg_buf[128] = { };
375 	char *msg_end = msg_buf + sizeof(msg_buf);
376 	char *msg = msg_buf;
377 	int n_max = 0;
378 	int n_min = 0;
379 	int n_cur = 0;
380 	int n = 0;
381 
382 	if (indent) {
383 		/* Indent for root clock level */
384 		msg = add_msg(msg, msg_end, "   ");
385 		if (!msg)
386 			goto out;
387 
388 		/* Indent for root supply to regulator supply levels */
389 		for (n = 0; n < indent - 1; n++) {
390 			if (indent_with_empty_string(regulator, indent, n))
391 				msg = add_msg(msg, msg_end, "    ");
392 			else
393 				msg = add_msg(msg, msg_end, "|   ");
394 			if (!msg)
395 				goto out;
396 		}
397 
398 		/* Regulator indentation */
399 		if (regulator_is_supply_last_supplied(regulator))
400 			msg = add_msg(msg, msg_end, "`-- ");
401 		else
402 			msg = add_msg(msg, msg_end, "|-- ");
403 
404 		if (!msg)
405 			goto out;
406 	} else {
407 		/* Root supply indentation */
408 		msg = add_msg(msg, msg_end, "o- ");
409 	}
410 
411 	regulator_get_range(regulator, &level_min, &level_max);
412 	level_cur = regulator_get_voltage(regulator);
413 
414 	for (n_cur = 1; !(level_cur % 1000) && n_cur < max_unit; n_cur++)
415 		level_cur /= 1000;
416 	for (n_max = 1; !(level_max % 1000) && n_max < max_unit; n_max++)
417 		level_max /= 1000;
418 	for (n_min = 1; !(level_min % 1000) && n_min < max_unit; n_min++)
419 		level_min /= 1000;
420 
421 	msg = add_msg(msg, msg_end, "%s \t(%3s / refcnt %u / flags %#"PRIx32
422 		      " / %d %s ", regulator_name(regulator),
423 		      regulator_is_enabled(regulator) ? "on " : "off",
424 		      regulator->refcount, regulator->flags,
425 		      level_cur, level_unit[n_cur - 1]);
426 	if (!msg)
427 		goto out;
428 
429 	if (level_min == level_max)
430 		msg = add_msg(msg, msg_end, "fixed)");
431 	else if (level_max == INT_MAX)
432 		msg = add_msg(msg, msg_end, "[%d %s .. MAX])",
433 			      level_min, level_unit[n_min - 1]);
434 	else
435 		msg = add_msg(msg, msg_end, "[%d %s .. %d %s])",
436 			      level_min, level_unit[n_min - 1],
437 			      level_max, level_unit[n_max - 1]);
438 
439 out:
440 	if (!msg)
441 		snprintf(msg_end - 4, 4, "...");
442 
443 	DMSG("%s", msg_buf);
444 }
445 
446 static void print_tree(void)
447 {
448 	struct regulator *regulator = NULL;
449 	struct regulator *parent = NULL;
450 	struct regulator *next = NULL;
451 	int indent = -1;
452 
453 	while (true) {
454 		next = find_next_regulator(parent, regulator);
455 		if (next) {
456 			print_regulator(next, indent + 1);
457 			/* Enter the subtree of the next regulator */
458 			parent = next;
459 			indent++;
460 			regulator = NULL;
461 		} else {
462 			/*
463 			 * We've processed all children at this level.
464 			 * If parent is NULL we're at the top and are done.
465 			 */
466 			if (!parent)
467 				break;
468 			/*
469 			 * Move up one level to resume with the next
470 			 * regulator of the parent.
471 			 */
472 			regulator = parent;
473 			parent = regulator->supply;
474 			indent--;
475 		}
476 	}
477 }
478 
479 void regulator_print_tree(void)
480 {
481 	if (IS_ENABLED(CFG_DRIVERS_REGULATOR_PRINT_TREE) &&
482 	    TRACE_LEVEL >= TRACE_DEBUG) {
483 		DMSG("Regulator tree summary");
484 		if (SLIST_EMPTY(&regulator_device_list))
485 			DMSG("-- No registered regulator");
486 		else
487 			print_tree();
488 	}
489 }
490