xref: /optee_os/core/crypto/aes-gcm-ghash-tbl.c (revision af3fb62410645ac9636d27c3d1db72c0c9fca913)
1 // SPDX-License-Identifier: Apache-2.0
2 /*
3  * Copyright (c) 2017-2020, Linaro Limited
4  *
5  *  NIST SP800-38D compliant GCM implementation
6  *
7  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
8  *
9  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
10  *  not use this file except in compliance with the License.
11  *  You may obtain a copy of the License at
12  *
13  *  http://www.apache.org/licenses/LICENSE-2.0
14  *
15  *  Unless required by applicable law or agreed to in writing, software
16  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
17  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18  *  See the License for the specific language governing permissions and
19  *  limitations under the License.
20  */
21 
22 #include <crypto/crypto.h>
23 #include <crypto/internal_aes-gcm.h>
24 #include <io.h>
25 #include <string.h>
26 #include <tee_api_types.h>
27 #include <types_ext.h>
28 
29 /*
30  * http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
31  *
32  * See also:
33  * [MGV] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/
34 gcm-revised-spec.pdf
35  *
36  * We use the algorithm described as Shoup's method with 4-bit tables in
37  * [MGV] 4.1, pp. 12-13, to enhance speed without using too much memory.
38  */
39 
40 /*
41  * Precompute small multiples of H, that is set
42  *      HH[i] || HL[i] = H times i,
43  * where i is seen as a field element as in [MGV], ie high-order bits
44  * correspond to low powers of P. The result is stored in the same way, that
45  * is the high-order bit of HH corresponds to P^0 and the low-order bit of HL
46  * corresponds to P^127.
47  */
48 void internal_aes_gcm_ghash_gen_tbl(struct internal_ghash_key *ghash_key,
49 				    const struct internal_aes_gcm_key *ek)
50 {
51 	int i, j;
52 	uint64_t vl, vh;
53 	unsigned char h[16];
54 
55 	memset(h, 0, 16);
56 	crypto_aes_enc_block(ek->data, sizeof(ek->data), ek->rounds, h, h);
57 
58 	vh = get_be64(h);
59 	vl = get_be64(h + 8);
60 
61 	/* 8 = 1000 corresponds to 1 in GF(2^128) */
62 	ghash_key->HL[8] = vl;
63 	ghash_key->HH[8] = vh;
64 
65 	/* 0 corresponds to 0 in GF(2^128) */
66 	ghash_key->HH[0] = 0;
67 	ghash_key->HL[0] = 0;
68 
69 	for (i = 4; i > 0; i >>= 1) {
70 		uint32_t T = (vl & 1) * 0xe1000000U;
71 
72 		vl  = (vh << 63) | (vl >> 1);
73 		vh  = (vh >> 1) ^ ((uint64_t)T << 32);
74 
75 		ghash_key->HL[i] = vl;
76 		ghash_key->HH[i] = vh;
77 	}
78 
79 	for (i = 2; i <= 8; i *= 2) {
80 		uint64_t *HiL = ghash_key->HL + i;
81 		uint64_t *HiH = ghash_key->HH + i;
82 
83 		vh = *HiH;
84 		vl = *HiL;
85 		for (j = 1; j < i; j++) {
86 			HiH[j] = vh ^ ghash_key->HH[j];
87 			HiL[j] = vl ^ ghash_key->HL[j];
88 		}
89 	}
90 }
91 
92 /*
93  * Shoup's method for multiplication use this table with
94  *      last4[x] = x times P^128
95  * where x and last4[x] are seen as elements of GF(2^128) as in [MGV]
96  */
97 static const uint64_t last4[16] = {
98 	0x0000, 0x1c20, 0x3840, 0x2460,
99 	0x7080, 0x6ca0, 0x48c0, 0x54e0,
100 	0xe100, 0xfd20, 0xd940, 0xc560,
101 	0x9180, 0x8da0, 0xa9c0, 0xb5e0
102 };
103 
104 /*
105  * Sets output to x times H using the precomputed tables.
106  * x and output are seen as elements of GF(2^128) as in [MGV].
107  */
108 void internal_aes_gcm_ghash_mult_tbl(struct internal_ghash_key *ghash_key,
109 				     const unsigned char x[16],
110 				     unsigned char output[16])
111 {
112 	int i = 0;
113 	unsigned char lo = 0, hi = 0, rem = 0;
114 	uint64_t zh = 0, zl = 0;
115 
116 	lo = x[15] & 0xf;
117 
118 	zh = ghash_key->HH[lo];
119 	zl = ghash_key->HL[lo];
120 
121 	for (i = 15; i >= 0; i--) {
122 		lo = x[i] & 0xf;
123 		hi = x[i] >> 4;
124 
125 		if (i != 15) {
126 			rem = (unsigned char)zl & 0xf;
127 			zl = (zh << 60) | (zl >> 4);
128 			zh = (zh >> 4);
129 			zh ^= (uint64_t)last4[rem] << 48;
130 			zh ^= ghash_key->HH[lo];
131 			zl ^= ghash_key->HL[lo];
132 		}
133 
134 		rem = (unsigned char)zl & 0xf;
135 		zl = (zh << 60) | (zl >> 4);
136 		zh = (zh >> 4);
137 		zh ^= (uint64_t)last4[rem] << 48;
138 		zh ^= ghash_key->HH[hi];
139 		zl ^= ghash_key->HL[hi];
140 	}
141 
142 	put_be64(output, zh);
143 	put_be64(output + 8, zl);
144 }
145