xref: /optee_os/core/arch/arm/sm/sm_a32.S (revision 35bf26309c2d88cc9b291a6720e2ac3af0c487b8)
1/* SPDX-License-Identifier: BSD-2-Clause */
2/*
3 * Copyright (c) 2016, Linaro Limited
4 * Copyright (c) 2014, STMicroelectronics International N.V.
5 */
6
7#include <arm32_macros.S>
8#include <arm.h>
9#include <asm.S>
10#include <generated/asm-defines.h>
11#include <keep.h>
12#include <kernel/unwind.h>
13#include <sm/optee_smc.h>
14#include <sm/sm.h>
15#include <sm/teesmc_opteed.h>
16#include <sm/teesmc_opteed_macros.h>
17#include <util.h>
18
19#define SM_CTX_SEC_END	(SM_CTX_SEC + SM_CTX_SEC_SIZE)
20
21	.macro save_regs mode
22	cps	\mode
23	mrs	r2, spsr
24	str	r2, [r0], #4
25	str	sp, [r0], #4
26	str	lr, [r0], #4
27	.endm
28
29FUNC sm_save_unbanked_regs , :
30UNWIND(	.fnstart)
31UNWIND(	.cantunwind)
32	/* User mode registers has to be saved from system mode */
33	cps	#CPSR_MODE_SYS
34	str	sp, [r0], #4
35	str	lr, [r0], #4
36
37	save_regs	#CPSR_MODE_IRQ
38	save_regs	#CPSR_MODE_FIQ
39	save_regs	#CPSR_MODE_SVC
40	save_regs	#CPSR_MODE_ABT
41	save_regs	#CPSR_MODE_UND
42
43#ifdef CFG_SM_NO_CYCLE_COUNTING
44	read_pmcr r2
45	stm	r0!, {r2}
46#endif
47	cps	#CPSR_MODE_MON
48	bx	lr
49UNWIND(	.fnend)
50END_FUNC sm_save_unbanked_regs
51
52	.macro restore_regs mode
53	cps	\mode
54	ldr	r2, [r0], #4
55	ldr	sp, [r0], #4
56	ldr	lr, [r0], #4
57	msr	spsr_fsxc, r2
58	.endm
59
60/* Restores the mode specific registers */
61FUNC sm_restore_unbanked_regs , :
62UNWIND(	.fnstart)
63UNWIND(	.cantunwind)
64	/* User mode registers has to be saved from system mode */
65	cps	#CPSR_MODE_SYS
66	ldr	sp, [r0], #4
67	ldr	lr, [r0], #4
68
69	restore_regs	#CPSR_MODE_IRQ
70	restore_regs	#CPSR_MODE_FIQ
71	restore_regs	#CPSR_MODE_SVC
72	restore_regs	#CPSR_MODE_ABT
73	restore_regs	#CPSR_MODE_UND
74
75#ifdef CFG_SM_NO_CYCLE_COUNTING
76	ldm	r0!, {r2}
77	write_pmcr r2
78#endif
79	cps	#CPSR_MODE_MON
80	bx	lr
81UNWIND(	.fnend)
82END_FUNC sm_restore_unbanked_regs
83
84/*
85 * stack_tmp is used as stack, the top of the stack is reserved to hold
86 * struct sm_ctx, everything below is for normal stack usage. As several
87 * different CPU modes are using the same stack it's important that switch
88 * of CPU mode isn't done until one mode is done. This means FIQ, IRQ and
89 * Async abort has to be masked while using stack_tmp.
90 */
91LOCAL_FUNC sm_smc_entry , :
92UNWIND(	.fnstart)
93UNWIND(	.cantunwind)
94	srsdb	sp!, #CPSR_MODE_MON
95	push	{r0-r7}
96
97	clrex		/* Clear the exclusive monitor */
98
99	/* Find out if we're doing an secure or non-secure entry */
100	read_scr r1
101	tst	r1, #SCR_NS
102	bne	.smc_from_nsec
103
104	/*
105	 * As we're coming from secure world (NS bit cleared) the stack
106	 * pointer points to sm_ctx.sec.r0 at this stage. After the
107	 * instruction below the stack pointer points to sm_ctx.
108	 */
109	sub	sp, sp, #(SM_CTX_SEC + SM_SEC_CTX_R0)
110
111	/* Save secure context */
112	add	r0, sp, #SM_CTX_SEC
113	bl	sm_save_unbanked_regs
114
115	/*
116	 * On FIQ exit we're restoring the non-secure context unchanged, on
117	 * all other exits we're shifting r1-r4 from secure context into
118	 * r0-r3 in non-secure context.
119	 */
120	add	r8, sp, #(SM_CTX_SEC + SM_SEC_CTX_R0)
121	ldm	r8, {r0-r4}
122	mov_imm	r9, TEESMC_OPTEED_RETURN_FIQ_DONE
123	cmp	r0, r9
124	addne	r8, sp, #(SM_CTX_NSEC + SM_NSEC_CTX_R0)
125	stmne	r8, {r1-r4}
126
127	/* Restore non-secure context */
128	add	r0, sp, #SM_CTX_NSEC
129	bl	sm_restore_unbanked_regs
130
131.sm_ret_to_nsec:
132	/*
133	 * Return to non-secure world
134	 */
135	add     r0, sp, #(SM_CTX_NSEC + SM_NSEC_CTX_R8)
136	ldm	r0, {r8-r12}
137
138	/* Update SCR */
139	read_scr r0
140	orr	r0, r0, #(SCR_NS | SCR_FIQ) /* Set NS and FIQ bit in SCR */
141	write_scr r0
142	/*
143	 * isb not needed since we're doing an exception return below
144	 * without dependency to the changes in SCR before that.
145	 */
146
147	add	sp, sp, #(SM_CTX_NSEC + SM_NSEC_CTX_R0)
148	b	.sm_exit
149
150.smc_from_nsec:
151	/*
152	 * As we're coming from non-secure world (NS bit set) the stack
153	 * pointer points to sm_ctx.nsec.r0 at this stage. After the
154	 * instruction below the stack pointer points to sm_ctx.
155	 */
156	sub	sp, sp, #(SM_CTX_NSEC + SM_NSEC_CTX_R0)
157
158	bic	r1, r1, #(SCR_NS | SCR_FIQ) /* Clear NS and FIQ bit in SCR */
159	write_scr r1
160	isb
161
162	add	r0, sp, #(SM_CTX_NSEC + SM_NSEC_CTX_R8)
163	stm	r0, {r8-r12}
164
165	mov	r0, sp
166	bl	sm_from_nsec
167	cmp	r0, #SM_EXIT_TO_NON_SECURE
168	beq	.sm_ret_to_nsec
169
170	/*
171	 * Continue into secure world
172	 */
173	add	sp, sp, #(SM_CTX_SEC + SM_SEC_CTX_R0)
174
175.sm_exit:
176	pop	{r0-r7}
177	rfefd	sp!
178UNWIND(	.fnend)
179END_FUNC sm_smc_entry
180
181/*
182 * FIQ handling
183 *
184 * Saves CPU context in the same way as sm_smc_entry() above. The CPU
185 * context will later be restored by sm_smc_entry() when handling a return
186 * from FIQ.
187 */
188LOCAL_FUNC sm_fiq_entry , :
189UNWIND(	.fnstart)
190UNWIND(	.cantunwind)
191	/* FIQ has a +4 offset for lr compared to preferred return address */
192	sub	lr, lr, #4
193	/* sp points just past struct sm_sec_ctx */
194	srsdb	sp!, #CPSR_MODE_MON
195	push	{r0-r7}
196
197	clrex		/* Clear the exclusive monitor */
198
199	/*
200	 * As we're coming from non-secure world the stack pointer points
201	 * to sm_ctx.nsec.r0 at this stage. After the instruction below the
202	 * stack pointer points to sm_ctx.
203	 */
204	sub	sp, sp, #(SM_CTX_NSEC + SM_NSEC_CTX_R0)
205
206	/* Update SCR */
207	read_scr r1
208	bic	r1, r1, #(SCR_NS | SCR_FIQ) /* Clear NS and FIQ bit in SCR */
209	write_scr r1
210	isb
211
212	/* Save non-secure context */
213	add	r0, sp, #SM_CTX_NSEC
214	bl	sm_save_unbanked_regs
215	add     r0, sp, #(SM_CTX_NSEC + SM_NSEC_CTX_R8)
216	stm	r0!, {r8-r12}
217
218	/* Set FIQ entry */
219	ldr	r0, =(thread_vector_table + THREAD_VECTOR_TABLE_FIQ_ENTRY)
220	str	r0, [sp, #(SM_CTX_SEC + SM_SEC_CTX_MON_LR)]
221
222	/* Restore secure context */
223	add	r0, sp, #SM_CTX_SEC
224	bl	sm_restore_unbanked_regs
225
226	add	sp, sp, #(SM_CTX_SEC + SM_SEC_CTX_MON_LR)
227
228	rfefd	sp!
229UNWIND(	.fnend)
230END_FUNC sm_fiq_entry
231
232	.section .text.sm_vect_table
233        .align	5
234LOCAL_FUNC sm_vect_table , :
235UNWIND(	.fnstart)
236UNWIND(	.cantunwind)
237	b	.		/* Reset			*/
238	b	.		/* Undefined instruction	*/
239	b	sm_smc_entry	/* Secure monitor call		*/
240	b	.		/* Prefetch abort		*/
241	b	.		/* Data abort			*/
242	b	.		/* Reserved			*/
243	b	.		/* IRQ				*/
244	b	sm_fiq_entry	/* FIQ				*/
245
246#ifdef CFG_CORE_WORKAROUND_SPECTRE_BP
247	.macro vector_prologue_spectre
248		/*
249		 * This depends on SP being 8 byte aligned, that is, the
250		 * lowest three bits in SP are zero.
251		 *
252		 * The idea is to form a specific bit pattern in the lowest
253		 * three bits of SP depending on which entry in the vector
254		 * we enter via.  This is done by adding 1 to SP in each
255		 * entry but the last.
256		 */
257		add	sp, sp, #1	/* 7:111 Reset			*/
258		add	sp, sp, #1	/* 6:110 Undefined instruction	*/
259		add	sp, sp, #1	/* 5:101 Secure monitor call	*/
260		add	sp, sp, #1	/* 4:100 Prefetch abort		*/
261		add	sp, sp, #1	/* 3:011 Data abort		*/
262		add	sp, sp, #1	/* 2:010 Reserved		*/
263		add	sp, sp, #1	/* 1:001 IRQ			*/
264		nop			/* 0:000 FIQ			*/
265	.endm
266
267	.align 5
268sm_vect_table_a15:
269	vector_prologue_spectre
270	/*
271	 * Invalidate the branch predictor for the current processor.
272	 * For Cortex-A8 ACTLR[6] has to be set to 1 for BPIALL to be
273	 * effective.
274	 * Note that the BPIALL instruction is not effective in
275	 * invalidating the branch predictor on Cortex-A15. For that CPU,
276	 * set ACTLR[0] to 1 during early processor initialisation, and
277	 * invalidate the branch predictor by performing an ICIALLU
278	 * instruction. See also:
279	 * https://github.com/ARM-software/arm-trusted-firmware/wiki/Arm-Trusted-Firmware-Security-Advisory-TFV-6#variant-2-cve-2017-5715
280	 */
281	write_iciallu
282	isb
283	b	1f
284
285	.align 5
286sm_vect_table_bpiall:
287	vector_prologue_spectre
288	/* Invalidate the branch predictor for the current processor. */
289	write_bpiall
290	isb
291
2921:
293	/*
294	 * Only two exception does normally occur, smc and fiq. With all
295	 * other exceptions it's good enough to just spinn, the lowest bits
296	 * still tells which exception we're stuck with when attaching a
297	 * debugger.
298	 */
299
300	/* Test for FIQ, all the lowest bits of SP are supposed to be 0 */
301	tst	sp, #(BIT(0) | BIT(1) | BIT(2))
302	beq	sm_fiq_entry
303
304	/* Test for SMC, xor the lowest bits of SP to be 0 */
305	eor	sp, sp, #(BIT(0) | BIT(2))
306	tst	sp, #(BIT(0) | BIT(1) | BIT(2))
307	beq	sm_smc_entry
308
309	/* unhandled exception */
310	b	.
311#endif /*!CFG_CORE_WORKAROUND_SPECTRE_BP*/
312UNWIND(	.fnend)
313END_FUNC sm_vect_table
314
315/* void sm_init(vaddr_t stack_pointer); */
316FUNC sm_init , :
317UNWIND(	.fnstart)
318	/* Set monitor stack */
319	mrs	r1, cpsr
320	cps	#CPSR_MODE_MON
321	/* Point just beyond sm_ctx.sec */
322	sub	sp, r0, #(SM_CTX_SIZE - SM_CTX_SEC_END)
323
324#ifdef CFG_INIT_CNTVOFF
325	read_scr r0
326	orr	r0, r0, #SCR_NS /* Set NS bit in SCR */
327	write_scr r0
328	isb
329
330	/*
331	 * Accessing CNTVOFF:
332	 * If the implementation includes the Virtualization Extensions
333	 * this is a RW register, accessible from Hyp mode, and
334	 * from Monitor mode when SCR.NS is set to 1.
335	 * If the implementation includes the Security Extensions
336	 * but not the Virtualization Extensions, an MCRR or MRRC to
337	 * the CNTVOFF encoding is UNPREDICTABLE if executed in Monitor
338	 * mode, regardless of the value of SCR.NS.
339	 */
340	read_id_pfr1 r2
341	mov	r3, r2
342	ands    r3, r3, #IDPFR1_GENTIMER_MASK
343	beq	.no_gentimer
344	ands    r2, r2, #IDPFR1_VIRT_MASK
345	beq	.no_gentimer
346	mov	r2, #0
347	write_cntvoff r2, r2
348
349.no_gentimer:
350	bic	r0, r0, #SCR_NS /* Clr NS bit in SCR */
351	write_scr r0
352	isb
353#endif
354#ifdef CFG_SM_NO_CYCLE_COUNTING
355	read_pmcr r0
356	orr	r0, #PMCR_DP
357	write_pmcr r0
358#endif
359	msr	cpsr, r1
360
361#ifdef CFG_CORE_WORKAROUND_SPECTRE_BP
362	/*
363	 * For unrecognized CPUs we fall back to the vector used for
364	 * unaffected CPUs. Cortex A-15 has special treatment compared to
365	 * the other affected Cortex CPUs.
366	 */
367	read_midr r1
368	ubfx	r2, r1, #MIDR_IMPLEMENTER_SHIFT, #MIDR_IMPLEMENTER_WIDTH
369	cmp	r2, #MIDR_IMPLEMENTER_ARM
370	bne	1f
371
372	ubfx	r2, r1, #MIDR_PRIMARY_PART_NUM_SHIFT, \
373			#MIDR_PRIMARY_PART_NUM_WIDTH
374
375	movw	r3, #CORTEX_A8_PART_NUM
376	cmp	r2, r3
377	movwne	r3, #CORTEX_A9_PART_NUM
378	cmpne	r2, r3
379	movwne	r3, #CORTEX_A17_PART_NUM
380	cmpne	r2, r3
381	ldreq	r0, =sm_vect_table_bpiall
382	beq	2f
383
384	movw	r3, #CORTEX_A15_PART_NUM
385	cmp	r2, r3
386	ldreq	r0, =sm_vect_table_a15
387	beq	2f
388#endif
389	/* Set monitor vector (MVBAR) */
3901:	ldr	r0, =sm_vect_table
3912:	write_mvbar r0
392
393	bx	lr
394END_FUNC sm_init
395KEEP_PAGER sm_init
396
397
398/* struct sm_nsec_ctx *sm_get_nsec_ctx(void); */
399FUNC sm_get_nsec_ctx , :
400	mrs	r1, cpsr
401	cps	#CPSR_MODE_MON
402	/*
403	 * As we're in secure mode mon_sp points just beyond sm_ctx.sec,
404	 * which allows us to calculate the address of sm_ctx.nsec.
405	 */
406	add	r0, sp, #(SM_CTX_NSEC - SM_CTX_SEC_END)
407	msr	cpsr, r1
408
409	bx	lr
410END_FUNC sm_get_nsec_ctx
411