xref: /optee_os/core/arch/arm/plat-synquacer/rng_pta.c (revision 5a913ee74d3c71af2a2860ce8a4e7aeab2916f9b)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (C) 2018, Linaro Limited
4  */
5 
6 /*
7  * Developerbox doesn't provide a hardware based true random number
8  * generator. So this pseudo TA provides a good source of entropy using
9  * noise from 7 thermal sensors. Its suitable for entropy required
10  * during boot, seeding kernel entropy pool, cryptographic use etc.
11  *
12  * Assumption
13  * ==========
14  *
15  * We have assumed the entropy of the sensor is better than 8 bits per
16  * 14 sensor readings. This entropy estimate is based on our simple
17  * minimal entropy estimates done on 2.1G bytes of raw samples collected
18  * from thermal sensors.
19  *
20  * We believe our estimate to be conservative and have designed to
21  * health tests to trigger if a sensor does not achieve at least
22  * 8 bits in 16 sensor reading (we use 16 rather than 14 to prevent
23  * spurious failures on edge cases).
24  *
25  * Theory of operation
26  * ===================
27  *
28  * This routine uses secure timer interrupt to sample raw thermal sensor
29  * readings. As thermal sensor refresh rate is every 2ms, so interrupt
30  * fires every 2ms. It implements continuous health test counting rising
31  * and falling edges to report if sensors fail to provide entropy.
32  *
33  * It uses vetted conditioner as SHA512/256 (approved hash algorithm)
34  * to condense entropy. As per NIST.SP.800-90B spec, to get full entropy
35  * from vetted conditioner, we need to supply double of input entropy.
36  * According to assumption above and requirement for vetted conditioner,
37  * we need to supply 28 raw sensor readings to get 1 byte of full
38  * entropy as output. So for 32 bytes of conditioner output, we need to
39  * supply 896 bytes of raw sensor readings.
40  *
41  * Interfaces -> Input
42  * -------------------
43  *
44  * void rng_collect_entropy(void);
45  *
46  * Called as part of secure timer interrupt handler to sample raw
47  * thermal sensor readings and add entropy to the pool.
48  *
49  * Interfaces -> Output
50  * --------------------
51  *
52  * TEE_Result rng_get_entropy(uint32_t types,
53  *                            TEE_Param params[TEE_NUM_PARAMS]);
54  *
55  * Invoke command to expose an entropy interface to normal world.
56  *
57  * Testing
58  * =======
59  *
60  * Passes FIPS 140-2 rngtest.
61  *
62  * Limitations
63  * ===========
64  *
65  * Output rate is limited to approx. 125 bytes per second.
66  *
67  * Our entropy estimation was not reached using any approved or
68  * published estimation framework such as NIST.SP.800-90B and was tested
69  * on a very small set of physical samples. Instead we have adopted what
70  * we believe to be a conservative estimate and partnered it with a
71  * fairly agressive health check.
72  *
73  * Generating the SHA512/256 hash takes 24uS and will be run by an
74  * interrupt handler that pre-empts the normal world.
75  */
76 
77 #include <crypto/crypto.h>
78 #include <kernel/delay.h>
79 #include <kernel/pseudo_ta.h>
80 #include <kernel/spinlock.h>
81 #include <kernel/timer.h>
82 #include <mm/core_memprot.h>
83 #include <io.h>
84 #include <string.h>
85 #include <rng_pta.h>
86 #include <rng_pta_client.h>
87 
88 #define PTA_NAME "rng.pta"
89 
90 #define THERMAL_SENSOR_BASE0		0x54190800
91 #define THERMAL_SENSOR_OFFSET		0x80
92 #define NUM_SENSORS			7
93 #define NUM_SLOTS			((NUM_SENSORS * 2) - 1)
94 
95 #define TEMP_DATA_REG_OFFSET		0x34
96 
97 #define ENTROPY_POOL_SIZE		4096
98 
99 #define SENSOR_DATA_SIZE		128
100 #define CONDITIONER_PAYLOAD		(SENSOR_DATA_SIZE * NUM_SENSORS)
101 
102 /*
103  * The health test monitors each sensor's least significant bit and counts
104  * the number of rising and falling edges. It verifies that both counts
105  * lie within interval of between 12.5% and 37.5% of the samples.
106  * For true random data with 8 bits of entropy per byte, both counts would
107  * be close to 25%.
108  */
109 #define MAX_BIT_FLIP_EDGE_COUNT		((3 * SENSOR_DATA_SIZE) / 8)
110 #define MIN_BIT_FLIP_EDGE_COUNT		(SENSOR_DATA_SIZE / 8)
111 
112 static uint8_t entropy_pool[ENTROPY_POOL_SIZE] = {0};
113 static uint32_t entropy_size;
114 
115 static uint8_t sensors_data[NUM_SLOTS][SENSOR_DATA_SIZE] = {0};
116 static uint8_t sensors_data_slot_idx;
117 static uint8_t sensors_data_idx;
118 
119 static uint32_t health_test_fail_cnt;
120 static uint32_t health_test_cnt;
121 
122 static unsigned int entropy_lock = SPINLOCK_UNLOCK;
123 
124 static void pool_add_entropy(uint8_t *entropy, uint32_t size)
125 {
126 	uint32_t copy_size;
127 
128 	if (entropy_size >= ENTROPY_POOL_SIZE)
129 		return;
130 
131 	if ((ENTROPY_POOL_SIZE - entropy_size) >= size)
132 		copy_size = size;
133 	else
134 		copy_size = ENTROPY_POOL_SIZE - entropy_size;
135 
136 	memcpy((entropy_pool + entropy_size), entropy, copy_size);
137 
138 	entropy_size += copy_size;
139 }
140 
141 static void pool_get_entropy(uint8_t *buf, uint32_t size)
142 {
143 	uint32_t off;
144 
145 	if (size > entropy_size)
146 		return;
147 
148 	off = entropy_size - size;
149 
150 	memcpy(buf, &entropy_pool[off], size);
151 	entropy_size -= size;
152 }
153 
154 static bool health_test(uint8_t sensor_id)
155 {
156 	uint32_t falling_edge_count = 0, rising_edge_count = 0;
157 	uint32_t lo_edge_count, hi_edge_count;
158 	uint32_t i;
159 
160 	for (i = 0; i < (SENSOR_DATA_SIZE - 1); i++) {
161 		if ((sensors_data[sensor_id][i] ^
162 		     sensors_data[sensor_id][i + 1]) & 0x1) {
163 			falling_edge_count += (sensors_data[sensor_id][i] &
164 					       0x1);
165 			rising_edge_count += (sensors_data[sensor_id][i + 1] &
166 					      0x1);
167 		}
168 	}
169 
170 	lo_edge_count = rising_edge_count < falling_edge_count ?
171 			rising_edge_count : falling_edge_count;
172 	hi_edge_count = rising_edge_count < falling_edge_count ?
173 			falling_edge_count : rising_edge_count;
174 
175 	return (lo_edge_count >= MIN_BIT_FLIP_EDGE_COUNT) &&
176 	       (hi_edge_count <= MAX_BIT_FLIP_EDGE_COUNT);
177 }
178 
179 static uint8_t pool_check_add_entropy(void)
180 {
181 	uint32_t i;
182 	uint8_t entropy_sha512_256[TEE_SHA256_HASH_SIZE];
183 	uint8_t pool_status = 0;
184 	TEE_Result res;
185 
186 	for (i = 0; i < NUM_SENSORS; i++) {
187 		/* Check if particular sensor data passes health test */
188 		if (health_test(sensors_data_slot_idx) == true) {
189 			sensors_data_slot_idx++;
190 		} else {
191 			health_test_fail_cnt++;
192 			memmove(sensors_data[sensors_data_slot_idx],
193 				sensors_data[sensors_data_slot_idx + 1],
194 				(SENSOR_DATA_SIZE * (NUM_SENSORS - i - 1)));
195 		}
196 	}
197 
198 	health_test_cnt += NUM_SENSORS;
199 
200 	/* Check if sensors_data have enough pass data for conditioning */
201 	if (sensors_data_slot_idx >= NUM_SENSORS) {
202 		/*
203 		 * Use vetted conditioner SHA512/256 as per
204 		 * NIST.SP.800-90B to condition raw data from entropy
205 		 * source.
206 		 */
207 		sensors_data_slot_idx -= NUM_SENSORS;
208 		res = hash_sha512_256_compute(entropy_sha512_256,
209 					sensors_data[sensors_data_slot_idx],
210 					CONDITIONER_PAYLOAD);
211 		if (res == TEE_SUCCESS)
212 			pool_add_entropy(entropy_sha512_256,
213 					 TEE_SHA256_HASH_SIZE);
214 	}
215 
216 	if (entropy_size >= ENTROPY_POOL_SIZE)
217 		pool_status = 1;
218 
219 	return pool_status;
220 }
221 
222 void rng_collect_entropy(void)
223 {
224 	uint8_t i, pool_full = 0;
225 	void *vaddr;
226 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
227 
228 	cpu_spin_lock(&entropy_lock);
229 
230 	for (i = 0; i < NUM_SENSORS; i++) {
231 		vaddr = phys_to_virt_io(THERMAL_SENSOR_BASE0 +
232 					(THERMAL_SENSOR_OFFSET * i) +
233 					TEMP_DATA_REG_OFFSET);
234 		sensors_data[sensors_data_slot_idx + i][sensors_data_idx] =
235 					(uint8_t)io_read32((vaddr_t)vaddr);
236 	}
237 
238 	sensors_data_idx++;
239 
240 	if (sensors_data_idx >= SENSOR_DATA_SIZE) {
241 		pool_full = pool_check_add_entropy();
242 		sensors_data_idx = 0;
243 	}
244 
245 	if (pool_full)
246 		generic_timer_stop();
247 
248 	cpu_spin_unlock(&entropy_lock);
249 	thread_set_exceptions(exceptions);
250 }
251 
252 static TEE_Result rng_get_entropy(uint32_t types,
253 				  TEE_Param params[TEE_NUM_PARAMS])
254 {
255 	uint8_t *e = NULL;
256 	uint32_t pool_size = 0, rq_size = 0;
257 	uint32_t exceptions;
258 	TEE_Result res = TEE_SUCCESS;
259 
260 	if (types != TEE_PARAM_TYPES(TEE_PARAM_TYPE_MEMREF_INOUT,
261 				     TEE_PARAM_TYPE_NONE,
262 				     TEE_PARAM_TYPE_NONE,
263 				     TEE_PARAM_TYPE_NONE)) {
264 		EMSG("bad parameters types: 0x%" PRIx32, types);
265 		return TEE_ERROR_BAD_PARAMETERS;
266 	}
267 
268 	rq_size = params[0].memref.size;
269 
270 	if ((rq_size == 0) || (rq_size > ENTROPY_POOL_SIZE))
271 		return TEE_ERROR_NOT_SUPPORTED;
272 
273 	e = (uint8_t *)params[0].memref.buffer;
274 	if (!e)
275 		return TEE_ERROR_BAD_PARAMETERS;
276 
277 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
278 	cpu_spin_lock(&entropy_lock);
279 
280 	/*
281 	 * Report health test failure to normal world in case fail count
282 	 * exceeds 1% of pass count.
283 	 */
284 	if (health_test_fail_cnt > ((health_test_cnt + 100) / 100)) {
285 		res = TEE_ERROR_HEALTH_TEST_FAIL;
286 		params[0].memref.size = 0;
287 		health_test_cnt = 0;
288 		health_test_fail_cnt = 0;
289 		goto exit;
290 	}
291 
292 	pool_size = entropy_size;
293 
294 	if (pool_size < rq_size) {
295 		params[0].memref.size = pool_size;
296 		pool_get_entropy(e, pool_size);
297 	} else {
298 		params[0].memref.size = rq_size;
299 		pool_get_entropy(e, rq_size);
300 	}
301 
302 exit:
303 	/* Enable timer FIQ to fetch entropy */
304 	generic_timer_start(TIMER_PERIOD_MS);
305 
306 	cpu_spin_unlock(&entropy_lock);
307 	thread_set_exceptions(exceptions);
308 
309 	return res;
310 }
311 
312 static TEE_Result rng_get_info(uint32_t types,
313 			       TEE_Param params[TEE_NUM_PARAMS])
314 {
315 	if (types != TEE_PARAM_TYPES(TEE_PARAM_TYPE_VALUE_OUTPUT,
316 				     TEE_PARAM_TYPE_NONE,
317 				     TEE_PARAM_TYPE_NONE,
318 				     TEE_PARAM_TYPE_NONE)) {
319 		EMSG("bad parameters types: 0x%" PRIx32, types);
320 		return TEE_ERROR_BAD_PARAMETERS;
321 	}
322 
323 	/* Output RNG rate (per second) */
324 	params[0].value.a = 125;
325 
326 	/*
327 	 * Quality/entropy per 1024 bit of output data. As we have used
328 	 * a vetted conditioner as per NIST.SP.800-90B to provide full
329 	 * entropy given our assumption of entropy estimate for raw sensor
330 	 * data.
331 	 */
332 	params[0].value.b = 1024;
333 
334 	return TEE_SUCCESS;
335 }
336 
337 static TEE_Result invoke_command(void *pSessionContext __unused,
338 				 uint32_t nCommandID, uint32_t nParamTypes,
339 				 TEE_Param pParams[TEE_NUM_PARAMS])
340 {
341 	FMSG("command entry point for pseudo-TA \"%s\"", PTA_NAME);
342 
343 	switch (nCommandID) {
344 	case PTA_CMD_GET_ENTROPY:
345 		return rng_get_entropy(nParamTypes, pParams);
346 	case PTA_CMD_GET_RNG_INFO:
347 		return rng_get_info(nParamTypes, pParams);
348 	default:
349 		break;
350 	}
351 
352 	return TEE_ERROR_NOT_IMPLEMENTED;
353 }
354 
355 pseudo_ta_register(.uuid = PTA_RNG_UUID, .name = PTA_NAME,
356 		   .flags = PTA_DEFAULT_FLAGS | TA_FLAG_DEVICE_ENUM,
357 		   .invoke_command_entry_point = invoke_command);
358