xref: /optee_os/core/arch/arm/plat-stm32mp1/scmi_server.c (revision 949b0c0c6256c79b714d188839b67a85ec5a0b3b)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2019-2022, STMicroelectronics
4  */
5 #include <assert.h>
6 #include <compiler.h>
7 #include <confine_array_index.h>
8 #include <drivers/clk.h>
9 #include <drivers/clk_dt.h>
10 #include <drivers/firewall_device.h>
11 #include <drivers/regulator.h>
12 #include <drivers/rstctrl.h>
13 #include <drivers/scmi-msg.h>
14 #include <drivers/scmi.h>
15 #include <drivers/stm32_cpu_opp.h>
16 #include <drivers/stm32_remoteproc.h>
17 #include <drivers/stm32_vrefbuf.h>
18 #include <drivers/stm32mp1_pmic.h>
19 #include <drivers/stm32mp1_pwr.h>
20 #include <drivers/stm32mp13_regulator_iod.h>
21 #include <drivers/stpmic1.h>
22 #include <drivers/stpmic1_regulator.h>
23 #include <drivers/stm32mp_dt_bindings.h>
24 #include <initcall.h>
25 #include <mm/core_memprot.h>
26 #include <mm/core_mmu.h>
27 #include <platform_config.h>
28 #include <stdbool.h>
29 #include <stdint.h>
30 #include <speculation_barrier.h>
31 #include <stm32_util.h>
32 #include <string.h>
33 #include <tee_api_defines.h>
34 #include <util.h>
35 
36 #define TIMEOUT_US_1MS		1000
37 
38 #define SCMI_CLOCK_NAME_SIZE	16
39 #define SCMI_RD_NAME_SIZE	16
40 #define SCMI_VOLTD_NAME_SIZE	16
41 
42 #define ETZPC_ID_ALWAYS_ACCESSIBLE	(STM32MP1_ETZPC_MAX_ID + 1)
43 #define ETZPC_ID_NEVER_ACCESSIBLE	(STM32MP1_ETZPC_MAX_ID + 2)
44 
45 /*
46  * struct stm32_scmi_clk - Data for the exposed clock
47  * @clock_id: Clock identifier in RCC clock driver
48  * @etzpc_id: ETZPC ID of the peripheral related to the clock
49  * @name: Clock string ID exposed to channel
50  * @enabled: State of the SCMI clock
51  */
52 struct stm32_scmi_clk {
53 	unsigned long clock_id;
54 	struct clk *clk;
55 	unsigned int etzpc_id;
56 	const char *name;
57 	bool enabled;
58 };
59 
60 /*
61  * struct stm32_scmi_rd - Data for the exposed reset controller
62  * @reset_id: Reset identifier in RCC reset driver
63  * @etzpc_id: ETZPC ID of the peripheral related to the reset controller
64  * @name: Reset string ID exposed to channel
65  * @rstctrl: Reset controller device
66  */
67 struct stm32_scmi_rd {
68 	unsigned long reset_id;
69 	unsigned int etzpc_id;
70 	const char *name;
71 	struct rstctrl *rstctrl;
72 };
73 
74 enum voltd_device {
75 	VOLTD_PWR,
76 	VOLTD_PMIC,
77 	VOLTD_VREFBUF,
78 	VOLTD_IOD,
79 };
80 
81 /*
82  * struct stm32_scmi_voltd - Data for the exposed voltage domains
83  * @name: Power regulator string ID exposed to channel
84  * @priv_name: Internal string ID for the PMIC regulators
85  * @priv_id: Internal ID for the regulator aside PMIC ones
86  * @priv_dev: Internal ID for the device implementing the regulator
87  * @regulator: Regulator controller device
88  * @state: State of the SCMI voltage domain (true: enable, false: disable)
89  */
90 struct stm32_scmi_voltd {
91 	const char *name;
92 	const char *priv_name;
93 	unsigned int priv_id;
94 	enum voltd_device priv_dev;
95 	struct regulator *regulator;
96 	bool state;
97 };
98 
99 /*
100  * struct stm32_scmi_perfd - Data for the exposed performance domains
101  * @name: Performance domain string ID (aka name) exposed to channel
102  */
103 struct stm32_scmi_perfd {
104 	const char *name;
105 };
106 
107 #if CFG_STM32MP1_SCMI_SHM_BASE
108 register_phys_mem(MEM_AREA_IO_NSEC, CFG_STM32MP1_SCMI_SHM_BASE,
109 		  CFG_STM32MP1_SCMI_SHM_SIZE);
110 
111 /* Locate all non-secure SMT message buffers in last page of SYSRAM */
112 #define SMT_BUFFER_BASE		CFG_STM32MP1_SCMI_SHM_BASE
113 
114 #if (SMT_BUFFER_BASE + SMT_BUF_SLOT_SIZE > \
115 	CFG_STM32MP1_SCMI_SHM_BASE + CFG_STM32MP1_SCMI_SHM_SIZE)
116 #error "SCMI shared memory mismatch"
117 #endif
118 #endif /*CFG_STM32MP1_SCMI_SHM_BASE*/
119 
120 /* SCMI clock always accessible */
121 #define CLOCK_CELL(_scmi_id, _id, _name, _init_enabled) \
122 	[(_scmi_id)] = { \
123 		.clock_id = (_id), \
124 		.etzpc_id = ETZPC_ID_ALWAYS_ACCESSIBLE, \
125 		.name = (_name), \
126 		.enabled = (_init_enabled), \
127 	}
128 
129 /* SCMI clock accessible upon DECPROT ID assigned to non-secure */
130 #define CLOCK_CELL_DECPROT(_scmi_id, _id, _name, _init_enabled, _etzpc_id) \
131 	[(_scmi_id)] = { \
132 		.clock_id = (_id), \
133 		.etzpc_id = (_etzpc_id), \
134 		.name = (_name), \
135 		.enabled = (_init_enabled), \
136 	}
137 
138 /* SCMI reset domain always accessible */
139 #define RESET_CELL(_scmi_id, _id, _name) \
140 	[(_scmi_id)] = { \
141 		.reset_id = (_id), \
142 		.etzpc_id = ETZPC_ID_ALWAYS_ACCESSIBLE, \
143 		.name = (_name), \
144 	}
145 
146 /* SCMI reset domain accessible upon DECPROT ID assigned to non-secure */
147 #define RESET_CELL_DECPROT(_scmi_id, _id, _name, _etzpc_id) \
148 	[(_scmi_id)] = { \
149 		.reset_id = (_id), \
150 		.etzpc_id = (_etzpc_id), \
151 		.name = (_name), \
152 	}
153 
154 #define VOLTD_CELL(_scmi_id, _dev_id, _priv_id, _priv_name, _name) \
155 	[(_scmi_id)] = { \
156 		.priv_name = (_priv_name), \
157 		.priv_id = (_priv_id), \
158 		.priv_dev = (_dev_id), \
159 		.name = (_name), \
160 	}
161 
162 #define VOLTD_CELL_PWR(_scmi_id, _priv_id, _name) \
163 	VOLTD_CELL((_scmi_id), VOLTD_PWR, (_priv_id), NULL, (_name))
164 
165 #define VOLTD_CELL_IOD(_scmi_id, _priv_id, _name) \
166 	VOLTD_CELL((_scmi_id), VOLTD_IOD, (_priv_id), NULL, (_name))
167 
168 #define VOLTD_CELL_VREFBUF(_scmi_id, _name) \
169 	VOLTD_CELL((_scmi_id), VOLTD_VREFBUF, 0, NULL, (_name))
170 
171 #define VOLTD_CELL_PMIC(_scmi_id, _priv_name, _name) \
172 	VOLTD_CELL((_scmi_id), VOLTD_PMIC, 0, (_priv_name), (_name))
173 
174 #ifdef CFG_STM32MP13
175 static struct stm32_scmi_clk stm32_scmi_clock[] = {
176 	CLOCK_CELL(CK_SCMI_HSE, CK_HSE, "ck_hse", true),
177 	CLOCK_CELL(CK_SCMI_HSI, CK_HSI, "ck_hsi", true),
178 	CLOCK_CELL(CK_SCMI_CSI, CK_CSI, "ck_csi", true),
179 	CLOCK_CELL(CK_SCMI_LSE, CK_LSE, "ck_lse", true),
180 	CLOCK_CELL(CK_SCMI_LSI, CK_LSI, "ck_lsi", true),
181 	CLOCK_CELL(CK_SCMI_HSE_DIV2, CK_HSE_DIV2, "clk-hse-div2", true),
182 	CLOCK_CELL(CK_SCMI_PLL2_Q, PLL2_Q, "pll2_q", true),
183 	CLOCK_CELL(CK_SCMI_PLL2_R, PLL2_R, "pll2_r", true),
184 	CLOCK_CELL(CK_SCMI_PLL3_P, PLL3_P, "pll3_p", true),
185 	CLOCK_CELL(CK_SCMI_PLL3_Q, PLL3_Q, "pll3_q", true),
186 	CLOCK_CELL(CK_SCMI_PLL3_R, PLL3_R, "pll3_r", true),
187 	CLOCK_CELL(CK_SCMI_PLL4_P, PLL4_P, "pll4_p", true),
188 	CLOCK_CELL(CK_SCMI_PLL4_Q, PLL4_Q, "pll4_q", true),
189 	CLOCK_CELL(CK_SCMI_PLL4_R, PLL4_R, "pll4_r", true),
190 	CLOCK_CELL(CK_SCMI_MPU, CK_MPU, "ck_mpu", true),
191 	CLOCK_CELL(CK_SCMI_AXI, CK_AXI, "ck_axi", true),
192 	CLOCK_CELL(CK_SCMI_MLAHB, CK_MLAHB, "ck_mlahb", true),
193 	CLOCK_CELL(CK_SCMI_CKPER, CK_PER, "ck_per", true),
194 	CLOCK_CELL(CK_SCMI_PCLK1, PCLK1, "pclk1", true),
195 	CLOCK_CELL(CK_SCMI_PCLK2, PCLK2, "pclk2", true),
196 	CLOCK_CELL(CK_SCMI_PCLK3, PCLK3, "pclk3", true),
197 	CLOCK_CELL(CK_SCMI_PCLK4, PCLK4, "pclk4", true),
198 	CLOCK_CELL(CK_SCMI_PCLK5, PCLK5, "pclk5", true),
199 	CLOCK_CELL(CK_SCMI_PCLK6, PCLK6, "pclk6", true),
200 	CLOCK_CELL(CK_SCMI_CKTIMG1, CK_TIMG1, "timg1_ck", true),
201 	CLOCK_CELL(CK_SCMI_CKTIMG2, CK_TIMG2, "timg2_ck", true),
202 	CLOCK_CELL(CK_SCMI_CKTIMG3, CK_TIMG3, "timg3_ck", true),
203 	CLOCK_CELL(CK_SCMI_RTC, RTC, "ck_rtc", true),
204 	CLOCK_CELL(CK_SCMI_RTCAPB, RTCAPB, "rtcapb", true),
205 	CLOCK_CELL(CK_SCMI_BSEC, BSEC, "bsec", true),
206 };
207 #endif
208 
209 #ifdef CFG_STM32MP15
210 static struct stm32_scmi_clk stm32_scmi_clock[] = {
211 	CLOCK_CELL(CK_SCMI_HSE, CK_HSE, "ck_hse", true),
212 	CLOCK_CELL(CK_SCMI_HSI, CK_HSI, "ck_hsi", true),
213 	CLOCK_CELL(CK_SCMI_CSI, CK_CSI, "ck_csi", true),
214 	CLOCK_CELL(CK_SCMI_LSE, CK_LSE, "ck_lse", true),
215 	CLOCK_CELL(CK_SCMI_LSI, CK_LSI, "ck_lsi", true),
216 	CLOCK_CELL(CK_SCMI_PLL2_Q, PLL2_Q, "pll2_q", true),
217 	CLOCK_CELL(CK_SCMI_PLL2_R, PLL2_R, "pll2_r", true),
218 	CLOCK_CELL(CK_SCMI_MPU, CK_MPU, "ck_mpu", true),
219 	CLOCK_CELL(CK_SCMI_AXI, CK_AXI, "ck_axi", true),
220 	CLOCK_CELL(CK_SCMI_BSEC, BSEC, "bsec", true),
221 	CLOCK_CELL_DECPROT(CK_SCMI_CRYP1, CRYP1, "cryp1", false,
222 			   STM32MP1_ETZPC_CRYP1_ID),
223 	CLOCK_CELL(CK_SCMI_GPIOZ, GPIOZ, "gpioz", false),
224 	CLOCK_CELL_DECPROT(CK_SCMI_HASH1, HASH1, "hash1", false,
225 			   STM32MP1_ETZPC_HASH1_ID),
226 	CLOCK_CELL_DECPROT(CK_SCMI_I2C4, I2C4_K, "i2c4_k", false,
227 			   STM32MP1_ETZPC_I2C4_ID),
228 	CLOCK_CELL_DECPROT(CK_SCMI_I2C6, I2C6_K, "i2c6_k", false,
229 			   STM32MP1_ETZPC_I2C6_ID),
230 	CLOCK_CELL_DECPROT(CK_SCMI_IWDG1, IWDG1, "iwdg1", false,
231 			   STM32MP1_ETZPC_IWDG1_ID),
232 	CLOCK_CELL_DECPROT(CK_SCMI_RNG1, RNG1_K, "rng1_k", true,
233 			   STM32MP1_ETZPC_RNG1_ID),
234 	CLOCK_CELL(CK_SCMI_RTC, RTC, "ck_rtc", true),
235 	CLOCK_CELL(CK_SCMI_RTCAPB, RTCAPB, "rtcapb", true),
236 	CLOCK_CELL_DECPROT(CK_SCMI_SPI6, SPI6_K, "spi6_k", false,
237 			   STM32MP1_ETZPC_SPI6_ID),
238 	CLOCK_CELL_DECPROT(CK_SCMI_USART1, USART1_K, "usart1_k", false,
239 			   STM32MP1_ETZPC_USART1_ID),
240 };
241 #endif
242 
243 #ifdef CFG_STM32MP13
244 static struct stm32_scmi_rd stm32_scmi_reset_domain[] = {
245 	RESET_CELL_DECPROT(RST_SCMI_LTDC, LTDC_R, "ltdc",
246 			   STM32MP1_ETZPC_LTDC_ID),
247 	RESET_CELL(RST_SCMI_MDMA, MDMA_R, "mdma"),
248 };
249 #endif
250 
251 #ifdef CFG_STM32MP15
252 static struct stm32_scmi_rd stm32_scmi_reset_domain[] = {
253 	RESET_CELL_DECPROT(RST_SCMI_SPI6, SPI6_R, "spi6",
254 			   STM32MP1_ETZPC_SPI6_ID),
255 	RESET_CELL_DECPROT(RST_SCMI_I2C4, I2C4_R, "i2c4",
256 			   STM32MP1_ETZPC_I2C4_ID),
257 	RESET_CELL_DECPROT(RST_SCMI_I2C6, I2C6_R, "i2c6",
258 			   STM32MP1_ETZPC_I2C6_ID),
259 	RESET_CELL_DECPROT(RST_SCMI_USART1, USART1_R, "usart1",
260 			   STM32MP1_ETZPC_USART1_ID),
261 	RESET_CELL_DECPROT(RST_SCMI_STGEN, STGEN_R, "stgen",
262 			   STM32MP1_ETZPC_STGENC_ID),
263 	RESET_CELL_DECPROT(RST_SCMI_GPIOZ, GPIOZ_R, "gpioz",
264 			   ETZPC_ID_NEVER_ACCESSIBLE),
265 	RESET_CELL_DECPROT(RST_SCMI_CRYP1, CRYP1_R, "cryp1",
266 			   STM32MP1_ETZPC_CRYP1_ID),
267 	RESET_CELL_DECPROT(RST_SCMI_HASH1, HASH1_R, "hash1",
268 			   STM32MP1_ETZPC_HASH1_ID),
269 	RESET_CELL_DECPROT(RST_SCMI_RNG1, RNG1_R, "rng1",
270 			   STM32MP1_ETZPC_RNG1_ID),
271 	RESET_CELL(RST_SCMI_MDMA, MDMA_R, "mdma"),
272 	RESET_CELL(RST_SCMI_MCU, MCU_R, "mcu"),
273 	RESET_CELL(RST_SCMI_MCU_HOLD_BOOT, MCU_HOLD_BOOT_R, "mcu_hold_boot"),
274 };
275 #endif
276 
277 #ifdef CFG_STM32MP13
278 struct stm32_scmi_voltd scmi_voltage_domain[] = {
279 	VOLTD_CELL_PWR(VOLTD_SCMI_REG11, PWR_REG11, "reg11"),
280 	VOLTD_CELL_PWR(VOLTD_SCMI_REG18, PWR_REG18, "reg18"),
281 	VOLTD_CELL_PWR(VOLTD_SCMI_USB33, PWR_USB33, "usb33"),
282 	VOLTD_CELL_IOD(VOLTD_SCMI_SDMMC1_IO, IOD_SDMMC1, "sdmmc1"),
283 	VOLTD_CELL_IOD(VOLTD_SCMI_SDMMC2_IO, IOD_SDMMC2, "sdmmc2"),
284 	VOLTD_CELL_VREFBUF(VOLTD_SCMI_VREFBUF, "vrefbuf"),
285 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_BUCK1, "buck1", "buck1"),
286 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_BUCK2, "buck2", "buck2"),
287 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_BUCK3, "buck3", "buck3"),
288 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_BUCK4, "buck4", "buck4"),
289 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_LDO1, "ldo1", "ldo1"),
290 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_LDO2, "ldo2", "ldo2"),
291 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_LDO3, "ldo3", "ldo3"),
292 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_LDO4, "ldo4", "ldo4"),
293 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_LDO5, "ldo5", "ldo5"),
294 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_LDO6, "ldo6", "ldo6"),
295 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_VREFDDR, "vref_ddr", "vref_ddr"),
296 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_BOOST, "boost", "bst_out"),
297 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_PWR_SW1, "pwr_sw1", "pwr_sw1"),
298 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_PWR_SW2, "pwr_sw2", "pwr_sw2"),
299 };
300 #endif
301 
302 #ifdef CFG_STM32MP15
303 struct stm32_scmi_voltd scmi_voltage_domain[] = {
304 	VOLTD_CELL_PWR(VOLTD_SCMI_REG11, PWR_REG11, "reg11"),
305 	VOLTD_CELL_PWR(VOLTD_SCMI_REG18, PWR_REG18, "reg18"),
306 	VOLTD_CELL_PWR(VOLTD_SCMI_USB33, PWR_USB33, "usb33"),
307 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_BUCK1, "buck1", "vddcore"),
308 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_BUCK2, "buck2", "vdd_ddr"),
309 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_BUCK3, "buck3", "vdd"),
310 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_BUCK4, "buck4", "v3v3"),
311 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_LDO1, "ldo1", "v1v8_audio"),
312 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_LDO2, "ldo2", "v3v3_hdmi"),
313 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_LDO3, "ldo3", "vtt_ddr"),
314 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_LDO4, "ldo4", "vdd_usb"),
315 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_LDO5, "ldo5", "vdda"),
316 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_LDO6, "ldo6", "v1v2_hdmi"),
317 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_VREFDDR, "vref_ddr", "vref_ddr"),
318 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_BOOST, "boost", "bst_out"),
319 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_PWR_SW1, "pwr_sw1", "vbus_otg"),
320 	VOLTD_CELL_PMIC(VOLTD_SCMI_STPMIC1_PWR_SW2, "pwr_sw2", "vbus_sw"),
321 };
322 #endif
323 
324 struct channel_resources {
325 	struct scmi_msg_channel *channel;
326 	struct stm32_scmi_clk *clock;
327 	size_t clock_count;
328 	struct stm32_scmi_rd *rd;
329 	size_t rd_count;
330 	struct stm32_scmi_voltd *voltd;
331 	size_t voltd_count;
332 #ifdef CFG_SCMI_MSG_PERF_DOMAIN
333 	struct stm32_scmi_perfd *perfd;
334 	size_t perfd_count;
335 #endif
336 };
337 
338 #define PERFD_CELL(_scmi_id, _name) \
339 	[_scmi_id] = { \
340 		.name = (_name), \
341 	}
342 
343 struct stm32_scmi_perfd __maybe_unused scmi_performance_domain[] = {
344 	PERFD_CELL(0 /* PERFD_SCMI0_CPU_OPP */, "cpu-opp"),
345 };
346 
347 static const struct channel_resources scmi_channel[] = {
348 	[0] = {
349 		.channel = &(struct scmi_msg_channel){
350 #ifdef SMT_BUFFER_BASE
351 			.shm_addr = { .pa = SMT_BUFFER_BASE },
352 			.shm_size = SMT_BUF_SLOT_SIZE,
353 #endif
354 		},
355 		.clock = stm32_scmi_clock,
356 		.clock_count = ARRAY_SIZE(stm32_scmi_clock),
357 		.rd = stm32_scmi_reset_domain,
358 		.rd_count = ARRAY_SIZE(stm32_scmi_reset_domain),
359 		.voltd = scmi_voltage_domain,
360 		.voltd_count = ARRAY_SIZE(scmi_voltage_domain),
361 #ifdef CFG_SCMI_MSG_PERF_DOMAIN
362 		.perfd = scmi_performance_domain,
363 		.perfd_count = ARRAY_SIZE(scmi_performance_domain),
364 #endif
365 	},
366 };
367 
368 static const struct channel_resources *find_resource(unsigned int channel_id)
369 {
370 	assert(channel_id < ARRAY_SIZE(scmi_channel));
371 
372 	return scmi_channel + channel_id;
373 }
374 
375 struct scmi_msg_channel *plat_scmi_get_channel(unsigned int channel_id)
376 {
377 	const size_t max_id = ARRAY_SIZE(scmi_channel);
378 	unsigned int confined_id = confine_array_index(channel_id, max_id);
379 
380 	if (channel_id >= max_id)
381 		return NULL;
382 
383 	return find_resource(confined_id)->channel;
384 }
385 
386 static size_t __maybe_unused plat_scmi_protocol_count_paranoid(void)
387 {
388 	unsigned int n = 0;
389 	unsigned int count = 0;
390 	const size_t channel_count = ARRAY_SIZE(scmi_channel);
391 
392 	for (n = 0; n < channel_count; n++)
393 		if (scmi_channel[n].clock_count)
394 			break;
395 	if (n < channel_count)
396 		count++;
397 
398 	for (n = 0; n < channel_count; n++)
399 		if (scmi_channel[n].rd_count)
400 			break;
401 	if (n < channel_count)
402 		count++;
403 
404 	for (n = 0; n < channel_count; n++)
405 		if (scmi_channel[n].voltd_count)
406 			break;
407 	if (n < channel_count)
408 		count++;
409 
410 #ifdef CFG_SCMI_MSG_PERF_DOMAIN
411 	for (n = 0; n < channel_count; n++)
412 		if (scmi_channel[n].perfd_count)
413 			break;
414 	if (n < channel_count)
415 		count++;
416 #endif
417 
418 	return count;
419 }
420 
421 static const char vendor[] = "ST";
422 static const char sub_vendor[] = "";
423 
424 const char *plat_scmi_vendor_name(void)
425 {
426 	return vendor;
427 }
428 
429 const char *plat_scmi_sub_vendor_name(void)
430 {
431 	return sub_vendor;
432 }
433 
434 /* Currently supporting Clocks and Reset Domains */
435 static const uint8_t plat_protocol_list[] = {
436 	SCMI_PROTOCOL_ID_CLOCK,
437 	SCMI_PROTOCOL_ID_RESET_DOMAIN,
438 	SCMI_PROTOCOL_ID_VOLTAGE_DOMAIN,
439 #ifdef CFG_SCMI_MSG_PERF_DOMAIN
440 	SCMI_PROTOCOL_ID_PERF,
441 #endif
442 	0 /* Null termination */
443 };
444 
445 size_t plat_scmi_protocol_count(void)
446 {
447 	const size_t count = ARRAY_SIZE(plat_protocol_list) - 1;
448 
449 	assert(count == plat_scmi_protocol_count_paranoid());
450 
451 	return count;
452 }
453 
454 const uint8_t *plat_scmi_protocol_list(unsigned int channel_id __unused)
455 {
456 	assert(plat_scmi_protocol_count_paranoid() ==
457 	       (ARRAY_SIZE(plat_protocol_list) - 1));
458 
459 	return plat_protocol_list;
460 }
461 
462 static bool nsec_can_access_resource(unsigned int etzpc_id)
463 {
464 	static struct firewall_controller *etzpc_fw_ctrl;
465 	uint32_t query_arg = DECPROT(etzpc_id, DECPROT_NS_RW, DECPROT_UNLOCK);
466 	struct firewall_query query = {
467 		.arg_count = 1,
468 		.args = &query_arg,
469 		.ctrl = etzpc_fw_ctrl,
470 	};
471 
472 	if (etzpc_id == ETZPC_ID_NEVER_ACCESSIBLE)
473 		return false;
474 	if (etzpc_id == ETZPC_ID_ALWAYS_ACCESSIBLE)
475 		return true;
476 
477 	if (!etzpc_fw_ctrl) {
478 		struct dt_driver_provider *prov = NULL;
479 		int node = 0;
480 
481 		node = fdt_node_offset_by_compatible(get_embedded_dt(), -1,
482 						     "st,stm32-etzpc");
483 		if (node < 0)
484 			panic();
485 
486 		prov = dt_driver_get_provider_by_node(node, DT_DRIVER_FIREWALL);
487 		if (!prov)
488 			panic();
489 
490 		etzpc_fw_ctrl = dt_driver_provider_priv_data(prov);
491 		query.ctrl = etzpc_fw_ctrl;
492 	}
493 
494 	return firewall_check_access(&query) == TEE_SUCCESS;
495 }
496 
497 /*
498  * Platform SCMI clocks
499  */
500 static struct stm32_scmi_clk *find_clock(unsigned int channel_id,
501 					 unsigned int scmi_id)
502 {
503 	const struct channel_resources *resource = find_resource(channel_id);
504 	size_t n = 0;
505 
506 	if (resource) {
507 		for (n = 0; n < resource->clock_count; n++)
508 			if (n == scmi_id)
509 				return &resource->clock[n];
510 	}
511 
512 	return NULL;
513 }
514 
515 size_t plat_scmi_clock_count(unsigned int channel_id)
516 {
517 	const struct channel_resources *resource = find_resource(channel_id);
518 
519 	if (!resource)
520 		return 0;
521 
522 	return resource->clock_count;
523 }
524 
525 const char *plat_scmi_clock_get_name(unsigned int channel_id,
526 				     unsigned int scmi_id)
527 {
528 	struct stm32_scmi_clk *clock = find_clock(channel_id, scmi_id);
529 
530 	if (!clock || !nsec_can_access_resource(clock->etzpc_id))
531 		return NULL;
532 
533 	return clock->name;
534 }
535 
536 int32_t plat_scmi_clock_rates_array(unsigned int channel_id,
537 				    unsigned int scmi_id, size_t start_index,
538 				    unsigned long *array, size_t *nb_elts)
539 {
540 	struct stm32_scmi_clk *clock = find_clock(channel_id, scmi_id);
541 
542 	if (!clock)
543 		return SCMI_NOT_FOUND;
544 
545 	if (!nsec_can_access_resource(clock->etzpc_id))
546 		return SCMI_DENIED;
547 
548 	/* Exposed clocks are currently fixed rate clocks */
549 	if (start_index)
550 		return SCMI_INVALID_PARAMETERS;
551 
552 	if (!array)
553 		*nb_elts = 1;
554 	else if (*nb_elts == 1)
555 		*array = clk_get_rate(clock->clk);
556 	else
557 		return SCMI_GENERIC_ERROR;
558 
559 	return SCMI_SUCCESS;
560 }
561 
562 unsigned long plat_scmi_clock_get_rate(unsigned int channel_id,
563 				       unsigned int scmi_id)
564 {
565 	struct stm32_scmi_clk *clock = find_clock(channel_id, scmi_id);
566 
567 	if (!clock || !nsec_can_access_resource(clock->etzpc_id))
568 		return 0;
569 
570 	return clk_get_rate(clock->clk);
571 }
572 
573 int32_t plat_scmi_clock_get_state(unsigned int channel_id, unsigned int scmi_id)
574 {
575 	struct stm32_scmi_clk *clock = find_clock(channel_id, scmi_id);
576 
577 	if (!clock || !nsec_can_access_resource(clock->etzpc_id))
578 		return 0;
579 
580 	return (int32_t)clock->enabled;
581 }
582 
583 int32_t plat_scmi_clock_set_state(unsigned int channel_id, unsigned int scmi_id,
584 				  bool enable_not_disable)
585 {
586 	struct stm32_scmi_clk *clock = find_clock(channel_id, scmi_id);
587 
588 	if (!clock)
589 		return SCMI_NOT_FOUND;
590 
591 	if (!nsec_can_access_resource(clock->etzpc_id))
592 		return SCMI_DENIED;
593 
594 	if (enable_not_disable) {
595 		if (!clock->enabled) {
596 			FMSG("SCMI clock %u enable", scmi_id);
597 			clk_enable(clock->clk);
598 			clock->enabled = true;
599 		}
600 	} else {
601 		if (clock->enabled) {
602 			FMSG("SCMI clock %u disable", scmi_id);
603 			clk_disable(clock->clk);
604 			clock->enabled = false;
605 		}
606 	}
607 
608 	return SCMI_SUCCESS;
609 }
610 
611 /*
612  * Platform SCMI reset domains
613  */
614 static struct stm32_scmi_rd *find_rd(unsigned int channel_id,
615 				     unsigned int scmi_id)
616 {
617 	const struct channel_resources *resource = find_resource(channel_id);
618 	size_t n = 0;
619 
620 	if (resource) {
621 		for (n = 0; n < resource->rd_count; n++)
622 			if (n == scmi_id)
623 				return &resource->rd[n];
624 	}
625 
626 	return NULL;
627 }
628 
629 const char *plat_scmi_rd_get_name(unsigned int channel_id, unsigned int scmi_id)
630 {
631 	const struct stm32_scmi_rd *rd = find_rd(channel_id, scmi_id);
632 
633 	if (!rd)
634 		return NULL;
635 
636 	return rd->name;
637 }
638 
639 size_t plat_scmi_rd_count(unsigned int channel_id)
640 {
641 	const struct channel_resources *resource = find_resource(channel_id);
642 
643 	if (!resource)
644 		return 0;
645 
646 	return resource->rd_count;
647 }
648 
649 int32_t plat_scmi_rd_autonomous(unsigned int channel_id, unsigned int scmi_id,
650 				uint32_t state)
651 {
652 	const struct stm32_scmi_rd *rd = find_rd(channel_id, scmi_id);
653 
654 	if (!rd)
655 		return SCMI_NOT_FOUND;
656 
657 	if (!rd->rstctrl || !nsec_can_access_resource(rd->etzpc_id))
658 		return SCMI_DENIED;
659 
660 #ifdef CFG_STM32MP15
661 	/* Reset cycle on MCU hold boot is not supported */
662 	if (rd->reset_id == MCU_HOLD_BOOT_R)
663 		return SCMI_NOT_SUPPORTED;
664 	/* Remoteproc driver may handle all MCU reset controllers */
665 	if (rd->reset_id == MCU_R && stm32_rproc_is_secure(STM32_M4_RPROC_ID))
666 		return SCMI_DENIED;
667 #endif
668 
669 	/* Supports only reset with context loss */
670 	if (state)
671 		return SCMI_NOT_SUPPORTED;
672 
673 	FMSG("SCMI reset %u cycle", scmi_id);
674 
675 	if (rstctrl_assert_to(rd->rstctrl, TIMEOUT_US_1MS))
676 		return SCMI_HARDWARE_ERROR;
677 
678 	if (rstctrl_deassert_to(rd->rstctrl, TIMEOUT_US_1MS))
679 		return SCMI_HARDWARE_ERROR;
680 
681 	return SCMI_SUCCESS;
682 }
683 
684 int32_t plat_scmi_rd_set_state(unsigned int channel_id, unsigned int scmi_id,
685 			       bool assert_not_deassert)
686 {
687 	const struct stm32_scmi_rd *rd = find_rd(channel_id, scmi_id);
688 	TEE_Result res = TEE_ERROR_GENERIC;
689 
690 	if (!rd)
691 		return SCMI_NOT_FOUND;
692 
693 	if (!rd->rstctrl || !nsec_can_access_resource(rd->etzpc_id))
694 		return SCMI_DENIED;
695 
696 #ifdef CFG_STM32MP15
697 	/* Remoteproc driver may handle all MCU reset controllers */
698 	if ((rd->reset_id == MCU_R || rd->reset_id == MCU_HOLD_BOOT_R) &&
699 	    stm32_rproc_is_secure(STM32_M4_RPROC_ID))
700 		return SCMI_DENIED;
701 #endif
702 
703 	if (assert_not_deassert) {
704 		FMSG("SCMI reset %u set", scmi_id);
705 		res = rstctrl_assert(rd->rstctrl);
706 	} else {
707 		FMSG("SCMI reset %u release", scmi_id);
708 		res = rstctrl_deassert(rd->rstctrl);
709 	}
710 
711 	if (res)
712 		return SCMI_HARDWARE_ERROR;
713 
714 	return SCMI_SUCCESS;
715 }
716 
717 /*
718  * Platform SCMI voltage domains
719  */
720 static struct stm32_scmi_voltd *find_voltd(unsigned int channel_id,
721 					   unsigned int scmi_id)
722 {
723 	const struct channel_resources *resource = find_resource(channel_id);
724 	size_t n = 0;
725 
726 	if (resource) {
727 		for (n = 0; n < resource->voltd_count; n++)
728 			if (n == scmi_id)
729 				return &resource->voltd[n];
730 	}
731 
732 	return NULL;
733 }
734 
735 size_t plat_scmi_voltd_count(unsigned int channel_id)
736 {
737 	const struct channel_resources *resource = find_resource(channel_id);
738 
739 	if (!resource)
740 		return 0;
741 
742 	return resource->voltd_count;
743 }
744 
745 const char *plat_scmi_voltd_get_name(unsigned int channel_id,
746 				     unsigned int scmi_id)
747 {
748 	struct stm32_scmi_voltd *voltd = find_voltd(channel_id, scmi_id);
749 
750 	/* Currently non-secure is allowed to access all PWR regulators */
751 	if (!voltd)
752 		return NULL;
753 
754 	return voltd->name;
755 }
756 
757 int32_t plat_scmi_voltd_levels_array(unsigned int channel_id,
758 				     unsigned int scmi_id, size_t start_index,
759 				     long *out_levels, size_t *nb_elts)
760 
761 {
762 	struct stm32_scmi_voltd *voltd = find_voltd(channel_id, scmi_id);
763 
764 	if (!voltd)
765 		return SCMI_NOT_FOUND;
766 
767 	if (voltd->regulator) {
768 		struct regulator_voltages_desc *desc = NULL;
769 		TEE_Result res = TEE_ERROR_GENERIC;
770 		const int *levels = NULL;
771 		size_t n = 0;
772 
773 		res = regulator_supported_voltages(voltd->regulator, &desc,
774 						   &levels);
775 		if (res == TEE_ERROR_NOT_SUPPORTED)
776 			return SCMI_NOT_SUPPORTED;
777 		if (res)
778 			return SCMI_GENERIC_ERROR;
779 		if (!desc || desc->type != VOLTAGE_TYPE_FULL_LIST) {
780 			/*
781 			 * Triplet min/max/step description. Caller should use
782 			 * plat_scmi_voltd_levels_by_step().
783 			 */
784 			return SCMI_NOT_SUPPORTED;
785 		}
786 
787 		if (start_index >= desc->num_levels)
788 			return SCMI_OUT_OF_RANGE;
789 
790 		if (!*nb_elts) {
791 			*nb_elts = desc->num_levels - start_index;
792 			return SCMI_SUCCESS;
793 		}
794 
795 		*nb_elts = MIN(*nb_elts, desc->num_levels - start_index);
796 		for (n = 0; n < *nb_elts; n++)
797 			out_levels[n] = levels[start_index + n];
798 
799 		return SCMI_SUCCESS;
800 	}
801 
802 	return SCMI_DENIED;
803 }
804 
805 int32_t plat_scmi_voltd_levels_by_step(unsigned int channel_id,
806 				       unsigned int scmi_id, long *min_max_step)
807 {
808 	struct stm32_scmi_voltd *voltd = find_voltd(channel_id, scmi_id);
809 
810 	if (!voltd)
811 		return SCMI_NOT_FOUND;
812 
813 	if (voltd->regulator) {
814 		struct regulator_voltages_desc *desc = NULL;
815 		TEE_Result res = TEE_ERROR_GENERIC;
816 		const int *levels = NULL;
817 
818 		res = regulator_supported_voltages(voltd->regulator, &desc,
819 						   &levels);
820 		if (res == TEE_ERROR_NOT_SUPPORTED)
821 			return SCMI_NOT_SUPPORTED;
822 		if (res)
823 			return SCMI_GENERIC_ERROR;
824 		if (!desc || desc->type != VOLTAGE_TYPE_INCREMENT) {
825 			/*
826 			 * Triplet min/max/step description. Caller should use
827 			 * plat_scmi_voltd_levels_by_step().
828 			 */
829 			return SCMI_NOT_SUPPORTED;
830 		}
831 
832 		min_max_step[0] = levels[0];
833 		min_max_step[1] = levels[1];
834 		min_max_step[2] = levels[2];
835 
836 		return SCMI_SUCCESS;
837 	}
838 
839 	return SCMI_NOT_SUPPORTED;
840 }
841 
842 int32_t plat_scmi_voltd_get_level(unsigned int channel_id, unsigned int scmi_id,
843 				  long *level_uv)
844 {
845 	struct stm32_scmi_voltd *voltd = find_voltd(channel_id, scmi_id);
846 
847 	if (!voltd)
848 		return SCMI_INVALID_PARAMETERS;
849 
850 	if (voltd->regulator) {
851 		*level_uv = regulator_get_voltage(voltd->regulator);
852 		return SCMI_SUCCESS;
853 	}
854 
855 	return SCMI_DENIED;
856 }
857 
858 int32_t plat_scmi_voltd_set_level(unsigned int channel_id, unsigned int scmi_id,
859 				  long level_uv)
860 {
861 	struct stm32_scmi_voltd *voltd = find_voltd(channel_id, scmi_id);
862 
863 	if (!voltd)
864 		return SCMI_NOT_FOUND;
865 
866 	if (voltd->regulator) {
867 		TEE_Result res = TEE_ERROR_GENERIC;
868 
869 		if (level_uv < INT_MIN || level_uv > INT_MAX)
870 			return SCMI_OUT_OF_RANGE;
871 
872 		res = regulator_set_voltage(voltd->regulator, level_uv);
873 		if (res)
874 			return SCMI_GENERIC_ERROR;
875 		else
876 			return SCMI_SUCCESS;
877 	}
878 
879 	return SCMI_DENIED;
880 }
881 
882 int32_t plat_scmi_voltd_get_config(unsigned int channel_id,
883 				   unsigned int scmi_id, uint32_t *config)
884 {
885 	struct stm32_scmi_voltd *voltd = find_voltd(channel_id, scmi_id);
886 
887 	if (!voltd)
888 		return SCMI_NOT_FOUND;
889 
890 	if (voltd->regulator) {
891 		if (voltd->state)
892 			*config = SCMI_VOLTAGE_DOMAIN_CONFIG_ARCH_ON;
893 		else
894 			*config = SCMI_VOLTAGE_DOMAIN_CONFIG_ARCH_OFF;
895 
896 		return SCMI_SUCCESS;
897 	}
898 
899 	return SCMI_DENIED;
900 }
901 
902 int32_t plat_scmi_voltd_set_config(unsigned int channel_id,
903 				   unsigned int scmi_id, uint32_t config)
904 {
905 	struct stm32_scmi_voltd *voltd = find_voltd(channel_id, scmi_id);
906 
907 	if (!voltd)
908 		return SCMI_NOT_FOUND;
909 
910 	if (voltd->regulator) {
911 		switch (config) {
912 		case SCMI_VOLTAGE_DOMAIN_CONFIG_ARCH_ON:
913 			if (!voltd->state) {
914 				if (regulator_enable(voltd->regulator))
915 					return SCMI_GENERIC_ERROR;
916 
917 				voltd->state = true;
918 			}
919 			break;
920 		case SCMI_VOLTAGE_DOMAIN_CONFIG_ARCH_OFF:
921 			if (voltd->state) {
922 				if (regulator_disable(voltd->regulator))
923 					return SCMI_GENERIC_ERROR;
924 
925 				voltd->state = false;
926 			}
927 			break;
928 		default:
929 			return SCMI_INVALID_PARAMETERS;
930 		}
931 
932 		return SCMI_SUCCESS;
933 	}
934 
935 	return SCMI_DENIED;
936 }
937 
938 static void get_voltd_regulator(struct stm32_scmi_voltd *voltd)
939 {
940 	switch (voltd->priv_dev) {
941 	case VOLTD_PWR:
942 		voltd->regulator = stm32mp1_pwr_get_regulator(voltd->priv_id);
943 		break;
944 	case VOLTD_PMIC:
945 		voltd->regulator = stm32mp_pmic_get_regulator(voltd->priv_name);
946 		break;
947 	case VOLTD_VREFBUF:
948 		voltd->regulator = stm32_vrefbuf_regulator();
949 		break;
950 	case VOLTD_IOD:
951 		voltd->regulator = stm32mp1_get_iod_regulator(voltd->priv_id);
952 		break;
953 	default:
954 		break;
955 	}
956 
957 	if (voltd->regulator && voltd->regulator->flags & REGULATOR_BOOT_ON)
958 		regulator_enable(voltd->regulator);
959 }
960 
961 #ifdef CFG_SCMI_MSG_PERF_DOMAIN
962 /*
963  * Platform SCMI performance domains
964  *
965  * Note: currently exposes a single performance domain that is the CPU DVFS
966  * operating point. Non-secure is allowed to access this performance domain.
967  */
968 static struct stm32_scmi_perfd *find_perfd(unsigned int channel_id,
969 					   unsigned int domain_id)
970 {
971 	const struct channel_resources *resource = find_resource(channel_id);
972 	size_t n = 0;
973 
974 	if (resource) {
975 		for (n = 0; n < resource->perfd_count; n++)
976 			if (n == domain_id)
977 				return &resource->perfd[n];
978 	}
979 
980 	return NULL;
981 }
982 
983 size_t plat_scmi_perf_count(unsigned int channel_id)
984 {
985 	const struct channel_resources *resource = find_resource(channel_id);
986 
987 	if (!resource)
988 		return 0;
989 
990 	return resource->perfd_count;
991 }
992 
993 const char *plat_scmi_perf_domain_name(unsigned int channel_id,
994 				       unsigned int domain_id)
995 {
996 	struct stm32_scmi_perfd *perfd = find_perfd(channel_id, domain_id);
997 
998 	if (!perfd)
999 		return NULL;
1000 
1001 	return perfd->name;
1002 }
1003 
1004 int32_t plat_scmi_perf_sustained_freq(unsigned int channel_id,
1005 				      unsigned int domain_id,
1006 				      unsigned int *freq)
1007 {
1008 	struct stm32_scmi_perfd *perfd = find_perfd(channel_id, domain_id);
1009 
1010 	if (!perfd)
1011 		return SCMI_NOT_FOUND;
1012 
1013 	*freq = stm32_cpu_opp_sustained_level();
1014 
1015 	return SCMI_SUCCESS;
1016 }
1017 
1018 int32_t plat_scmi_perf_level_latency(unsigned int channel_id,
1019 				     unsigned int domain_id,
1020 				     unsigned int level __unused,
1021 				     unsigned int *latency)
1022 {
1023 	struct stm32_scmi_perfd *perfd = find_perfd(channel_id, domain_id);
1024 
1025 	if (!perfd)
1026 		return SCMI_NOT_FOUND;
1027 
1028 	*latency = CFG_STM32MP_OPP_LATENCY_US;
1029 
1030 	return SCMI_SUCCESS;
1031 }
1032 
1033 int32_t plat_scmi_perf_levels_array(unsigned int channel_id,
1034 				    unsigned int domain_id, size_t start_index,
1035 				    unsigned int *levels, size_t *nb_elts)
1036 {
1037 	struct stm32_scmi_perfd *perfd = find_perfd(channel_id, domain_id);
1038 	size_t full_count = 0;
1039 	size_t out_count = 0;
1040 	size_t n = 0;
1041 
1042 	if (!perfd)
1043 		return SCMI_NOT_FOUND;
1044 
1045 	full_count = stm32_cpu_opp_count();
1046 	if (SUB_OVERFLOW(full_count, start_index, &out_count))
1047 		return SCMI_OUT_OF_RANGE;
1048 
1049 	if (!levels) {
1050 		*nb_elts = full_count - start_index;
1051 
1052 		return SCMI_SUCCESS;
1053 	}
1054 
1055 	out_count = MIN(out_count, *nb_elts);
1056 
1057 	FMSG("%zu levels: start %zu requested %zu output %zu",
1058 	     full_count, start_index, *nb_elts, out_count);
1059 
1060 	for (n = 0; n < out_count; n++)
1061 		levels[n] = stm32_cpu_opp_level(start_index + n);
1062 
1063 	*nb_elts = out_count;
1064 
1065 	return SCMI_SUCCESS;
1066 }
1067 
1068 int32_t plat_scmi_perf_level_get(unsigned int channel_id,
1069 				 unsigned int domain_id, unsigned int *level)
1070 {
1071 	struct stm32_scmi_perfd *perfd = find_perfd(channel_id, domain_id);
1072 	unsigned int current_level = 0;
1073 
1074 	if (!perfd)
1075 		return SCMI_NOT_FOUND;
1076 
1077 	if (stm32_cpu_opp_read_level(&current_level))
1078 		return SCMI_GENERIC_ERROR;
1079 
1080 	*level = current_level;
1081 
1082 	return SCMI_SUCCESS;
1083 }
1084 
1085 int32_t plat_scmi_perf_level_set(unsigned int channel_id,
1086 				 unsigned int domain_id, unsigned int level)
1087 {
1088 	struct stm32_scmi_perfd *perfd = find_perfd(channel_id, domain_id);
1089 
1090 	if (!perfd)
1091 		return SCMI_NOT_FOUND;
1092 
1093 	switch (stm32_cpu_opp_set_level(level)) {
1094 	case TEE_SUCCESS:
1095 		return SCMI_SUCCESS;
1096 	case TEE_ERROR_BAD_PARAMETERS:
1097 		return SCMI_OUT_OF_RANGE;
1098 	default:
1099 		return SCMI_GENERIC_ERROR;
1100 	}
1101 }
1102 #endif
1103 
1104 /*
1105  * Initialize platform SCMI resources
1106  */
1107 static TEE_Result stm32mp1_init_scmi_server(void)
1108 {
1109 	size_t i = 0;
1110 	size_t j = 0;
1111 
1112 	for (i = 0; i < ARRAY_SIZE(scmi_channel); i++) {
1113 		const struct channel_resources *res = scmi_channel + i;
1114 		struct scmi_msg_channel *chan = res->channel;
1115 
1116 		if (chan->shm_addr.pa) {
1117 			struct io_pa_va *addr = &chan->shm_addr;
1118 
1119 			/* Enforce non-secure shm mapped as device memory */
1120 			addr->va = (vaddr_t)phys_to_virt(addr->pa,
1121 							 MEM_AREA_IO_NSEC,
1122 							 chan->shm_size);
1123 			assert(addr->va);
1124 
1125 			scmi_smt_init_agent_channel(chan);
1126 		}
1127 
1128 		for (j = 0; j < res->clock_count; j++) {
1129 			struct stm32_scmi_clk *clk = &res->clock[j];
1130 
1131 			if (!clk->name ||
1132 			    strlen(clk->name) >= SCMI_CLOCK_NAME_SIZE)
1133 				panic("SCMI clock name invalid");
1134 
1135 			clk->clk = stm32mp_rcc_clock_id_to_clk(clk->clock_id);
1136 			assert(clk->clk);
1137 
1138 			/* Sync SCMI clocks with their targeted initial state */
1139 			if (clk->enabled &&
1140 			    nsec_can_access_resource(clk->etzpc_id))
1141 				clk_enable(clk->clk);
1142 		}
1143 
1144 		for (j = 0; j < res->rd_count; j++) {
1145 			struct stm32_scmi_rd *rd = &res->rd[j];
1146 			struct rstctrl *rstctrl = NULL;
1147 
1148 			if (!rd->name ||
1149 			    strlen(rd->name) >= SCMI_RD_NAME_SIZE)
1150 				panic("SCMI reset domain name invalid");
1151 
1152 			rstctrl = stm32mp_rcc_reset_id_to_rstctrl(rd->reset_id);
1153 			assert(rstctrl);
1154 			if (rstctrl_get_exclusive(rstctrl))
1155 				continue;
1156 
1157 			rd->rstctrl = rstctrl;
1158 		}
1159 
1160 		for (j = 0; j < res->voltd_count; j++) {
1161 			struct stm32_scmi_voltd *voltd = &res->voltd[j];
1162 
1163 			if (!voltd->name ||
1164 			    strlen(voltd->name) >= SCMI_VOLTD_NAME_SIZE)
1165 				panic("SCMI voltage domain name invalid");
1166 
1167 			get_voltd_regulator(voltd);
1168 		}
1169 	}
1170 
1171 	return TEE_SUCCESS;
1172 }
1173 
1174 driver_init_late(stm32mp1_init_scmi_server);
1175