xref: /optee_os/core/arch/arm/plat-stm32mp1/main.c (revision f2e5b5e09c523692227c9eb5b8671a5ddf36c448)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2017-2024, STMicroelectronics
4  * Copyright (c) 2016-2018, Linaro Limited
5  */
6 
7 #include <boot_api.h>
8 #include <config.h>
9 #include <console.h>
10 #include <drivers/gic.h>
11 #include <drivers/pinctrl.h>
12 #include <drivers/stm32_etzpc.h>
13 #include <drivers/stm32_gpio.h>
14 #include <drivers/stm32_iwdg.h>
15 #include <drivers/stm32_tamp.h>
16 #include <drivers/stm32_uart.h>
17 #include <drivers/stm32mp_dt_bindings.h>
18 #include <io.h>
19 #include <kernel/boot.h>
20 #include <kernel/dt.h>
21 #include <kernel/misc.h>
22 #include <kernel/panic.h>
23 #include <kernel/spinlock.h>
24 #include <kernel/tee_misc.h>
25 #include <libfdt.h>
26 #include <mm/core_memprot.h>
27 #include <platform_config.h>
28 #include <sm/psci.h>
29 #include <stm32_util.h>
30 #include <string.h>
31 #include <trace.h>
32 
33 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB1_BASE, APB1_SIZE);
34 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB2_BASE, APB2_SIZE);
35 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB3_BASE, APB3_SIZE);
36 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB4_BASE, APB4_SIZE);
37 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB5_BASE, APB5_SIZE);
38 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, AHB4_BASE, AHB4_SIZE);
39 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, AHB5_BASE, AHB5_SIZE);
40 
41 register_phys_mem_pgdir(MEM_AREA_IO_SEC, APB1_BASE, APB1_SIZE);
42 register_phys_mem_pgdir(MEM_AREA_IO_SEC, APB3_BASE, APB3_SIZE);
43 register_phys_mem_pgdir(MEM_AREA_IO_SEC, APB4_BASE, APB4_SIZE);
44 register_phys_mem_pgdir(MEM_AREA_IO_SEC, APB5_BASE, APB5_SIZE);
45 #ifdef CFG_STM32MP13
46 register_phys_mem_pgdir(MEM_AREA_IO_SEC, APB6_BASE, APB6_SIZE);
47 #endif
48 register_phys_mem_pgdir(MEM_AREA_IO_SEC, AHB4_BASE, AHB4_SIZE);
49 register_phys_mem_pgdir(MEM_AREA_IO_SEC, AHB5_BASE, AHB5_SIZE);
50 register_phys_mem_pgdir(MEM_AREA_IO_SEC, GIC_BASE, GIC_SIZE);
51 
52 register_ddr(DDR_BASE, CFG_DRAM_SIZE);
53 
54 #define _ID2STR(id)		(#id)
55 #define ID2STR(id)		_ID2STR(id)
56 
57 static TEE_Result platform_banner(void)
58 {
59 	IMSG("Platform stm32mp1: flavor %s - DT %s",
60 		ID2STR(PLATFORM_FLAVOR),
61 		ID2STR(CFG_EMBED_DTB_SOURCE_FILE));
62 
63 	return TEE_SUCCESS;
64 }
65 service_init(platform_banner);
66 
67 /*
68  * Console
69  *
70  * CFG_STM32_EARLY_CONSOLE_UART specifies the ID of the UART used for
71  * trace console. Value 0 disables the early console.
72  *
73  * We cannot use the generic serial_console support since probing
74  * the console requires the platform clock driver to be already
75  * up and ready which is done only once service_init are completed.
76  */
77 static struct stm32_uart_pdata console_data;
78 
79 void plat_console_init(void)
80 {
81 	/* Early console initialization before MMU setup */
82 	struct uart {
83 		paddr_t pa;
84 		bool secure;
85 	} uarts[] = {
86 		[0] = { .pa = 0 },
87 		[1] = { .pa = USART1_BASE, .secure = true, },
88 		[2] = { .pa = USART2_BASE, .secure = false, },
89 		[3] = { .pa = USART3_BASE, .secure = false, },
90 		[4] = { .pa = UART4_BASE, .secure = false, },
91 		[5] = { .pa = UART5_BASE, .secure = false, },
92 		[6] = { .pa = USART6_BASE, .secure = false, },
93 		[7] = { .pa = UART7_BASE, .secure = false, },
94 		[8] = { .pa = UART8_BASE, .secure = false, },
95 	};
96 
97 	COMPILE_TIME_ASSERT(ARRAY_SIZE(uarts) > CFG_STM32_EARLY_CONSOLE_UART);
98 
99 	if (!uarts[CFG_STM32_EARLY_CONSOLE_UART].pa)
100 		return;
101 
102 	/* No clock yet bound to the UART console */
103 	console_data.clock = NULL;
104 
105 	console_data.secure = uarts[CFG_STM32_EARLY_CONSOLE_UART].secure;
106 	stm32_uart_init(&console_data, uarts[CFG_STM32_EARLY_CONSOLE_UART].pa);
107 
108 	register_serial_console(&console_data.chip);
109 
110 	IMSG("Early console on UART#%u", CFG_STM32_EARLY_CONSOLE_UART);
111 }
112 
113 static TEE_Result init_console_from_dt(void)
114 {
115 	struct stm32_uart_pdata *pd = NULL;
116 	void *fdt = NULL;
117 	int node = 0;
118 	TEE_Result res = TEE_ERROR_GENERIC;
119 
120 	fdt = get_embedded_dt();
121 	res = get_console_node_from_dt(fdt, &node, NULL, NULL);
122 	if (res == TEE_ERROR_ITEM_NOT_FOUND) {
123 		fdt = get_external_dt();
124 		res = get_console_node_from_dt(fdt, &node, NULL, NULL);
125 		if (res == TEE_ERROR_ITEM_NOT_FOUND)
126 			return TEE_SUCCESS;
127 		if (res != TEE_SUCCESS)
128 			return res;
129 	}
130 
131 	pd = stm32_uart_init_from_dt_node(fdt, node);
132 	if (!pd) {
133 		IMSG("DTB disables console");
134 		register_serial_console(NULL);
135 		return TEE_SUCCESS;
136 	}
137 
138 	/* Replace early console with the new one */
139 	console_flush();
140 	console_data = *pd;
141 	register_serial_console(&console_data.chip);
142 	IMSG("DTB enables console (%ssecure)", pd->secure ? "" : "non-");
143 	free(pd);
144 
145 	return TEE_SUCCESS;
146 }
147 
148 /* Probe console from DT once clock inits (service init level) are completed */
149 service_init_late(init_console_from_dt);
150 
151 /*
152  * GIC init, used also for primary/secondary boot core wake completion
153  */
154 void boot_primary_init_intc(void)
155 {
156 	gic_init(GIC_BASE + GICC_OFFSET, GIC_BASE + GICD_OFFSET);
157 
158 	stm32mp_register_online_cpu();
159 }
160 
161 void boot_secondary_init_intc(void)
162 {
163 	gic_init_per_cpu();
164 
165 	stm32mp_register_online_cpu();
166 }
167 
168 #ifdef CFG_STM32MP15
169 /*
170  * This concerns OP-TEE pager for STM32MP1 to use secure internal
171  * RAMs to execute. TZSRAM refers the TZSRAM_BASE/TZSRAM_SIZE
172  * used in boot.c to locate secure unpaged memory.
173  *
174  * STM32MP15 variants embed 640kB of contiguous securable SRAMs
175  *
176  *  +--------------+ <-- SYSRAM_BASE
177  *  |              |     lower part can be assigned to secure world
178  *  | SYSRAM 256kB |     4kB granule boundary
179  *  |              |     upper part can be assigned to secure world
180  *  +--------------+ <-- SRAM1_BASE (= SYSRAM_BASE + SYSRAM_SIZE)
181     |              |     full range assigned to non-secure world or
182  *  | SRAM1  128kB |     to secure world, or to- Cortex-M4 exclusive access
183  *  +--------------+ <-- SRAM2_BASE (= SRAM1_BASE + SRAM1_SIZE)
184     |              |     full range assigned to non-secure world or
185  *  | SRAM2  128kB |     to secure world, or to- Cortex-M4 exclusive access
186  *  +--------------+ <-- SRAM3_BASE (= SRAM2_BASE + SRAM2_SIZE)
187     |              |     full range assigned to non-secure world or
188  *  | SRAM3   64kB |     to secure world, or to- Cortex-M4 exclusive access
189  *  +--------------+ <-- SRAM4_BASE (= SRAM3_BASE + SRAM3_SIZE)
190     |              |     full range assigned to non-secure world or
191  *  | SRAM4   64kB |     to secure world, or to- Cortex-M4 exclusive access
192  *  +--------------+ <-- SRAM4_BASE + SRAM4_SIZE
193  *
194  * If SRAMx memories are not used for the companion Cortex-M4
195  * processor, OP-TEE can use this memory.
196  *
197  * SYSRAM configuration for secure/non-secure boundaries requires the
198  * secure SYSRAM memory to start at the SYSRAM physical base address and grow
199  * from there while the non-secure SYSRAM range lies at SYSRAM end addresses
200  * with a 4KB page granule.
201  *
202  * SRAM1, SRAM2, SRAM3 and SRAM4 are independently assigned to secure world,
203  * to non-secure world or possibly to Cortex-M4 exclusive access. Each
204  * assignment covers the full related SRAMx memory range.
205  *
206  * Using non-secure SYSRAM or one of the SRAMx for SCMI message communication
207  * can be done using CFG_STM32MP1_SCMI_SHM_BASE/CFG_STM32MP1_SCMI_SHM_SIZE.
208  * This imposes related memory area is assigned to non-secure world.
209 
210  * Using secure internal memories (SYSRAM and/or some SRAMx) with STM32MP15
211  * shall meet this constraints known the TZSRAM physical memory range shall
212  * be contiguous.
213  */
214 
215 #define SYSRAM_END			(SYSRAM_BASE + SYSRAM_SIZE)
216 #define SYSRAM_SEC_END			(SYSRAM_BASE + SYSRAM_SEC_SIZE)
217 #define SRAMS_END			(SRAM4_BASE + SRAM4_SIZE)
218 #define SRAMS_START			SRAM1_BASE
219 #define TZSRAM_END			(CFG_TZSRAM_START + CFG_TZSRAM_SIZE)
220 
221 #define SCMI_SHM_IS_IN_SRAMX	((CFG_STM32MP1_SCMI_SHM_BASE >= SRAM1_BASE) && \
222 				 (CFG_STM32MP1_SCMI_SHM_BASE + \
223 				  CFG_STM32MP1_SCMI_SHM_SIZE) <= SRAMS_END)
224 
225 #define TZSRAM_FITS_IN_SYSRAM_SEC	((CFG_TZSRAM_START >= SYSRAM_BASE) && \
226 					 (TZSRAM_END <= SYSRAM_SEC_END))
227 
228 #define TZSRAM_FITS_IN_SYSRAM_AND_SRAMS	((CFG_TZSRAM_START >= SYSRAM_BASE) && \
229 					 (CFG_TZSRAM_START < SYSRAM_END) && \
230 					 (TZSRAM_END > SYSRAM_END) && \
231 					 (TZSRAM_END <= SRAMS_END) && \
232 					 (SYSRAM_SIZE == SYSRAM_SEC_SIZE))
233 
234 #define TZSRAM_FITS_IN_SRAMS	((CFG_TZSRAM_START >= SRAMS_START) && \
235 				 (CFG_TZSRAM_START < SRAMS_END) && \
236 				 (TZSRAM_END <= SRAMS_END))
237 
238 #define TZSRAM_IS_IN_DRAM	(CFG_TZSRAM_START >= CFG_DRAM_BASE)
239 
240 #ifdef CFG_WITH_PAGER
241 /*
242  * At build time, we enforce that, when pager is used,
243  * either TZSRAM fully fits inside SYSRAM secure address range,
244  * or TZSRAM fully fits inside the full SYSRAM and spread inside SRAMx orderly,
245  * or TZSRAM fully fits some inside SRAMs address range,
246  * or TZSRAM is in DDR for debug and test purpose.
247  */
248 static_assert(TZSRAM_FITS_IN_SYSRAM_SEC || TZSRAM_FITS_IN_SYSRAM_AND_SRAMS ||
249 	      TZSRAM_FITS_IN_SRAMS || TZSRAM_IS_IN_DRAM);
250 #endif
251 
252 #if TZSRAM_FITS_IN_SYSRAM_AND_SRAMS || TZSRAM_FITS_IN_SRAMS || \
253 	SCMI_SHM_IS_IN_SRAMX
254 /* At run time we enforce that SRAM1 to SRAM4 are properly assigned if used */
255 static TEE_Result init_stm32mp15_secure_srams(void)
256 {
257 	if (IS_ENABLED(CFG_WITH_PAGER)) {
258 		if (core_is_buffer_intersect(CFG_TZSRAM_START, CFG_TZSRAM_SIZE,
259 					     SRAM1_BASE, SRAM1_SIZE))
260 			stm32mp_register_secure_periph_iomem(SRAM1_BASE);
261 
262 		if (core_is_buffer_intersect(CFG_TZSRAM_START, CFG_TZSRAM_SIZE,
263 					     SRAM2_BASE, SRAM2_SIZE))
264 			stm32mp_register_secure_periph_iomem(SRAM2_BASE);
265 
266 		if (core_is_buffer_intersect(CFG_TZSRAM_START, CFG_TZSRAM_SIZE,
267 					     SRAM3_BASE, SRAM3_SIZE))
268 			stm32mp_register_secure_periph_iomem(SRAM3_BASE);
269 
270 		if (core_is_buffer_intersect(CFG_TZSRAM_START, CFG_TZSRAM_SIZE,
271 					     SRAM4_BASE, SRAM4_SIZE))
272 			stm32mp_register_secure_periph_iomem(SRAM4_BASE);
273 	}
274 
275 	if (SCMI_SHM_IS_IN_SRAMX) {
276 		if (core_is_buffer_intersect(CFG_STM32MP1_SCMI_SHM_BASE,
277 					     CFG_STM32MP1_SCMI_SHM_SIZE,
278 					     SRAM1_BASE, SRAM1_SIZE))
279 			stm32mp_register_non_secure_periph_iomem(SRAM1_BASE);
280 
281 		if (core_is_buffer_intersect(CFG_STM32MP1_SCMI_SHM_BASE,
282 					     CFG_STM32MP1_SCMI_SHM_SIZE,
283 					     SRAM2_BASE, SRAM2_SIZE))
284 			stm32mp_register_non_secure_periph_iomem(SRAM2_BASE);
285 
286 		if (core_is_buffer_intersect(CFG_STM32MP1_SCMI_SHM_BASE,
287 					     CFG_STM32MP1_SCMI_SHM_SIZE,
288 					     SRAM3_BASE, SRAM3_SIZE))
289 			stm32mp_register_non_secure_periph_iomem(SRAM3_BASE);
290 
291 		if (core_is_buffer_intersect(CFG_STM32MP1_SCMI_SHM_BASE,
292 					     CFG_STM32MP1_SCMI_SHM_SIZE,
293 					     SRAM4_BASE, SRAM4_SIZE))
294 			stm32mp_register_non_secure_periph_iomem(SRAM4_BASE);
295 	}
296 
297 	return TEE_SUCCESS;
298 }
299 
300 service_init_late(init_stm32mp15_secure_srams);
301 #endif /* TZSRAM_FITS_IN_SYSRAM_AND_SRAMS || TZSRAM_FITS_IN_SRAMS */
302 #endif /* CFG_STM32MP15 && CFG_TZSRAM_START */
303 
304 static TEE_Result init_stm32mp1_drivers(void)
305 {
306 #if defined(CFG_STM32_ETZPC)
307 	etzpc_configure_tzma(1, SYSRAM_SEC_SIZE >> SMALL_PAGE_SHIFT);
308 
309 	if (SYSRAM_SIZE > SYSRAM_SEC_SIZE) {
310 		size_t nsec_size = SYSRAM_SIZE - SYSRAM_SEC_SIZE;
311 		paddr_t nsec_start = SYSRAM_BASE + SYSRAM_SEC_SIZE;
312 		uint8_t *va = phys_to_virt(nsec_start, MEM_AREA_IO_NSEC,
313 					   nsec_size);
314 
315 		IMSG("Non-secure SYSRAM [%p %p]", va, va + nsec_size - 1);
316 
317 		/* Clear content from the non-secure part */
318 		memset(va, 0, nsec_size);
319 	}
320 #endif /* CFG_STM32_ETZPC */
321 
322 	return TEE_SUCCESS;
323 }
324 
325 service_init_late(init_stm32mp1_drivers);
326 
327 static TEE_Result init_late_stm32mp1_drivers(void)
328 {
329 	TEE_Result res = TEE_ERROR_GENERIC;
330 
331 	/* Set access permission to TAM backup registers */
332 	if (IS_ENABLED(CFG_STM32_TAMP)) {
333 		struct stm32_bkpregs_conf conf = {
334 			.nb_zone1_regs = TAMP_BKP_REGISTER_ZONE1_COUNT,
335 			.nb_zone2_regs = TAMP_BKP_REGISTER_ZONE2_COUNT,
336 		};
337 
338 		res = stm32_tamp_set_secure_bkpregs(&conf);
339 		if (res == TEE_ERROR_DEFER_DRIVER_INIT) {
340 			/* TAMP driver was not probed if disabled in the DT */
341 			res = TEE_SUCCESS;
342 		}
343 		if (res)
344 			panic();
345 	}
346 
347 	return TEE_SUCCESS;
348 }
349 
350 driver_init_late(init_late_stm32mp1_drivers);
351 
352 vaddr_t stm32_rcc_base(void)
353 {
354 	static struct io_pa_va base = { .pa = RCC_BASE };
355 
356 	return io_pa_or_va_secure(&base, 1);
357 }
358 
359 vaddr_t get_gicd_base(void)
360 {
361 	struct io_pa_va base = { .pa = GIC_BASE + GICD_OFFSET };
362 
363 	return io_pa_or_va_secure(&base, 1);
364 }
365 
366 void stm32mp_get_bsec_static_cfg(struct stm32_bsec_static_cfg *cfg)
367 {
368 	cfg->base = BSEC_BASE;
369 	cfg->upper_start = STM32MP1_UPPER_OTP_START;
370 	cfg->max_id = STM32MP1_OTP_MAX_ID;
371 }
372 
373 bool __weak stm32mp_with_pmic(void)
374 {
375 	return false;
376 }
377 
378 uint32_t may_spin_lock(unsigned int *lock)
379 {
380 	if (!lock || !cpu_mmu_enabled())
381 		return 0;
382 
383 	return cpu_spin_lock_xsave(lock);
384 }
385 
386 void may_spin_unlock(unsigned int *lock, uint32_t exceptions)
387 {
388 	if (!lock || !cpu_mmu_enabled())
389 		return;
390 
391 	cpu_spin_unlock_xrestore(lock, exceptions);
392 }
393 
394 static vaddr_t stm32_tamp_base(void)
395 {
396 	static struct io_pa_va base = { .pa = TAMP_BASE };
397 
398 	return io_pa_or_va_secure(&base, 1);
399 }
400 
401 static vaddr_t bkpreg_base(void)
402 {
403 	return stm32_tamp_base() + TAMP_BKP_REGISTER_OFF;
404 }
405 
406 vaddr_t stm32mp_bkpreg(unsigned int idx)
407 {
408 	return bkpreg_base() + (idx * sizeof(uint32_t));
409 }
410 
411 static bool __maybe_unused bank_is_valid(unsigned int bank)
412 {
413 	if (IS_ENABLED(CFG_STM32MP15))
414 		return bank == GPIO_BANK_Z || bank <= GPIO_BANK_K;
415 
416 	if (IS_ENABLED(CFG_STM32MP13))
417 		return bank <= GPIO_BANK_I;
418 
419 	panic();
420 }
421 
422 #ifdef CFG_STM32_IWDG
423 TEE_Result stm32_get_iwdg_otp_config(paddr_t pbase,
424 				     struct stm32_iwdg_otp_data *otp_data)
425 {
426 	unsigned int idx = 0;
427 	uint32_t otp_id = 0;
428 	size_t bit_len = 0;
429 	uint8_t bit_offset = 0;
430 	uint32_t otp_value = 0;
431 
432 	switch (pbase) {
433 	case IWDG1_BASE:
434 		idx = 0;
435 		break;
436 	case IWDG2_BASE:
437 		idx = 1;
438 		break;
439 	default:
440 		panic();
441 	}
442 
443 	if (stm32_bsec_find_otp_in_nvmem_layout("hw2_otp", &otp_id, &bit_offset,
444 						&bit_len) ||
445 	    bit_len != 32 || bit_offset != 0)
446 		panic();
447 
448 	if (stm32_bsec_read_otp(&otp_value, otp_id))
449 		panic();
450 
451 	otp_data->hw_enabled = otp_value &
452 			       BIT(idx + HW2_OTP_IWDG_HW_ENABLE_SHIFT);
453 	otp_data->disable_on_stop = otp_value &
454 				    BIT(idx + HW2_OTP_IWDG_FZ_STOP_SHIFT);
455 	otp_data->disable_on_standby = otp_value &
456 				       BIT(idx + HW2_OTP_IWDG_FZ_STANDBY_SHIFT);
457 
458 	return TEE_SUCCESS;
459 }
460 #endif /*CFG_STM32_IWDG*/
461 
462 #ifdef CFG_STM32_DEBUG_ACCESS
463 static TEE_Result init_debug(void)
464 {
465 	TEE_Result res = TEE_SUCCESS;
466 	uint32_t conf = stm32_bsec_read_debug_conf();
467 	struct clk *dbg_clk = stm32mp_rcc_clock_id_to_clk(CK_DBG);
468 	uint32_t state = 0;
469 
470 	res = stm32_bsec_get_state(&state);
471 	if (res)
472 		return res;
473 
474 	if (state != BSEC_STATE_SEC_CLOSED && conf) {
475 		if (IS_ENABLED(CFG_INSECURE))
476 			IMSG("WARNING: All debug accesses are allowed");
477 
478 		res = stm32_bsec_write_debug_conf(conf | BSEC_DEBUG_ALL);
479 		if (res)
480 			return res;
481 
482 		/*
483 		 * Enable DBG clock as used to access coprocessor
484 		 * debug registers
485 		 */
486 		clk_enable(dbg_clk);
487 	}
488 
489 	return TEE_SUCCESS;
490 }
491 early_init_late(init_debug);
492 #endif /* CFG_STM32_DEBUG_ACCESS */
493 
494 /* Some generic resources need to be unpaged */
495 DECLARE_KEEP_PAGER(pinctrl_apply_state);
496 
497 bool stm32mp_allow_probe_shared_device(const void *fdt, int node)
498 {
499 	static int uart_console_node = -1;
500 	const char *compat = NULL;
501 	static bool once;
502 
503 	if (IS_ENABLED(CFG_STM32_ALLOW_UNSAFE_PROBE))
504 		return true;
505 
506 	if (!once) {
507 		get_console_node_from_dt((void *)fdt, &uart_console_node,
508 					 NULL, NULL);
509 		once = true;
510 	}
511 
512 	compat = fdt_stringlist_get(fdt, node, "compatible", 0, NULL);
513 
514 	/*
515 	 * Allow OP-TEE console and MP15 I2C and RNG to be shared
516 	 * with non-secure world.
517 	 */
518 	if (node == uart_console_node ||
519 	    !strcmp(compat, "st,stm32mp15-i2c-non-secure") ||
520 	    (!strcmp(compat, "st,stm32-rng") &&
521 	     IS_ENABLED(CFG_WITH_SOFTWARE_PRNG)))
522 		return true;
523 
524 	return false;
525 }
526