xref: /optee_os/core/arch/arm/plat-stm32mp1/main.c (revision dedaf8ca869cba84bf4c953b3d23b7ff520ea2da)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2017-2022, STMicroelectronics
4  * Copyright (c) 2016-2018, Linaro Limited
5  */
6 
7 #include <boot_api.h>
8 #include <config.h>
9 #include <console.h>
10 #include <drivers/gic.h>
11 #include <drivers/stm32_etzpc.h>
12 #include <drivers/stm32_iwdg.h>
13 #include <drivers/stm32_tamp.h>
14 #include <drivers/stm32_uart.h>
15 #include <drivers/stm32mp1_etzpc.h>
16 #include <drivers/stm32mp_dt_bindings.h>
17 #include <kernel/boot.h>
18 #include <kernel/dt.h>
19 #include <kernel/interrupt.h>
20 #include <kernel/misc.h>
21 #include <kernel/panic.h>
22 #include <kernel/spinlock.h>
23 #include <mm/core_memprot.h>
24 #include <platform_config.h>
25 #include <sm/psci.h>
26 #include <stm32_util.h>
27 #include <trace.h>
28 
29 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB1_BASE, APB1_SIZE);
30 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB2_BASE, APB2_SIZE);
31 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB3_BASE, APB3_SIZE);
32 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB4_BASE, APB4_SIZE);
33 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, APB5_BASE, APB5_SIZE);
34 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, AHB4_BASE, AHB4_SIZE);
35 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, AHB5_BASE, AHB5_SIZE);
36 
37 register_phys_mem_pgdir(MEM_AREA_IO_SEC, APB3_BASE, APB3_SIZE);
38 register_phys_mem_pgdir(MEM_AREA_IO_SEC, APB4_BASE, APB4_SIZE);
39 register_phys_mem_pgdir(MEM_AREA_IO_SEC, APB5_BASE, APB5_SIZE);
40 #ifdef CFG_STM32MP13
41 register_phys_mem_pgdir(MEM_AREA_IO_SEC, APB6_BASE, APB6_SIZE);
42 #endif
43 register_phys_mem_pgdir(MEM_AREA_IO_SEC, AHB4_BASE, AHB4_SIZE);
44 register_phys_mem_pgdir(MEM_AREA_IO_SEC, AHB5_BASE, AHB5_SIZE);
45 register_phys_mem_pgdir(MEM_AREA_IO_SEC, GIC_BASE, GIC_SIZE);
46 
47 register_ddr(DDR_BASE, CFG_DRAM_SIZE);
48 
49 #define _ID2STR(id)		(#id)
50 #define ID2STR(id)		_ID2STR(id)
51 
52 static TEE_Result platform_banner(void)
53 {
54 #ifdef CFG_EMBED_DTB
55 	IMSG("Platform stm32mp1: flavor %s - DT %s",
56 		ID2STR(PLATFORM_FLAVOR),
57 		ID2STR(CFG_EMBED_DTB_SOURCE_FILE));
58 #else
59 	IMSG("Platform stm32mp1: flavor %s - no device tree",
60 		ID2STR(PLATFORM_FLAVOR));
61 #endif
62 
63 	return TEE_SUCCESS;
64 }
65 service_init(platform_banner);
66 
67 /*
68  * Console
69  *
70  * CFG_STM32_EARLY_CONSOLE_UART specifies the ID of the UART used for
71  * trace console. Value 0 disables the early console.
72  *
73  * We cannot use the generic serial_console support since probing
74  * the console requires the platform clock driver to be already
75  * up and ready which is done only once service_init are completed.
76  */
77 static struct stm32_uart_pdata console_data;
78 
79 void console_init(void)
80 {
81 	/* Early console initialization before MMU setup */
82 	struct uart {
83 		paddr_t pa;
84 		bool secure;
85 	} uarts[] = {
86 		[0] = { .pa = 0 },
87 		[1] = { .pa = USART1_BASE, .secure = true, },
88 		[2] = { .pa = USART2_BASE, .secure = false, },
89 		[3] = { .pa = USART3_BASE, .secure = false, },
90 		[4] = { .pa = UART4_BASE, .secure = false, },
91 		[5] = { .pa = UART5_BASE, .secure = false, },
92 		[6] = { .pa = USART6_BASE, .secure = false, },
93 		[7] = { .pa = UART7_BASE, .secure = false, },
94 		[8] = { .pa = UART8_BASE, .secure = false, },
95 	};
96 
97 	COMPILE_TIME_ASSERT(ARRAY_SIZE(uarts) > CFG_STM32_EARLY_CONSOLE_UART);
98 
99 	if (!uarts[CFG_STM32_EARLY_CONSOLE_UART].pa)
100 		return;
101 
102 	/* No clock yet bound to the UART console */
103 	console_data.clock = NULL;
104 
105 	console_data.secure = uarts[CFG_STM32_EARLY_CONSOLE_UART].secure;
106 	stm32_uart_init(&console_data, uarts[CFG_STM32_EARLY_CONSOLE_UART].pa);
107 
108 	register_serial_console(&console_data.chip);
109 
110 	IMSG("Early console on UART#%u", CFG_STM32_EARLY_CONSOLE_UART);
111 }
112 
113 #ifdef CFG_EMBED_DTB
114 static TEE_Result init_console_from_dt(void)
115 {
116 	struct stm32_uart_pdata *pd = NULL;
117 	void *fdt = NULL;
118 	int node = 0;
119 	TEE_Result res = TEE_ERROR_GENERIC;
120 
121 	fdt = get_embedded_dt();
122 	res = get_console_node_from_dt(fdt, &node, NULL, NULL);
123 	if (res == TEE_ERROR_ITEM_NOT_FOUND) {
124 		fdt = get_external_dt();
125 		res = get_console_node_from_dt(fdt, &node, NULL, NULL);
126 		if (res == TEE_ERROR_ITEM_NOT_FOUND)
127 			return TEE_SUCCESS;
128 		if (res != TEE_SUCCESS)
129 			return res;
130 	}
131 
132 	pd = stm32_uart_init_from_dt_node(fdt, node);
133 	if (!pd) {
134 		IMSG("DTB disables console");
135 		register_serial_console(NULL);
136 		return TEE_SUCCESS;
137 	}
138 
139 	/* Replace early console with the new one */
140 	console_flush();
141 	console_data = *pd;
142 	free(pd);
143 	register_serial_console(&console_data.chip);
144 	IMSG("DTB enables console (%ssecure)", pd->secure ? "" : "non-");
145 
146 	return TEE_SUCCESS;
147 }
148 
149 /* Probe console from DT once clock inits (service init level) are completed */
150 service_init_late(init_console_from_dt);
151 #endif
152 
153 /*
154  * GIC init, used also for primary/secondary boot core wake completion
155  */
156 static struct gic_data gic_data;
157 
158 void itr_core_handler(void)
159 {
160 	gic_it_handle(&gic_data);
161 }
162 
163 void main_init_gic(void)
164 {
165 	gic_init(&gic_data, GIC_BASE + GICC_OFFSET, GIC_BASE + GICD_OFFSET);
166 	itr_init(&gic_data.chip);
167 
168 	stm32mp_register_online_cpu();
169 }
170 
171 void main_secondary_init_gic(void)
172 {
173 	gic_cpu_init(&gic_data);
174 
175 	stm32mp_register_online_cpu();
176 }
177 
178 static TEE_Result init_stm32mp1_drivers(void)
179 {
180 	/* Without secure DTB support, some drivers must be inited */
181 	if (!IS_ENABLED(CFG_EMBED_DTB))
182 		stm32_etzpc_init(ETZPC_BASE);
183 
184 	/* Secure internal memories for the platform, once ETZPC is ready */
185 	etzpc_configure_tzma(0, ETZPC_TZMA_ALL_SECURE);
186 	etzpc_lock_tzma(0);
187 
188 #ifdef CFG_TZSRAM_START
189 	COMPILE_TIME_ASSERT(((SYSRAM_BASE + SYSRAM_SIZE) <= CFG_TZSRAM_START) ||
190 			    ((SYSRAM_BASE <= CFG_TZSRAM_START) &&
191 			     (SYSRAM_SEC_SIZE >= CFG_TZSRAM_SIZE)));
192 #endif /* CFG_TZSRAM_START */
193 
194 	etzpc_configure_tzma(1, SYSRAM_SEC_SIZE >> SMALL_PAGE_SHIFT);
195 	etzpc_lock_tzma(1);
196 
197 	return TEE_SUCCESS;
198 }
199 
200 service_init_late(init_stm32mp1_drivers);
201 
202 static TEE_Result init_late_stm32mp1_drivers(void)
203 {
204 	TEE_Result res = TEE_ERROR_GENERIC;
205 
206 	/* Set access permission to TAM backup registers */
207 	if (IS_ENABLED(CFG_STM32_TAMP)) {
208 		struct stm32_bkpregs_conf conf = {
209 			.nb_zone1_regs = TAMP_BKP_REGISTER_ZONE1_COUNT,
210 			.nb_zone2_regs = TAMP_BKP_REGISTER_ZONE2_COUNT,
211 		};
212 
213 		res = stm32_tamp_set_secure_bkpregs(&conf);
214 		if (res == TEE_ERROR_DEFER_DRIVER_INIT) {
215 			/* TAMP driver was not probed if disabled in the DT */
216 			res = TEE_SUCCESS;
217 		}
218 		if (res)
219 			panic();
220 	}
221 
222 	return TEE_SUCCESS;
223 }
224 
225 driver_init_late(init_late_stm32mp1_drivers);
226 
227 vaddr_t stm32_rcc_base(void)
228 {
229 	static struct io_pa_va base = { .pa = RCC_BASE };
230 
231 	return io_pa_or_va_secure(&base, 1);
232 }
233 
234 vaddr_t get_gicd_base(void)
235 {
236 	struct io_pa_va base = { .pa = GIC_BASE + GICD_OFFSET };
237 
238 	return io_pa_or_va_secure(&base, 1);
239 }
240 
241 void stm32mp_get_bsec_static_cfg(struct stm32_bsec_static_cfg *cfg)
242 {
243 	cfg->base = BSEC_BASE;
244 	cfg->upper_start = STM32MP1_UPPER_OTP_START;
245 	cfg->max_id = STM32MP1_OTP_MAX_ID;
246 }
247 
248 bool stm32mp_is_closed_device(void)
249 {
250 	uint32_t otp = 0;
251 	TEE_Result result = TEE_ERROR_GENERIC;
252 
253 	/* Non closed_device platform expects fuse well programmed to 0 */
254 	result = stm32_bsec_shadow_read_otp(&otp, DATA0_OTP);
255 	if (!result && !(otp & BIT(DATA0_OTP_SECURED_POS)))
256 		return false;
257 
258 	return true;
259 }
260 
261 bool __weak stm32mp_with_pmic(void)
262 {
263 	return false;
264 }
265 
266 uint32_t may_spin_lock(unsigned int *lock)
267 {
268 	if (!lock || !cpu_mmu_enabled())
269 		return 0;
270 
271 	return cpu_spin_lock_xsave(lock);
272 }
273 
274 void may_spin_unlock(unsigned int *lock, uint32_t exceptions)
275 {
276 	if (!lock || !cpu_mmu_enabled())
277 		return;
278 
279 	cpu_spin_unlock_xrestore(lock, exceptions);
280 }
281 
282 static vaddr_t stm32_tamp_base(void)
283 {
284 	static struct io_pa_va base = { .pa = TAMP_BASE };
285 
286 	return io_pa_or_va_secure(&base, 1);
287 }
288 
289 static vaddr_t bkpreg_base(void)
290 {
291 	return stm32_tamp_base() + TAMP_BKP_REGISTER_OFF;
292 }
293 
294 vaddr_t stm32mp_bkpreg(unsigned int idx)
295 {
296 	return bkpreg_base() + (idx * sizeof(uint32_t));
297 }
298 
299 static bool __maybe_unused bank_is_valid(unsigned int bank)
300 {
301 	if (IS_ENABLED(CFG_STM32MP15))
302 		return bank == GPIO_BANK_Z || bank <= GPIO_BANK_K;
303 
304 	if (IS_ENABLED(CFG_STM32MP13))
305 		return bank <= GPIO_BANK_I;
306 
307 	panic();
308 }
309 
310 vaddr_t stm32_get_gpio_bank_base(unsigned int bank)
311 {
312 	static struct io_pa_va base = { .pa = GPIOA_BASE };
313 
314 	static_assert(GPIO_BANK_A == 0);
315 	assert(bank_is_valid(bank));
316 
317 	if (IS_ENABLED(CFG_STM32MP15)) {
318 		static struct io_pa_va zbase = { .pa = GPIOZ_BASE };
319 
320 		/* Get secure mapping address for GPIOZ */
321 		if (bank == GPIO_BANK_Z)
322 			return io_pa_or_va_secure(&zbase, GPIO_BANK_OFFSET);
323 
324 		/* Other are mapped non-secure */
325 		return io_pa_or_va_nsec(&base, (bank + 1) * GPIO_BANK_OFFSET) +
326 		       (bank * GPIO_BANK_OFFSET);
327 	}
328 
329 	if (IS_ENABLED(CFG_STM32MP13))
330 		return io_pa_or_va_secure(&base,
331 					  (bank + 1) * GPIO_BANK_OFFSET) +
332 		       (bank * GPIO_BANK_OFFSET);
333 
334 	panic();
335 }
336 
337 unsigned int stm32_get_gpio_bank_offset(unsigned int bank)
338 {
339 	assert(bank_is_valid(bank));
340 
341 	if (bank == GPIO_BANK_Z)
342 		return 0;
343 
344 	return bank * GPIO_BANK_OFFSET;
345 }
346 
347 unsigned int stm32_get_gpio_bank_clock(unsigned int bank)
348 {
349 	assert(bank_is_valid(bank));
350 
351 #ifdef CFG_STM32MP15
352 	if (bank == GPIO_BANK_Z)
353 		return GPIOZ;
354 #endif
355 
356 	return GPIOA + bank;
357 }
358 
359 struct clk *stm32_get_gpio_bank_clk(unsigned int bank)
360 {
361 	assert(bank_is_valid(bank));
362 
363 	if (!IS_ENABLED(CFG_DRIVERS_CLK))
364 		return NULL;
365 
366 	return stm32mp_rcc_clock_id_to_clk(stm32_get_gpio_bank_clock(bank));
367 }
368 
369 #ifdef CFG_STM32_IWDG
370 TEE_Result stm32_get_iwdg_otp_config(paddr_t pbase,
371 				     struct stm32_iwdg_otp_data *otp_data)
372 {
373 	unsigned int idx = 0;
374 	uint32_t otp_value = 0;
375 
376 	switch (pbase) {
377 	case IWDG1_BASE:
378 		idx = 0;
379 		break;
380 	case IWDG2_BASE:
381 		idx = 1;
382 		break;
383 	default:
384 		panic();
385 	}
386 
387 	if (stm32_bsec_read_otp(&otp_value, HW2_OTP))
388 		panic();
389 
390 	otp_data->hw_enabled = otp_value &
391 			       BIT(idx + HW2_OTP_IWDG_HW_ENABLE_SHIFT);
392 	otp_data->disable_on_stop = otp_value &
393 				    BIT(idx + HW2_OTP_IWDG_FZ_STOP_SHIFT);
394 	otp_data->disable_on_standby = otp_value &
395 				       BIT(idx + HW2_OTP_IWDG_FZ_STANDBY_SHIFT);
396 
397 	return TEE_SUCCESS;
398 }
399 #endif /*CFG_STM32_IWDG*/
400