xref: /optee_os/core/arch/arm/plat-stm32mp1/main.c (revision 2dd2ca5f39e6dd144a8be81f5e00badf79d362fe)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2017-2018, STMicroelectronics
4  * Copyright (c) 2016-2018, Linaro Limited
5  */
6 
7 #include <boot_api.h>
8 #include <console.h>
9 #include <drivers/gic.h>
10 #include <drivers/stm32_etzpc.h>
11 #include <drivers/stm32_uart.h>
12 #include <drivers/stm32mp1_etzpc.h>
13 #include <dt-bindings/clock/stm32mp1-clks.h>
14 #include <kernel/generic_boot.h>
15 #include <kernel/dt.h>
16 #include <kernel/misc.h>
17 #include <kernel/panic.h>
18 #include <kernel/pm_stubs.h>
19 #include <kernel/spinlock.h>
20 #include <mm/core_memprot.h>
21 #include <platform_config.h>
22 #include <sm/psci.h>
23 #include <stm32_util.h>
24 #include <tee/entry_std.h>
25 #include <tee/entry_fast.h>
26 #include <trace.h>
27 
28 #ifdef CFG_WITH_NSEC_GPIOS
29 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, GPIOS_NSEC_BASE, GPIOS_NSEC_SIZE);
30 #endif
31 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, I2C4_BASE, SMALL_PAGE_SIZE);
32 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, I2C6_BASE, SMALL_PAGE_SIZE);
33 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, RNG1_BASE, SMALL_PAGE_SIZE);
34 #ifdef CFG_WITH_NSEC_UARTS
35 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, USART1_BASE, SMALL_PAGE_SIZE);
36 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, USART2_BASE, SMALL_PAGE_SIZE);
37 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, USART3_BASE, SMALL_PAGE_SIZE);
38 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, UART4_BASE, SMALL_PAGE_SIZE);
39 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, UART5_BASE, SMALL_PAGE_SIZE);
40 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, USART6_BASE, SMALL_PAGE_SIZE);
41 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, UART7_BASE, SMALL_PAGE_SIZE);
42 register_phys_mem_pgdir(MEM_AREA_IO_NSEC, UART8_BASE, SMALL_PAGE_SIZE);
43 #endif
44 
45 register_phys_mem_pgdir(MEM_AREA_IO_SEC, BSEC_BASE, SMALL_PAGE_SIZE);
46 register_phys_mem_pgdir(MEM_AREA_IO_SEC, ETZPC_BASE, SMALL_PAGE_SIZE);
47 register_phys_mem_pgdir(MEM_AREA_IO_SEC, GIC_BASE, GIC_SIZE);
48 register_phys_mem_pgdir(MEM_AREA_IO_SEC, GPIOZ_BASE, SMALL_PAGE_SIZE);
49 register_phys_mem_pgdir(MEM_AREA_IO_SEC, I2C4_BASE, SMALL_PAGE_SIZE);
50 register_phys_mem_pgdir(MEM_AREA_IO_SEC, I2C6_BASE, SMALL_PAGE_SIZE);
51 register_phys_mem_pgdir(MEM_AREA_IO_SEC, PWR_BASE, SMALL_PAGE_SIZE);
52 register_phys_mem_pgdir(MEM_AREA_IO_SEC, RCC_BASE, SMALL_PAGE_SIZE);
53 register_phys_mem_pgdir(MEM_AREA_IO_SEC, RNG1_BASE, SMALL_PAGE_SIZE);
54 register_phys_mem_pgdir(MEM_AREA_IO_SEC, TAMP_BASE, SMALL_PAGE_SIZE);
55 register_phys_mem_pgdir(MEM_AREA_IO_SEC, USART1_BASE, SMALL_PAGE_SIZE);
56 
57 static void main_fiq(void);
58 
59 static const struct thread_handlers handlers = {
60 	.fast_smc = tee_entry_fast,
61 	.nintr = main_fiq,
62 	.cpu_on = pm_panic,
63 	.cpu_off = pm_panic,
64 	.cpu_suspend = pm_panic,
65 	.cpu_resume = pm_panic,
66 	.system_off = pm_panic,
67 	.system_reset = pm_panic,
68 };
69 
70 const struct thread_handlers *generic_boot_get_handlers(void)
71 {
72 	return &handlers;
73 }
74 
75 #define _ID2STR(id)		(#id)
76 #define ID2STR(id)		_ID2STR(id)
77 
78 static TEE_Result platform_banner(void)
79 {
80 #ifdef CFG_EMBED_DTB
81 	IMSG("Platform stm32mp1: flavor %s - DT %s",
82 		ID2STR(PLATFORM_FLAVOR),
83 		ID2STR(CFG_EMBED_DTB_SOURCE_FILE));
84 #else
85 	IMSG("Platform stm32mp1: flavor %s - no device tree",
86 		ID2STR(PLATFORM_FLAVOR));
87 #endif
88 
89 	return TEE_SUCCESS;
90 }
91 service_init(platform_banner);
92 
93 /*
94  * Console
95  *
96  * CFG_STM32_EARLY_CONSOLE_UART specifies the ID of the UART used for
97  * trace console. Value 0 disables the early console.
98  *
99  * We cannot use the generic serial_console support since probing
100  * the console requires the platform clock driver to be already
101  * up and ready which is done only once service_init are completed.
102  */
103 static struct stm32_uart_pdata console_data;
104 
105 void console_init(void)
106 {
107 	/* Early console initialization before MMU setup */
108 	struct uart {
109 		paddr_t pa;
110 		bool secure;
111 	} uarts[] = {
112 		[0] = { .pa = 0 },
113 		[1] = { .pa = USART1_BASE, .secure = true, },
114 		[2] = { .pa = USART2_BASE, .secure = false, },
115 		[3] = { .pa = USART3_BASE, .secure = false, },
116 		[4] = { .pa = UART4_BASE, .secure = false, },
117 		[5] = { .pa = UART5_BASE, .secure = false, },
118 		[6] = { .pa = USART6_BASE, .secure = false, },
119 		[7] = { .pa = UART7_BASE, .secure = false, },
120 		[8] = { .pa = UART8_BASE, .secure = false, },
121 	};
122 
123 	COMPILE_TIME_ASSERT(ARRAY_SIZE(uarts) > CFG_STM32_EARLY_CONSOLE_UART);
124 	assert(!cpu_mmu_enabled());
125 
126 	if (!uarts[CFG_STM32_EARLY_CONSOLE_UART].pa)
127 		return;
128 
129 	/* No clock yet bound to the UART console */
130 	console_data.clock = DT_INFO_INVALID_CLOCK;
131 
132 	console_data.secure = uarts[CFG_STM32_EARLY_CONSOLE_UART].secure;
133 	stm32_uart_init(&console_data, uarts[CFG_STM32_EARLY_CONSOLE_UART].pa);
134 
135 	register_serial_console(&console_data.chip);
136 
137 	IMSG("Early console on UART#%u", CFG_STM32_EARLY_CONSOLE_UART);
138 }
139 
140 #ifdef CFG_DT
141 static TEE_Result init_console_from_dt(void)
142 {
143 	struct stm32_uart_pdata *pd = NULL;
144 	void *fdt = NULL;
145 	int node = 0;
146 	TEE_Result res = TEE_ERROR_GENERIC;
147 
148 	fdt = get_embedded_dt();
149 	res = get_console_node_from_dt(fdt, &node, NULL, NULL);
150 	if (res == TEE_ERROR_ITEM_NOT_FOUND) {
151 		fdt = get_external_dt();
152 		res = get_console_node_from_dt(fdt, &node, NULL, NULL);
153 		if (res == TEE_ERROR_ITEM_NOT_FOUND)
154 			return TEE_SUCCESS;
155 		if (res != TEE_SUCCESS)
156 			return res;
157 	}
158 
159 	pd = stm32_uart_init_from_dt_node(fdt, node);
160 	if (!pd) {
161 		IMSG("DTB disables console");
162 		register_serial_console(NULL);
163 		return TEE_SUCCESS;
164 	}
165 
166 	/* Replace early console with the new one */
167 	console_flush();
168 	console_data = *pd;
169 	free(pd);
170 	register_serial_console(&console_data.chip);
171 	IMSG("DTB enables console (%ssecure)", pd->secure ? "" : "non-");
172 
173 	return TEE_SUCCESS;
174 }
175 
176 /* Probe console from DT once clock inits (service init level) are completed */
177 service_init_late(init_console_from_dt);
178 #endif
179 
180 /*
181  * GIC init, used also for primary/secondary boot core wake completion
182  */
183 static struct gic_data gic_data;
184 
185 static void main_fiq(void)
186 {
187 	gic_it_handle(&gic_data);
188 }
189 
190 void main_init_gic(void)
191 {
192 	assert(cpu_mmu_enabled());
193 
194 	gic_init(&gic_data, get_gicc_base(), get_gicd_base());
195 	itr_init(&gic_data.chip);
196 
197 	stm32mp_register_online_cpu();
198 }
199 
200 void main_secondary_init_gic(void)
201 {
202 	gic_cpu_init(&gic_data);
203 
204 	stm32mp_register_online_cpu();
205 }
206 
207 #ifndef CFG_EMBED_DTB
208 static TEE_Result init_stm32mp1_drivers(void)
209 {
210 	/* Without secure DTB support, some drivers must be inited */
211 	stm32_etzpc_init(ETZPC_BASE);
212 
213 	return TEE_SUCCESS;
214 }
215 driver_init(init_stm32mp1_drivers);
216 #endif /*!CFG_EMBED_DTB*/
217 
218 /* Platform initializations once all drivers are ready */
219 static TEE_Result init_late_stm32mp1_drivers(void)
220 {
221 	/* Secure internal memories for the platform, once ETZPC is ready */
222 	etzpc_configure_tzma(0, ETZPC_TZMA_ALL_SECURE);
223 	etzpc_lock_tzma(0);
224 	etzpc_configure_tzma(1, ETZPC_TZMA_ALL_SECURE);
225 	etzpc_lock_tzma(1);
226 
227 	/* Static secure DECPROT configuration */
228 	etzpc_configure_decprot(STM32MP1_ETZPC_STGENC_ID, ETZPC_DECPROT_S_RW);
229 	etzpc_configure_decprot(STM32MP1_ETZPC_BKPSRAM_ID, ETZPC_DECPROT_S_RW);
230 	etzpc_configure_decprot(STM32MP1_ETZPC_IWDG1_ID, ETZPC_DECPROT_S_RW);
231 	etzpc_configure_decprot(STM32MP1_ETZPC_DDRCTRL_ID, ETZPC_DECPROT_S_RW);
232 	etzpc_configure_decprot(STM32MP1_ETZPC_DDRPHYC_ID, ETZPC_DECPROT_S_RW);
233 	etzpc_lock_decprot(STM32MP1_ETZPC_STGENC_ID);
234 	etzpc_lock_decprot(STM32MP1_ETZPC_BKPSRAM_ID);
235 	etzpc_lock_decprot(STM32MP1_ETZPC_IWDG1_ID);
236 	etzpc_lock_decprot(STM32MP1_ETZPC_DDRCTRL_ID);
237 	etzpc_lock_decprot(STM32MP1_ETZPC_DDRPHYC_ID);
238 	/* Static non-secure DECPROT configuration */
239 	etzpc_configure_decprot(STM32MP1_ETZPC_I2C4_ID, ETZPC_DECPROT_NS_RW);
240 	etzpc_configure_decprot(STM32MP1_ETZPC_RNG1_ID, ETZPC_DECPROT_NS_RW);
241 	etzpc_configure_decprot(STM32MP1_ETZPC_HASH1_ID, ETZPC_DECPROT_NS_RW);
242 	etzpc_configure_decprot(STM32MP1_ETZPC_CRYP1_ID, ETZPC_DECPROT_NS_RW);
243 	/* Release few resource to the non-secure world */
244 	etzpc_configure_decprot(STM32MP1_ETZPC_USART1_ID, ETZPC_DECPROT_NS_RW);
245 	etzpc_configure_decprot(STM32MP1_ETZPC_SPI6_ID, ETZPC_DECPROT_NS_RW);
246 	etzpc_configure_decprot(STM32MP1_ETZPC_I2C6_ID, ETZPC_DECPROT_NS_RW);
247 
248 	return TEE_SUCCESS;
249 }
250 driver_init_late(init_late_stm32mp1_drivers);
251 
252 vaddr_t get_gicc_base(void)
253 {
254 	struct io_pa_va base = { .pa = GIC_BASE + GICC_OFFSET };
255 
256 	return io_pa_or_va_secure(&base);
257 }
258 
259 vaddr_t get_gicd_base(void)
260 {
261 	struct io_pa_va base = { .pa = GIC_BASE + GICD_OFFSET };
262 
263 	return io_pa_or_va_secure(&base);
264 }
265 
266 void stm32mp_get_bsec_static_cfg(struct stm32_bsec_static_cfg *cfg)
267 {
268 	cfg->base = BSEC_BASE;
269 	cfg->upper_start = STM32MP1_UPPER_OTP_START;
270 	cfg->max_id = STM32MP1_OTP_MAX_ID;
271 	cfg->closed_device_id = DATA0_OTP;
272 	cfg->closed_device_position = DATA0_OTP_SECURED_POS;
273 }
274 
275 bool stm32mp_is_closed_device(void)
276 {
277 	uint32_t otp = 0;
278 	TEE_Result result = TEE_ERROR_GENERIC;
279 
280 	/* Non closed_device platform expects fuse well programmed to 0 */
281 	result = stm32_bsec_shadow_read_otp(&otp, DATA0_OTP);
282 	if (!result && !(otp & BIT(DATA0_OTP_SECURED_POS)))
283 		return false;
284 
285 	return true;
286 }
287 
288 uint32_t may_spin_lock(unsigned int *lock)
289 {
290 	if (!lock || !cpu_mmu_enabled())
291 		return 0;
292 
293 	return cpu_spin_lock_xsave(lock);
294 }
295 
296 void may_spin_unlock(unsigned int *lock, uint32_t exceptions)
297 {
298 	if (!lock || !cpu_mmu_enabled())
299 		return;
300 
301 	cpu_spin_unlock_xrestore(lock, exceptions);
302 }
303 
304 static vaddr_t stm32_tamp_base(void)
305 {
306 	static struct io_pa_va base = { .pa = TAMP_BASE };
307 
308 	return io_pa_or_va_secure(&base);
309 }
310 
311 static vaddr_t bkpreg_base(void)
312 {
313 	return stm32_tamp_base() + TAMP_BKP_REGISTER_OFF;
314 }
315 
316 vaddr_t stm32mp_bkpreg(unsigned int idx)
317 {
318 	return bkpreg_base() + (idx * sizeof(uint32_t));
319 }
320 
321 vaddr_t stm32_get_gpio_bank_base(unsigned int bank)
322 {
323 	static struct io_pa_va gpios_nsec_base = { .pa = GPIOS_NSEC_BASE };
324 	static struct io_pa_va gpioz_base = { .pa = GPIOZ_BASE };
325 
326 	/* Get non-secure mapping address for GPIOZ */
327 	if (bank == GPIO_BANK_Z)
328 		return io_pa_or_va_nsec(&gpioz_base);
329 
330 	COMPILE_TIME_ASSERT(GPIO_BANK_A == 0);
331 	assert(bank <= GPIO_BANK_K);
332 
333 	return io_pa_or_va_nsec(&gpios_nsec_base) + (bank * GPIO_BANK_OFFSET);
334 }
335 
336 unsigned int stm32_get_gpio_bank_offset(unsigned int bank)
337 {
338 	if (bank == GPIO_BANK_Z)
339 		return 0;
340 
341 	assert(bank <= GPIO_BANK_K);
342 	return bank * GPIO_BANK_OFFSET;
343 }
344 
345 unsigned int stm32_get_gpio_bank_clock(unsigned int bank)
346 {
347 	if (bank == GPIO_BANK_Z)
348 		return GPIOZ;
349 
350 	assert(bank <= GPIO_BANK_K);
351 	return GPIOA + bank;
352 }
353