xref: /optee_os/core/arch/arm/kernel/unwind_arm32.c (revision b1469ba0bfd0371eb52bd50f5c52eeda7a8f5f1e)
1 /*
2  * Copyright 2015 Linaro Limited
3  * Copyright 2013-2014 Andrew Turner.
4  * Copyright 2013-2014 Ian Lepore.
5  * Copyright 2013-2014 Rui Paulo.
6  * Copyright 2013 Eitan Adler.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions are
11  * met:
12  *
13  *  1. Redistributions of source code must retain the above copyright
14  *     notice, this list of conditions and the following disclaimer.
15  *  2. Redistributions in binary form must reproduce the above copyright
16  *     notice, this list of conditions and the following disclaimer in the
17  *     documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
26  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
29  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <arm.h>
33 #include <kernel/linker.h>
34 #include <kernel/misc.h>
35 #include <kernel/unwind.h>
36 #include <string.h>
37 #include <trace.h>
38 
39 /* The register names */
40 #define	FP	11
41 #define	SP	13
42 #define	LR	14
43 #define	PC	15
44 
45 /*
46  * Definitions for the instruction interpreter.
47  *
48  * The ARM EABI specifies how to perform the frame unwinding in the
49  * Exception Handling ABI for the ARM Architecture document. To perform
50  * the unwind we need to know the initial frame pointer, stack pointer,
51  * link register and program counter. We then find the entry within the
52  * index table that points to the function the program counter is within.
53  * This gives us either a list of three instructions to process, a 31-bit
54  * relative offset to a table of instructions, or a value telling us
55  * we can't unwind any further.
56  *
57  * When we have the instructions to process we need to decode them
58  * following table 4 in section 9.3. This describes a collection of bit
59  * patterns to encode that steps to take to update the stack pointer and
60  * link register to the correct values at the start of the function.
61  */
62 
63 /* A special case when we are unable to unwind past this function */
64 #define	EXIDX_CANTUNWIND	1
65 
66 /*
67  * Entry types.
68  * These are the only entry types that have been seen in the kernel.
69  */
70 #define	ENTRY_MASK	0xff000000
71 #define	ENTRY_ARM_SU16	0x80000000
72 #define	ENTRY_ARM_LU16	0x81000000
73 
74 /* Instruction masks. */
75 #define	INSN_VSP_MASK		0xc0
76 #define	INSN_VSP_SIZE_MASK	0x3f
77 #define	INSN_STD_MASK		0xf0
78 #define	INSN_STD_DATA_MASK	0x0f
79 #define	INSN_POP_TYPE_MASK	0x08
80 #define	INSN_POP_COUNT_MASK	0x07
81 #define	INSN_VSP_LARGE_INC_MASK	0xff
82 
83 /* Instruction definitions */
84 #define	INSN_VSP_INC		0x00
85 #define	INSN_VSP_DEC		0x40
86 #define	INSN_POP_MASKED		0x80
87 #define	INSN_VSP_REG		0x90
88 #define	INSN_POP_COUNT		0xa0
89 #define	INSN_FINISH		0xb0
90 #define	INSN_POP_REGS		0xb1
91 #define	INSN_VSP_LARGE_INC	0xb2
92 
93 /* An item in the exception index table */
94 struct unwind_idx {
95 	uint32_t offset;
96 	uint32_t insn;
97 };
98 
99 /* Expand a 31-bit signed value to a 32-bit signed value */
100 static int32_t expand_prel31(uint32_t prel31)
101 {
102 	return prel31 | SHIFT_U32(prel31 & BIT32(30), 1);
103 }
104 
105 /*
106  * Perform a binary search of the index table to find the function
107  * with the largest address that doesn't exceed addr.
108  */
109 static struct unwind_idx *find_index(uint32_t addr, vaddr_t exidx,
110 				     size_t exidx_sz)
111 {
112 	vaddr_t idx_start, idx_end;
113 	unsigned int min, mid, max;
114 	struct unwind_idx *start;
115 	struct unwind_idx *item;
116 	int32_t prel31_addr;
117 	vaddr_t func_addr;
118 
119 	start = (struct unwind_idx *)exidx;
120 	idx_start = exidx;
121 	idx_end = exidx + exidx_sz;
122 
123 	min = 0;
124 	max = (idx_end - idx_start) / sizeof(struct unwind_idx);
125 
126 	while (min != max) {
127 		mid = min + (max - min + 1) / 2;
128 
129 		item = &start[mid];
130 
131 		prel31_addr = expand_prel31(item->offset);
132 		func_addr = (vaddr_t)&item->offset + prel31_addr;
133 
134 		if (func_addr <= addr) {
135 			min = mid;
136 		} else {
137 			max = mid - 1;
138 		}
139 	}
140 
141 	return &start[min];
142 }
143 
144 /* Reads the next byte from the instruction list */
145 static uint8_t unwind_exec_read_byte(struct unwind_state_arm32 *state)
146 {
147 	uint8_t insn;
148 
149 	/* Read the unwind instruction */
150 	insn = (*state->insn) >> (state->byte * 8);
151 
152 	/* Update the location of the next instruction */
153 	if (state->byte == 0) {
154 		state->byte = 3;
155 		state->insn++;
156 		state->entries--;
157 	} else
158 		state->byte--;
159 
160 	return insn;
161 }
162 
163 /* Executes the next instruction on the list */
164 static bool unwind_exec_insn(struct unwind_state_arm32 *state)
165 {
166 	unsigned int insn;
167 	uint32_t *vsp = (uint32_t *)(uintptr_t)state->registers[SP];
168 	int update_vsp = 0;
169 
170 	/* This should never happen */
171 	if (state->entries == 0)
172 		return false;
173 
174 	/* Read the next instruction */
175 	insn = unwind_exec_read_byte(state);
176 
177 	if ((insn & INSN_VSP_MASK) == INSN_VSP_INC) {
178 		state->registers[SP] += ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
179 
180 	} else if ((insn & INSN_VSP_MASK) == INSN_VSP_DEC) {
181 		state->registers[SP] -= ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
182 
183 	} else if ((insn & INSN_STD_MASK) == INSN_POP_MASKED) {
184 		unsigned int mask, reg;
185 
186 		/* Load the mask */
187 		mask = unwind_exec_read_byte(state);
188 		mask |= (insn & INSN_STD_DATA_MASK) << 8;
189 
190 		/* We have a refuse to unwind instruction */
191 		if (mask == 0)
192 			return false;
193 
194 		/* Update SP */
195 		update_vsp = 1;
196 
197 		/* Load the registers */
198 		for (reg = 4; mask && reg < 16; mask >>= 1, reg++) {
199 			if (mask & 1) {
200 				state->registers[reg] = *vsp++;
201 				state->update_mask |= 1 << reg;
202 
203 				/* If we have updated SP kep its value */
204 				if (reg == SP)
205 					update_vsp = 0;
206 			}
207 		}
208 
209 	} else if ((insn & INSN_STD_MASK) == INSN_VSP_REG &&
210 	    ((insn & INSN_STD_DATA_MASK) != 13) &&
211 	    ((insn & INSN_STD_DATA_MASK) != 15)) {
212 		/* sp = register */
213 		state->registers[SP] =
214 		    state->registers[insn & INSN_STD_DATA_MASK];
215 
216 	} else if ((insn & INSN_STD_MASK) == INSN_POP_COUNT) {
217 		unsigned int count, reg;
218 
219 		/* Read how many registers to load */
220 		count = insn & INSN_POP_COUNT_MASK;
221 
222 		/* Update sp */
223 		update_vsp = 1;
224 
225 		/* Pop the registers */
226 		for (reg = 4; reg <= 4 + count; reg++) {
227 			state->registers[reg] = *vsp++;
228 			state->update_mask |= 1 << reg;
229 		}
230 
231 		/* Check if we are in the pop r14 version */
232 		if ((insn & INSN_POP_TYPE_MASK) != 0) {
233 			state->registers[14] = *vsp++;
234 		}
235 
236 	} else if (insn == INSN_FINISH) {
237 		/* Stop processing */
238 		state->entries = 0;
239 
240 	} else if (insn == INSN_POP_REGS) {
241 		unsigned int mask, reg;
242 
243 		mask = unwind_exec_read_byte(state);
244 		if (mask == 0 || (mask & 0xf0) != 0)
245 			return false;
246 
247 		/* Update SP */
248 		update_vsp = 1;
249 
250 		/* Load the registers */
251 		for (reg = 0; mask && reg < 4; mask >>= 1, reg++) {
252 			if (mask & 1) {
253 				state->registers[reg] = *vsp++;
254 				state->update_mask |= 1 << reg;
255 			}
256 		}
257 
258 	} else if ((insn & INSN_VSP_LARGE_INC_MASK) == INSN_VSP_LARGE_INC) {
259 		unsigned int uleb128;
260 
261 		/* Read the increment value */
262 		uleb128 = unwind_exec_read_byte(state);
263 
264 		state->registers[SP] += 0x204 + (uleb128 << 2);
265 
266 	} else {
267 		/* We hit a new instruction that needs to be implemented */
268 		DMSG("Unhandled instruction %.2x\n", insn);
269 		return false;
270 	}
271 
272 	if (update_vsp) {
273 		state->registers[SP] = (uint32_t)(uintptr_t)vsp;
274 	}
275 
276 	return true;
277 }
278 
279 /* Performs the unwind of a function */
280 static bool unwind_tab(struct unwind_state_arm32 *state)
281 {
282 	uint32_t entry;
283 
284 	/* Set PC to a known value */
285 	state->registers[PC] = 0;
286 
287 	/* Read the personality */
288 	entry = *state->insn & ENTRY_MASK;
289 
290 	if (entry == ENTRY_ARM_SU16) {
291 		state->byte = 2;
292 		state->entries = 1;
293 	} else if (entry == ENTRY_ARM_LU16) {
294 		state->byte = 1;
295 		state->entries = ((*state->insn >> 16) & 0xFF) + 1;
296 	} else {
297 		DMSG("Unknown entry: %x\n", entry);
298 		return true;
299 	}
300 
301 	while (state->entries > 0) {
302 		if (!unwind_exec_insn(state))
303 			return true;
304 	}
305 
306 	/*
307 	 * The program counter was not updated, load it from the link register.
308 	 */
309 	if (state->registers[PC] == 0) {
310 		state->registers[PC] = state->registers[LR];
311 
312 		/*
313 		 * If the program counter changed, flag it in the update mask.
314 		 */
315 		if (state->start_pc != state->registers[PC])
316 			state->update_mask |= 1 << PC;
317 	}
318 
319 	return false;
320 }
321 
322 bool unwind_stack_arm32(struct unwind_state_arm32 *state, uaddr_t exidx,
323 			size_t exidx_sz)
324 {
325 	struct unwind_idx *index;
326 	bool finished;
327 
328 	/* Reset the mask of updated registers */
329 	state->update_mask = 0;
330 
331 	/* The pc value is correct and will be overwritten, save it */
332 	state->start_pc = state->registers[PC];
333 
334 	/* Find the item to run */
335 	index = find_index(state->start_pc, exidx, exidx_sz);
336 
337 	finished = false;
338 	if (index->insn != EXIDX_CANTUNWIND) {
339 		if (index->insn & (1U << 31)) {
340 			/* The data is within the instruction */
341 			state->insn = &index->insn;
342 		} else {
343 			/* A prel31 offset to the unwind table */
344 			state->insn = (uint32_t *)
345 			    ((uintptr_t)&index->insn +
346 			     expand_prel31(index->insn));
347 		}
348 		/* Run the unwind function */
349 		finished = unwind_tab(state);
350 	}
351 
352 	/* This is the top of the stack, finish */
353 	if (index->insn == EXIDX_CANTUNWIND)
354 		finished = true;
355 
356 	return !finished;
357 }
358 
359 #if defined(CFG_UNWIND) && (TRACE_LEVEL > 0)
360 
361 void print_stack_arm32(int level, struct unwind_state_arm32 *state, uaddr_t exidx,
362 		       size_t exidx_sz)
363 {
364 	trace_printf_helper_raw(level, true, "Call stack:");
365 	do {
366 		trace_printf_helper_raw(level, true, " 0x%08" PRIx32,
367 					state->registers[PC]);
368 	} while (unwind_stack_arm32(state, exidx, exidx_sz));
369 }
370 
371 #endif
372 
373 #if defined(CFG_UNWIND) && defined(ARM32) && (TRACE_LEVEL > 0)
374 
375 void print_kernel_stack(int level)
376 {
377 	struct unwind_state_arm32 state;
378 	uaddr_t exidx = (vaddr_t)__exidx_start;
379 	size_t exidx_sz = (vaddr_t)__exidx_end - (vaddr_t)__exidx_start;
380 
381 	memset(state.registers, 0, sizeof(state.registers));
382 	/* r7: Thumb-style frame pointer */
383 	state.registers[7] = read_r7();
384 	/* r11: ARM-style frame pointer */
385 	state.registers[FP] = read_fp();
386 	state.registers[SP] = read_sp();
387 	state.registers[LR] = read_lr();
388 	state.registers[PC] = (uint32_t)print_kernel_stack;
389 
390 	print_stack_arm32(level, &state, exidx, exidx_sz);
391 }
392 
393 #endif
394