xref: /optee_os/core/arch/arm/kernel/unwind_arm32.c (revision 1bb929836182ecb96d2d9d268daa807c67596396)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright 2015 Linaro Limited
4  * Copyright 2013-2014 Andrew Turner.
5  * Copyright 2013-2014 Ian Lepore.
6  * Copyright 2013-2014 Rui Paulo.
7  * Copyright 2013 Eitan Adler.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions are
12  * met:
13  *
14  *  1. Redistributions of source code must retain the above copyright
15  *     notice, this list of conditions and the following disclaimer.
16  *  2. Redistributions in binary form must reproduce the above copyright
17  *     notice, this list of conditions and the following disclaimer in the
18  *     documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
24  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
27  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
28  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
30  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <arm.h>
34 #include <kernel/linker.h>
35 #include <kernel/misc.h>
36 #include <kernel/unwind.h>
37 #include <string.h>
38 #include <trace.h>
39 
40 /* The register names */
41 #define	FP	11
42 #define	SP	13
43 #define	LR	14
44 #define	PC	15
45 
46 /*
47  * Definitions for the instruction interpreter.
48  *
49  * The ARM EABI specifies how to perform the frame unwinding in the
50  * Exception Handling ABI for the ARM Architecture document. To perform
51  * the unwind we need to know the initial frame pointer, stack pointer,
52  * link register and program counter. We then find the entry within the
53  * index table that points to the function the program counter is within.
54  * This gives us either a list of three instructions to process, a 31-bit
55  * relative offset to a table of instructions, or a value telling us
56  * we can't unwind any further.
57  *
58  * When we have the instructions to process we need to decode them
59  * following table 4 in section 9.3. This describes a collection of bit
60  * patterns to encode that steps to take to update the stack pointer and
61  * link register to the correct values at the start of the function.
62  */
63 
64 /* A special case when we are unable to unwind past this function */
65 #define	EXIDX_CANTUNWIND	1
66 
67 /*
68  * Entry types.
69  * These are the only entry types that have been seen in the kernel.
70  */
71 #define	ENTRY_MASK	0xff000000
72 #define	ENTRY_ARM_SU16	0x80000000
73 #define	ENTRY_ARM_LU16	0x81000000
74 
75 /* Instruction masks. */
76 #define	INSN_VSP_MASK		0xc0
77 #define	INSN_VSP_SIZE_MASK	0x3f
78 #define	INSN_STD_MASK		0xf0
79 #define	INSN_STD_DATA_MASK	0x0f
80 #define	INSN_POP_TYPE_MASK	0x08
81 #define	INSN_POP_COUNT_MASK	0x07
82 #define	INSN_VSP_LARGE_INC_MASK	0xff
83 
84 /* Instruction definitions */
85 #define	INSN_VSP_INC		0x00
86 #define	INSN_VSP_DEC		0x40
87 #define	INSN_POP_MASKED		0x80
88 #define	INSN_VSP_REG		0x90
89 #define	INSN_POP_COUNT		0xa0
90 #define	INSN_FINISH		0xb0
91 #define	INSN_POP_REGS		0xb1
92 #define	INSN_VSP_LARGE_INC	0xb2
93 
94 /* An item in the exception index table */
95 struct unwind_idx {
96 	uint32_t offset;
97 	uint32_t insn;
98 };
99 
100 /* Expand a 31-bit signed value to a 32-bit signed value */
101 static int32_t expand_prel31(uint32_t prel31)
102 {
103 	return prel31 | SHIFT_U32(prel31 & BIT32(30), 1);
104 }
105 
106 /*
107  * Perform a binary search of the index table to find the function
108  * with the largest address that doesn't exceed addr.
109  */
110 static struct unwind_idx *find_index(uint32_t addr, vaddr_t exidx,
111 				     size_t exidx_sz)
112 {
113 	vaddr_t idx_start, idx_end;
114 	unsigned int min, mid, max;
115 	struct unwind_idx *start;
116 	struct unwind_idx *item;
117 	int32_t prel31_addr;
118 	vaddr_t func_addr;
119 
120 	start = (struct unwind_idx *)exidx;
121 	idx_start = exidx;
122 	idx_end = exidx + exidx_sz;
123 
124 	min = 0;
125 	max = (idx_end - idx_start) / sizeof(struct unwind_idx);
126 
127 	while (min != max) {
128 		mid = min + (max - min + 1) / 2;
129 
130 		item = &start[mid];
131 
132 		prel31_addr = expand_prel31(item->offset);
133 		func_addr = (vaddr_t)&item->offset + prel31_addr;
134 
135 		if (func_addr <= addr) {
136 			min = mid;
137 		} else {
138 			max = mid - 1;
139 		}
140 	}
141 
142 	return &start[min];
143 }
144 
145 /* Reads the next byte from the instruction list */
146 static uint8_t unwind_exec_read_byte(struct unwind_state_arm32 *state)
147 {
148 	uint8_t insn;
149 
150 	/* Read the unwind instruction */
151 	insn = (*state->insn) >> (state->byte * 8);
152 
153 	/* Update the location of the next instruction */
154 	if (state->byte == 0) {
155 		state->byte = 3;
156 		state->insn++;
157 		state->entries--;
158 	} else
159 		state->byte--;
160 
161 	return insn;
162 }
163 
164 /* Executes the next instruction on the list */
165 static bool unwind_exec_insn(struct unwind_state_arm32 *state)
166 {
167 	unsigned int insn;
168 	uint32_t *vsp = (uint32_t *)(uintptr_t)state->registers[SP];
169 	int update_vsp = 0;
170 
171 	/* This should never happen */
172 	if (state->entries == 0)
173 		return false;
174 
175 	/* Read the next instruction */
176 	insn = unwind_exec_read_byte(state);
177 
178 	if ((insn & INSN_VSP_MASK) == INSN_VSP_INC) {
179 		state->registers[SP] += ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
180 
181 	} else if ((insn & INSN_VSP_MASK) == INSN_VSP_DEC) {
182 		state->registers[SP] -= ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
183 
184 	} else if ((insn & INSN_STD_MASK) == INSN_POP_MASKED) {
185 		unsigned int mask, reg;
186 
187 		/* Load the mask */
188 		mask = unwind_exec_read_byte(state);
189 		mask |= (insn & INSN_STD_DATA_MASK) << 8;
190 
191 		/* We have a refuse to unwind instruction */
192 		if (mask == 0)
193 			return false;
194 
195 		/* Update SP */
196 		update_vsp = 1;
197 
198 		/* Load the registers */
199 		for (reg = 4; mask && reg < 16; mask >>= 1, reg++) {
200 			if (mask & 1) {
201 				state->registers[reg] = *vsp++;
202 				state->update_mask |= 1 << reg;
203 
204 				/* If we have updated SP kep its value */
205 				if (reg == SP)
206 					update_vsp = 0;
207 			}
208 		}
209 
210 	} else if ((insn & INSN_STD_MASK) == INSN_VSP_REG &&
211 	    ((insn & INSN_STD_DATA_MASK) != 13) &&
212 	    ((insn & INSN_STD_DATA_MASK) != 15)) {
213 		/* sp = register */
214 		state->registers[SP] =
215 		    state->registers[insn & INSN_STD_DATA_MASK];
216 
217 	} else if ((insn & INSN_STD_MASK) == INSN_POP_COUNT) {
218 		unsigned int count, reg;
219 
220 		/* Read how many registers to load */
221 		count = insn & INSN_POP_COUNT_MASK;
222 
223 		/* Update sp */
224 		update_vsp = 1;
225 
226 		/* Pop the registers */
227 		for (reg = 4; reg <= 4 + count; reg++) {
228 			state->registers[reg] = *vsp++;
229 			state->update_mask |= 1 << reg;
230 		}
231 
232 		/* Check if we are in the pop r14 version */
233 		if ((insn & INSN_POP_TYPE_MASK) != 0) {
234 			state->registers[14] = *vsp++;
235 		}
236 
237 	} else if (insn == INSN_FINISH) {
238 		/* Stop processing */
239 		state->entries = 0;
240 
241 	} else if (insn == INSN_POP_REGS) {
242 		unsigned int mask, reg;
243 
244 		mask = unwind_exec_read_byte(state);
245 		if (mask == 0 || (mask & 0xf0) != 0)
246 			return false;
247 
248 		/* Update SP */
249 		update_vsp = 1;
250 
251 		/* Load the registers */
252 		for (reg = 0; mask && reg < 4; mask >>= 1, reg++) {
253 			if (mask & 1) {
254 				state->registers[reg] = *vsp++;
255 				state->update_mask |= 1 << reg;
256 			}
257 		}
258 
259 	} else if ((insn & INSN_VSP_LARGE_INC_MASK) == INSN_VSP_LARGE_INC) {
260 		unsigned int uleb128;
261 
262 		/* Read the increment value */
263 		uleb128 = unwind_exec_read_byte(state);
264 
265 		state->registers[SP] += 0x204 + (uleb128 << 2);
266 
267 	} else {
268 		/* We hit a new instruction that needs to be implemented */
269 		DMSG("Unhandled instruction %.2x\n", insn);
270 		return false;
271 	}
272 
273 	if (update_vsp) {
274 		state->registers[SP] = (uint32_t)(uintptr_t)vsp;
275 	}
276 
277 	return true;
278 }
279 
280 /* Performs the unwind of a function */
281 static bool unwind_tab(struct unwind_state_arm32 *state)
282 {
283 	uint32_t entry;
284 
285 	/* Set PC to a known value */
286 	state->registers[PC] = 0;
287 
288 	/* Read the personality */
289 	entry = *state->insn & ENTRY_MASK;
290 
291 	if (entry == ENTRY_ARM_SU16) {
292 		state->byte = 2;
293 		state->entries = 1;
294 	} else if (entry == ENTRY_ARM_LU16) {
295 		state->byte = 1;
296 		state->entries = ((*state->insn >> 16) & 0xFF) + 1;
297 	} else {
298 		DMSG("Unknown entry: %x\n", entry);
299 		return true;
300 	}
301 
302 	while (state->entries > 0) {
303 		if (!unwind_exec_insn(state))
304 			return true;
305 	}
306 
307 	/*
308 	 * The program counter was not updated, load it from the link register.
309 	 */
310 	if (state->registers[PC] == 0) {
311 		state->registers[PC] = state->registers[LR];
312 
313 		/*
314 		 * If the program counter changed, flag it in the update mask.
315 		 */
316 		if (state->start_pc != state->registers[PC])
317 			state->update_mask |= 1 << PC;
318 	}
319 
320 	return false;
321 }
322 
323 bool unwind_stack_arm32(struct unwind_state_arm32 *state, uaddr_t exidx,
324 			size_t exidx_sz)
325 {
326 	struct unwind_idx *index;
327 	bool finished;
328 
329 	/* Reset the mask of updated registers */
330 	state->update_mask = 0;
331 
332 	/* The pc value is correct and will be overwritten, save it */
333 	state->start_pc = state->registers[PC];
334 
335 	/* Find the item to run */
336 	index = find_index(state->start_pc, exidx, exidx_sz);
337 
338 	finished = false;
339 	if (index->insn != EXIDX_CANTUNWIND) {
340 		if (index->insn & (1U << 31)) {
341 			/* The data is within the instruction */
342 			state->insn = &index->insn;
343 		} else {
344 			/* A prel31 offset to the unwind table */
345 			state->insn = (uint32_t *)
346 			    ((uintptr_t)&index->insn +
347 			     expand_prel31(index->insn));
348 		}
349 		/* Run the unwind function */
350 		finished = unwind_tab(state);
351 	}
352 
353 	/* This is the top of the stack, finish */
354 	if (index->insn == EXIDX_CANTUNWIND)
355 		finished = true;
356 
357 	return !finished;
358 }
359 
360 #if defined(CFG_UNWIND) && (TRACE_LEVEL > 0)
361 
362 void print_stack_arm32(int level, struct unwind_state_arm32 *state, uaddr_t exidx,
363 		       size_t exidx_sz)
364 {
365 	trace_printf_helper_raw(level, true, "Call stack:");
366 	do {
367 		trace_printf_helper_raw(level, true, " 0x%08" PRIx32,
368 					state->registers[PC]);
369 	} while (unwind_stack_arm32(state, exidx, exidx_sz));
370 }
371 
372 #endif
373 
374 #if defined(CFG_UNWIND) && defined(ARM32) && (TRACE_LEVEL > 0)
375 
376 void print_kernel_stack(int level)
377 {
378 	struct unwind_state_arm32 state;
379 	uaddr_t exidx = (vaddr_t)__exidx_start;
380 	size_t exidx_sz = (vaddr_t)__exidx_end - (vaddr_t)__exidx_start;
381 
382 	memset(state.registers, 0, sizeof(state.registers));
383 	/* r7: Thumb-style frame pointer */
384 	state.registers[7] = read_r7();
385 	/* r11: ARM-style frame pointer */
386 	state.registers[FP] = read_fp();
387 	state.registers[SP] = read_sp();
388 	state.registers[LR] = read_lr();
389 	state.registers[PC] = (uint32_t)print_kernel_stack;
390 
391 	print_stack_arm32(level, &state, exidx, exidx_sz);
392 }
393 
394 #endif
395