xref: /optee_os/core/arch/arm/kernel/thread_spmc.c (revision 79f8990d9d28539864d8f97f9f1cb32e289e595f)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2023, Linaro Limited.
4  * Copyright (c) 2019-2021, Arm Limited. All rights reserved.
5  */
6 
7 #include <assert.h>
8 #include <ffa.h>
9 #include <initcall.h>
10 #include <io.h>
11 #include <kernel/interrupt.h>
12 #include <kernel/notif.h>
13 #include <kernel/panic.h>
14 #include <kernel/secure_partition.h>
15 #include <kernel/spinlock.h>
16 #include <kernel/spmc_sp_handler.h>
17 #include <kernel/tee_misc.h>
18 #include <kernel/thread.h>
19 #include <kernel/thread_private.h>
20 #include <kernel/thread_spmc.h>
21 #include <kernel/virtualization.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <optee_ffa.h>
25 #include <optee_msg.h>
26 #include <optee_rpc_cmd.h>
27 #include <sm/optee_smc.h>
28 #include <string.h>
29 #include <sys/queue.h>
30 #include <tee/entry_std.h>
31 #include <tee/uuid.h>
32 #include <util.h>
33 
34 #if defined(CFG_CORE_SEL1_SPMC)
35 struct mem_share_state {
36 	struct mobj_ffa *mf;
37 	unsigned int page_count;
38 	unsigned int region_count;
39 	unsigned int current_page_idx;
40 };
41 
42 struct mem_frag_state {
43 	struct mem_share_state share;
44 	tee_mm_entry_t *mm;
45 	unsigned int frag_offset;
46 	SLIST_ENTRY(mem_frag_state) link;
47 };
48 #endif
49 
50 static unsigned int spmc_notif_lock = SPINLOCK_UNLOCK;
51 static int do_bottom_half_value = -1;
52 static uint16_t notif_vm_id;
53 static bool spmc_notif_is_ready;
54 
55 /* Initialized in spmc_init() below */
56 static uint16_t my_endpoint_id __nex_bss;
57 #ifdef CFG_CORE_SEL1_SPMC
58 static const uint32_t my_part_props = FFA_PART_PROP_DIRECT_REQ_RECV |
59 				      FFA_PART_PROP_DIRECT_REQ_SEND |
60 #ifdef CFG_NS_VIRTUALIZATION
61 				      FFA_PART_PROP_NOTIF_CREATED |
62 				      FFA_PART_PROP_NOTIF_DESTROYED |
63 #endif
64 #ifdef ARM64
65 				      FFA_PART_PROP_AARCH64_STATE |
66 #endif
67 				      FFA_PART_PROP_IS_PE_ID;
68 
69 static uint32_t my_uuid_words[] = {
70 	/*
71 	 * - if the SPMC is in S-EL2 this UUID describes OP-TEE as a S-EL1
72 	 *   SP, or
73 	 * - if the SPMC is in S-EL1 then this UUID is for OP-TEE as a
74 	 *   logical partition, residing in the same exception level as the
75 	 *   SPMC
76 	 * UUID 486178e0-e7f8-11e3-bc5e-0002a5d5c51b
77 	 */
78 	0xe0786148, 0xe311f8e7, 0x02005ebc, 0x1bc5d5a5,
79 };
80 
81 /*
82  * If struct ffa_rxtx::size is 0 RX/TX buffers are not mapped or initialized.
83  *
84  * struct ffa_rxtx::spin_lock protects the variables below from concurrent
85  * access this includes the use of content of struct ffa_rxtx::rx and
86  * @frag_state_head.
87  *
88  * struct ffa_rxtx::tx_buf_is_mine is true when we may write to struct
89  * ffa_rxtx::tx and false when it is owned by normal world.
90  *
91  * Note that we can't prevent normal world from updating the content of
92  * these buffers so we must always be careful when reading. while we hold
93  * the lock.
94  */
95 
96 static struct ffa_rxtx my_rxtx __nex_bss;
97 
98 static bool is_nw_buf(struct ffa_rxtx *rxtx)
99 {
100 	return rxtx == &my_rxtx;
101 }
102 
103 static SLIST_HEAD(mem_frag_state_head, mem_frag_state) frag_state_head =
104 	SLIST_HEAD_INITIALIZER(&frag_state_head);
105 
106 static uint64_t notif_pending_bitmap;
107 static uint64_t notif_bound_bitmap;
108 static bool notif_vm_id_valid;
109 static int notif_intid = -1;
110 #else
111 static uint8_t __rx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE);
112 static uint8_t __tx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE);
113 static struct ffa_rxtx my_rxtx = {
114 	.rx = __rx_buf,
115 	.tx = __tx_buf,
116 	.size = sizeof(__rx_buf),
117 };
118 #endif
119 
120 static uint32_t swap_src_dst(uint32_t src_dst)
121 {
122 	return (src_dst >> 16) | (src_dst << 16);
123 }
124 
125 static uint16_t get_sender_id(uint32_t src_dst)
126 {
127 	return src_dst >> 16;
128 }
129 
130 void spmc_set_args(struct thread_smc_args *args, uint32_t fid, uint32_t src_dst,
131 		   uint32_t w2, uint32_t w3, uint32_t w4, uint32_t w5)
132 {
133 	*args = (struct thread_smc_args){ .a0 = fid,
134 					  .a1 = src_dst,
135 					  .a2 = w2,
136 					  .a3 = w3,
137 					  .a4 = w4,
138 					  .a5 = w5, };
139 }
140 
141 uint32_t spmc_exchange_version(uint32_t vers, struct ffa_rxtx *rxtx)
142 {
143 	/*
144 	 * No locking, if the caller does concurrent calls to this it's
145 	 * only making a mess for itself. We must be able to renegotiate
146 	 * the FF-A version in order to support differing versions between
147 	 * the loader and the driver.
148 	 */
149 	if (vers < FFA_VERSION_1_1)
150 		rxtx->ffa_vers = FFA_VERSION_1_0;
151 	else
152 		rxtx->ffa_vers = FFA_VERSION_1_1;
153 
154 	return rxtx->ffa_vers;
155 }
156 
157 #if defined(CFG_CORE_SEL1_SPMC)
158 static void handle_features(struct thread_smc_args *args)
159 {
160 	uint32_t ret_fid = FFA_ERROR;
161 	uint32_t ret_w2 = FFA_NOT_SUPPORTED;
162 
163 	switch (args->a1) {
164 	case FFA_FEATURE_SCHEDULE_RECV_INTR:
165 		if (spmc_notif_is_ready) {
166 			ret_fid = FFA_SUCCESS_32;
167 			ret_w2 = notif_intid;
168 		}
169 		break;
170 
171 #ifdef ARM64
172 	case FFA_RXTX_MAP_64:
173 #endif
174 	case FFA_RXTX_MAP_32:
175 		ret_fid = FFA_SUCCESS_32;
176 		ret_w2 = 0; /* 4kB Minimum buffer size and alignment boundary */
177 		break;
178 #ifdef ARM64
179 	case FFA_MEM_SHARE_64:
180 #endif
181 	case FFA_MEM_SHARE_32:
182 		ret_fid = FFA_SUCCESS_32;
183 		/*
184 		 * Partition manager supports transmission of a memory
185 		 * transaction descriptor in a buffer dynamically allocated
186 		 * by the endpoint.
187 		 */
188 		ret_w2 = BIT(0);
189 		break;
190 
191 	case FFA_ERROR:
192 	case FFA_VERSION:
193 	case FFA_SUCCESS_32:
194 #ifdef ARM64
195 	case FFA_SUCCESS_64:
196 #endif
197 	case FFA_FEATURES:
198 	case FFA_SPM_ID_GET:
199 	case FFA_MEM_FRAG_TX:
200 	case FFA_MEM_RECLAIM:
201 	case FFA_MSG_SEND_DIRECT_REQ_64:
202 	case FFA_MSG_SEND_DIRECT_REQ_32:
203 	case FFA_INTERRUPT:
204 	case FFA_PARTITION_INFO_GET:
205 	case FFA_RXTX_UNMAP:
206 	case FFA_RX_RELEASE:
207 	case FFA_FEATURE_MANAGED_EXIT_INTR:
208 	case FFA_NOTIFICATION_BITMAP_CREATE:
209 	case FFA_NOTIFICATION_BITMAP_DESTROY:
210 	case FFA_NOTIFICATION_BIND:
211 	case FFA_NOTIFICATION_UNBIND:
212 	case FFA_NOTIFICATION_SET:
213 	case FFA_NOTIFICATION_GET:
214 	case FFA_NOTIFICATION_INFO_GET_32:
215 #ifdef ARM64
216 	case FFA_NOTIFICATION_INFO_GET_64:
217 #endif
218 		ret_fid = FFA_SUCCESS_32;
219 		ret_w2 = FFA_PARAM_MBZ;
220 		break;
221 	default:
222 		break;
223 	}
224 
225 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, ret_w2, FFA_PARAM_MBZ,
226 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
227 }
228 
229 static int map_buf(paddr_t pa, unsigned int sz, void **va_ret)
230 {
231 	tee_mm_entry_t *mm = NULL;
232 
233 	if (!core_pbuf_is(CORE_MEM_NON_SEC, pa, sz))
234 		return FFA_INVALID_PARAMETERS;
235 
236 	mm = tee_mm_alloc(&tee_mm_shm, sz);
237 	if (!mm)
238 		return FFA_NO_MEMORY;
239 
240 	if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pa,
241 					  sz / SMALL_PAGE_SIZE,
242 					  MEM_AREA_NSEC_SHM)) {
243 		tee_mm_free(mm);
244 		return FFA_INVALID_PARAMETERS;
245 	}
246 
247 	*va_ret = (void *)tee_mm_get_smem(mm);
248 	return 0;
249 }
250 
251 static void handle_spm_id_get(struct thread_smc_args *args)
252 {
253 	spmc_set_args(args, FFA_SUCCESS_32, FFA_PARAM_MBZ, my_endpoint_id,
254 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
255 }
256 
257 static void unmap_buf(void *va, size_t sz)
258 {
259 	tee_mm_entry_t *mm = tee_mm_find(&tee_mm_shm, (vaddr_t)va);
260 
261 	assert(mm);
262 	core_mmu_unmap_pages(tee_mm_get_smem(mm), sz / SMALL_PAGE_SIZE);
263 	tee_mm_free(mm);
264 }
265 
266 void spmc_handle_rxtx_map(struct thread_smc_args *args, struct ffa_rxtx *rxtx)
267 {
268 	int rc = 0;
269 	uint32_t ret_fid = FFA_ERROR;
270 	unsigned int sz = 0;
271 	paddr_t rx_pa = 0;
272 	paddr_t tx_pa = 0;
273 	void *rx = NULL;
274 	void *tx = NULL;
275 
276 	cpu_spin_lock(&rxtx->spinlock);
277 
278 	if (args->a3 & GENMASK_64(63, 6)) {
279 		rc = FFA_INVALID_PARAMETERS;
280 		goto out;
281 	}
282 
283 	sz = args->a3 * SMALL_PAGE_SIZE;
284 	if (!sz) {
285 		rc = FFA_INVALID_PARAMETERS;
286 		goto out;
287 	}
288 	/* TX/RX are swapped compared to the caller */
289 	tx_pa = args->a2;
290 	rx_pa = args->a1;
291 
292 	if (rxtx->size) {
293 		rc = FFA_DENIED;
294 		goto out;
295 	}
296 
297 	/*
298 	 * If the buffer comes from a SP the address is virtual and already
299 	 * mapped.
300 	 */
301 	if (is_nw_buf(rxtx)) {
302 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
303 			enum teecore_memtypes mt = MEM_AREA_NEX_NSEC_SHM;
304 			bool tx_alloced = false;
305 
306 			/*
307 			 * With virtualization we establish this mapping in
308 			 * the nexus mapping which then is replicated to
309 			 * each partition.
310 			 *
311 			 * This means that this mapping must be done before
312 			 * any partition is created and then must not be
313 			 * changed.
314 			 */
315 
316 			/*
317 			 * core_mmu_add_mapping() may reuse previous
318 			 * mappings. First check if there's any mappings to
319 			 * reuse so we know how to clean up in case of
320 			 * failure.
321 			 */
322 			tx = phys_to_virt(tx_pa, mt, sz);
323 			rx = phys_to_virt(rx_pa, mt, sz);
324 			if (!tx) {
325 				tx = core_mmu_add_mapping(mt, tx_pa, sz);
326 				if (!tx) {
327 					rc = FFA_NO_MEMORY;
328 					goto out;
329 				}
330 				tx_alloced = true;
331 			}
332 			if (!rx)
333 				rx = core_mmu_add_mapping(mt, rx_pa, sz);
334 
335 			if (!rx) {
336 				if (tx_alloced && tx)
337 					core_mmu_remove_mapping(mt, tx, sz);
338 				rc = FFA_NO_MEMORY;
339 				goto out;
340 			}
341 		} else {
342 			rc = map_buf(tx_pa, sz, &tx);
343 			if (rc)
344 				goto out;
345 			rc = map_buf(rx_pa, sz, &rx);
346 			if (rc) {
347 				unmap_buf(tx, sz);
348 				goto out;
349 			}
350 		}
351 		rxtx->tx = tx;
352 		rxtx->rx = rx;
353 	} else {
354 		if ((tx_pa & SMALL_PAGE_MASK) || (rx_pa & SMALL_PAGE_MASK)) {
355 			rc = FFA_INVALID_PARAMETERS;
356 			goto out;
357 		}
358 
359 		if (!virt_to_phys((void *)tx_pa) ||
360 		    !virt_to_phys((void *)rx_pa)) {
361 			rc = FFA_INVALID_PARAMETERS;
362 			goto out;
363 		}
364 
365 		rxtx->tx = (void *)tx_pa;
366 		rxtx->rx = (void *)rx_pa;
367 	}
368 
369 	rxtx->size = sz;
370 	rxtx->tx_is_mine = true;
371 	ret_fid = FFA_SUCCESS_32;
372 	DMSG("Mapped tx %#"PRIxPA" size %#x @ %p", tx_pa, sz, tx);
373 	DMSG("Mapped rx %#"PRIxPA" size %#x @ %p", rx_pa, sz, rx);
374 out:
375 	cpu_spin_unlock(&rxtx->spinlock);
376 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, FFA_PARAM_MBZ,
377 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
378 }
379 
380 void spmc_handle_rxtx_unmap(struct thread_smc_args *args, struct ffa_rxtx *rxtx)
381 {
382 	uint32_t ret_fid = FFA_ERROR;
383 	int rc = FFA_INVALID_PARAMETERS;
384 
385 	cpu_spin_lock(&rxtx->spinlock);
386 
387 	if (!rxtx->size)
388 		goto out;
389 
390 	/* We don't unmap the SP memory as the SP might still use it */
391 	if (is_nw_buf(rxtx)) {
392 		unmap_buf(rxtx->rx, rxtx->size);
393 		unmap_buf(rxtx->tx, rxtx->size);
394 	}
395 	rxtx->size = 0;
396 	rxtx->rx = NULL;
397 	rxtx->tx = NULL;
398 	ret_fid = FFA_SUCCESS_32;
399 	rc = 0;
400 out:
401 	cpu_spin_unlock(&rxtx->spinlock);
402 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, FFA_PARAM_MBZ,
403 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
404 }
405 
406 void spmc_handle_rx_release(struct thread_smc_args *args, struct ffa_rxtx *rxtx)
407 {
408 	uint32_t ret_fid = 0;
409 	int rc = 0;
410 
411 	cpu_spin_lock(&rxtx->spinlock);
412 	/* The senders RX is our TX */
413 	if (!rxtx->size || rxtx->tx_is_mine) {
414 		ret_fid = FFA_ERROR;
415 		rc = FFA_DENIED;
416 	} else {
417 		ret_fid = FFA_SUCCESS_32;
418 		rc = 0;
419 		rxtx->tx_is_mine = true;
420 	}
421 	cpu_spin_unlock(&rxtx->spinlock);
422 
423 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, FFA_PARAM_MBZ,
424 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
425 }
426 
427 static bool is_nil_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3)
428 {
429 	return !w0 && !w1 && !w2 && !w3;
430 }
431 
432 static bool is_my_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3)
433 {
434 	/*
435 	 * This depends on which UUID we have been assigned.
436 	 * TODO add a generic mechanism to obtain our UUID.
437 	 *
438 	 * The test below is for the hard coded UUID
439 	 * 486178e0-e7f8-11e3-bc5e-0002a5d5c51b
440 	 */
441 	return w0 == my_uuid_words[0] && w1 == my_uuid_words[1] &&
442 	       w2 == my_uuid_words[2] && w3 == my_uuid_words[3];
443 }
444 
445 TEE_Result spmc_fill_partition_entry(uint32_t ffa_vers, void *buf, size_t blen,
446 				     size_t idx, uint16_t endpoint_id,
447 				     uint16_t execution_context,
448 				     uint32_t part_props,
449 				     const uint32_t uuid_words[4])
450 {
451 	struct ffa_partition_info_x *fpi = NULL;
452 	size_t fpi_size = sizeof(*fpi);
453 
454 	if (ffa_vers >= FFA_VERSION_1_1)
455 		fpi_size += FFA_UUID_SIZE;
456 
457 	if ((idx + 1) * fpi_size > blen)
458 		return TEE_ERROR_OUT_OF_MEMORY;
459 
460 	fpi = (void *)((vaddr_t)buf + idx * fpi_size);
461 	fpi->id = endpoint_id;
462 	/* Number of execution contexts implemented by this partition */
463 	fpi->execution_context = execution_context;
464 
465 	fpi->partition_properties = part_props;
466 
467 	if (ffa_vers >= FFA_VERSION_1_1) {
468 		if (uuid_words)
469 			memcpy(fpi->uuid, uuid_words, FFA_UUID_SIZE);
470 		else
471 			memset(fpi->uuid, 0, FFA_UUID_SIZE);
472 	}
473 
474 	return TEE_SUCCESS;
475 }
476 
477 static int handle_partition_info_get_all(size_t *elem_count,
478 					 struct ffa_rxtx *rxtx, bool count_only)
479 {
480 	if (!count_only) {
481 		/* Add OP-TEE SP */
482 		if (spmc_fill_partition_entry(rxtx->ffa_vers, rxtx->tx,
483 					      rxtx->size, 0, my_endpoint_id,
484 					      CFG_TEE_CORE_NB_CORE,
485 					      my_part_props, my_uuid_words))
486 			return FFA_NO_MEMORY;
487 	}
488 	*elem_count = 1;
489 
490 	if (IS_ENABLED(CFG_SECURE_PARTITION)) {
491 		if (sp_partition_info_get(rxtx->ffa_vers, rxtx->tx, rxtx->size,
492 					  NULL, elem_count, count_only))
493 			return FFA_NO_MEMORY;
494 	}
495 
496 	return FFA_OK;
497 }
498 
499 void spmc_handle_partition_info_get(struct thread_smc_args *args,
500 				    struct ffa_rxtx *rxtx)
501 {
502 	TEE_Result res = TEE_SUCCESS;
503 	uint32_t ret_fid = FFA_ERROR;
504 	uint32_t rc = 0;
505 	bool count_only = args->a5 & FFA_PARTITION_INFO_GET_COUNT_FLAG;
506 
507 	if (!count_only) {
508 		cpu_spin_lock(&rxtx->spinlock);
509 
510 		if (!rxtx->size || !rxtx->tx_is_mine) {
511 			rc = FFA_BUSY;
512 			goto out;
513 		}
514 	}
515 
516 	if (is_nil_uuid(args->a1, args->a2, args->a3, args->a4)) {
517 		size_t elem_count = 0;
518 
519 		ret_fid = handle_partition_info_get_all(&elem_count, rxtx,
520 							count_only);
521 
522 		if (ret_fid) {
523 			rc = ret_fid;
524 			ret_fid = FFA_ERROR;
525 		} else {
526 			ret_fid = FFA_SUCCESS_32;
527 			rc = elem_count;
528 		}
529 
530 		goto out;
531 	}
532 
533 	if (is_my_uuid(args->a1, args->a2, args->a3, args->a4)) {
534 		if (!count_only) {
535 			res = spmc_fill_partition_entry(rxtx->ffa_vers,
536 							rxtx->tx, rxtx->size, 0,
537 							my_endpoint_id,
538 							CFG_TEE_CORE_NB_CORE,
539 							my_part_props,
540 							my_uuid_words);
541 			if (res) {
542 				ret_fid = FFA_ERROR;
543 				rc = FFA_INVALID_PARAMETERS;
544 				goto out;
545 			}
546 		}
547 		rc = 1;
548 	} else if (IS_ENABLED(CFG_SECURE_PARTITION)) {
549 		uint32_t uuid_array[4] = { 0 };
550 		TEE_UUID uuid = { };
551 		size_t count = 0;
552 
553 		uuid_array[0] = args->a1;
554 		uuid_array[1] = args->a2;
555 		uuid_array[2] = args->a3;
556 		uuid_array[3] = args->a4;
557 		tee_uuid_from_octets(&uuid, (uint8_t *)uuid_array);
558 
559 		res = sp_partition_info_get(rxtx->ffa_vers, rxtx->tx,
560 					    rxtx->size, &uuid, &count,
561 					    count_only);
562 		if (res != TEE_SUCCESS) {
563 			ret_fid = FFA_ERROR;
564 			rc = FFA_INVALID_PARAMETERS;
565 			goto out;
566 		}
567 		rc = count;
568 	} else {
569 		ret_fid = FFA_ERROR;
570 		rc = FFA_INVALID_PARAMETERS;
571 		goto out;
572 	}
573 
574 	ret_fid = FFA_SUCCESS_32;
575 
576 out:
577 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, FFA_PARAM_MBZ,
578 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
579 	if (!count_only) {
580 		rxtx->tx_is_mine = false;
581 		cpu_spin_unlock(&rxtx->spinlock);
582 	}
583 }
584 
585 static void spmc_handle_run(struct thread_smc_args *args)
586 {
587 	uint16_t endpoint = FFA_TARGET_INFO_GET_SP_ID(args->a1);
588 	uint16_t thread_id = FFA_TARGET_INFO_GET_VCPU_ID(args->a1);
589 	uint32_t rc = FFA_OK;
590 
591 	if (endpoint != my_endpoint_id) {
592 		/*
593 		 * The endpoint should be an SP, try to resume the SP from
594 		 * preempted into busy state.
595 		 */
596 		rc = spmc_sp_resume_from_preempted(endpoint);
597 		if (rc)
598 			goto out;
599 	}
600 
601 	thread_resume_from_rpc(thread_id, 0, 0, 0, 0);
602 
603 	/* thread_resume_from_rpc return only of the thread_id is invalid */
604 	rc = FFA_INVALID_PARAMETERS;
605 
606 out:
607 	spmc_set_args(args, FFA_ERROR, FFA_PARAM_MBZ, rc, FFA_PARAM_MBZ,
608 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
609 }
610 #endif /*CFG_CORE_SEL1_SPMC*/
611 
612 static uint32_t spmc_enable_async_notif(uint32_t bottom_half_value,
613 					uint16_t vm_id)
614 {
615 	uint32_t old_itr_status = 0;
616 
617 	if (!spmc_notif_is_ready) {
618 		/*
619 		 * This should never happen, not if normal world respects the
620 		 * exchanged capabilities.
621 		 */
622 		EMSG("Asynchronous notifications are not ready");
623 		return TEE_ERROR_NOT_IMPLEMENTED;
624 	}
625 
626 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
627 	do_bottom_half_value = bottom_half_value;
628 	if (!IS_ENABLED(CFG_CORE_SEL1_SPMC))
629 		notif_vm_id = vm_id;
630 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
631 
632 	notif_deliver_atomic_event(NOTIF_EVENT_STARTED);
633 	return TEE_SUCCESS;
634 }
635 
636 static void handle_yielding_call(struct thread_smc_args *args,
637 				 uint32_t direct_resp_fid)
638 {
639 	TEE_Result res = 0;
640 
641 	thread_check_canaries();
642 
643 #ifdef ARM64
644 	/* Saving this for an eventual RPC */
645 	thread_get_core_local()->direct_resp_fid = direct_resp_fid;
646 #endif
647 
648 	if (args->a3 == OPTEE_FFA_YIELDING_CALL_RESUME) {
649 		/* Note connection to struct thread_rpc_arg::ret */
650 		thread_resume_from_rpc(args->a7, args->a4, args->a5, args->a6,
651 				       0);
652 		res = TEE_ERROR_BAD_PARAMETERS;
653 	} else {
654 		thread_alloc_and_run(args->a1, args->a3, args->a4, args->a5,
655 				     args->a6, args->a7);
656 		res = TEE_ERROR_BUSY;
657 	}
658 	spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1),
659 		      0, res, 0, 0);
660 }
661 
662 static uint32_t handle_unregister_shm(uint32_t a4, uint32_t a5)
663 {
664 	uint64_t cookie = reg_pair_to_64(a5, a4);
665 	uint32_t res = 0;
666 
667 	res = mobj_ffa_unregister_by_cookie(cookie);
668 	switch (res) {
669 	case TEE_SUCCESS:
670 	case TEE_ERROR_ITEM_NOT_FOUND:
671 		return 0;
672 	case TEE_ERROR_BUSY:
673 		EMSG("res %#"PRIx32, res);
674 		return FFA_BUSY;
675 	default:
676 		EMSG("res %#"PRIx32, res);
677 		return FFA_INVALID_PARAMETERS;
678 	}
679 }
680 
681 static void handle_blocking_call(struct thread_smc_args *args,
682 				 uint32_t direct_resp_fid)
683 {
684 	uint32_t sec_caps = 0;
685 
686 	switch (args->a3) {
687 	case OPTEE_FFA_GET_API_VERSION:
688 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
689 			      OPTEE_FFA_VERSION_MAJOR, OPTEE_FFA_VERSION_MINOR,
690 			      0);
691 		break;
692 	case OPTEE_FFA_GET_OS_VERSION:
693 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
694 			      CFG_OPTEE_REVISION_MAJOR,
695 			      CFG_OPTEE_REVISION_MINOR, TEE_IMPL_GIT_SHA1);
696 		break;
697 	case OPTEE_FFA_EXCHANGE_CAPABILITIES:
698 		sec_caps = OPTEE_FFA_SEC_CAP_ARG_OFFSET;
699 		if (spmc_notif_is_ready)
700 			sec_caps |= OPTEE_FFA_SEC_CAP_ASYNC_NOTIF;
701 		spmc_set_args(args, direct_resp_fid,
702 			      swap_src_dst(args->a1), 0, 0,
703 			      THREAD_RPC_MAX_NUM_PARAMS, sec_caps);
704 		break;
705 	case OPTEE_FFA_UNREGISTER_SHM:
706 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
707 			      handle_unregister_shm(args->a4, args->a5), 0, 0);
708 		break;
709 	case OPTEE_FFA_ENABLE_ASYNC_NOTIF:
710 		spmc_set_args(args, direct_resp_fid,
711 			      swap_src_dst(args->a1), 0,
712 			      spmc_enable_async_notif(args->a4,
713 						      FFA_SRC(args->a1)),
714 			      0, 0);
715 		break;
716 	default:
717 		EMSG("Unhandled blocking service ID %#"PRIx32,
718 		     (uint32_t)args->a3);
719 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
720 			      TEE_ERROR_BAD_PARAMETERS, 0, 0);
721 	}
722 }
723 
724 static void handle_framework_direct_request(struct thread_smc_args *args,
725 					    struct ffa_rxtx *rxtx,
726 					    uint32_t direct_resp_fid)
727 {
728 	uint32_t w0 = FFA_ERROR;
729 	uint32_t w1 = FFA_PARAM_MBZ;
730 	uint32_t w2 = FFA_NOT_SUPPORTED;
731 	uint32_t w3 = FFA_PARAM_MBZ;
732 
733 	switch (args->a2 & FFA_MSG_TYPE_MASK) {
734 	case FFA_MSG_SEND_VM_CREATED:
735 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
736 			uint16_t guest_id = args->a5;
737 			TEE_Result res = virt_guest_created(guest_id);
738 
739 			w0 = direct_resp_fid;
740 			w1 = swap_src_dst(args->a1);
741 			w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_CREATED;
742 			if (res == TEE_SUCCESS)
743 				w3 = FFA_OK;
744 			else if (res == TEE_ERROR_OUT_OF_MEMORY)
745 				w3 = FFA_DENIED;
746 			else
747 				w3 = FFA_INVALID_PARAMETERS;
748 		}
749 		break;
750 	case FFA_MSG_SEND_VM_DESTROYED:
751 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
752 			uint16_t guest_id = args->a5;
753 			TEE_Result res = virt_guest_destroyed(guest_id);
754 
755 			w0 = direct_resp_fid;
756 			w1 = swap_src_dst(args->a1);
757 			w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_DESTROYED;
758 			if (res == TEE_SUCCESS)
759 				w3 = FFA_OK;
760 			else
761 				w3 = FFA_INVALID_PARAMETERS;
762 		}
763 		break;
764 	case FFA_MSG_VERSION_REQ:
765 		w0 = direct_resp_fid;
766 		w1 = swap_src_dst(args->a1);
767 		w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_VERSION_RESP;
768 		w3 = spmc_exchange_version(args->a3, rxtx);
769 		break;
770 	default:
771 		break;
772 	}
773 	spmc_set_args(args, w0, w1, w2, w3, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
774 }
775 
776 static void handle_direct_request(struct thread_smc_args *args,
777 				  struct ffa_rxtx *rxtx)
778 {
779 	uint32_t direct_resp_fid = 0;
780 
781 	if (IS_ENABLED(CFG_SECURE_PARTITION) &&
782 	    FFA_DST(args->a1) != my_endpoint_id) {
783 		spmc_sp_start_thread(args);
784 		return;
785 	}
786 
787 	if (OPTEE_SMC_IS_64(args->a0))
788 		direct_resp_fid = FFA_MSG_SEND_DIRECT_RESP_64;
789 	else
790 		direct_resp_fid = FFA_MSG_SEND_DIRECT_RESP_32;
791 
792 	if (args->a2 & FFA_MSG_FLAG_FRAMEWORK) {
793 		handle_framework_direct_request(args, rxtx, direct_resp_fid);
794 		return;
795 	}
796 
797 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
798 	    virt_set_guest(get_sender_id(args->a1))) {
799 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
800 			      TEE_ERROR_ITEM_NOT_FOUND, 0, 0);
801 		return;
802 	}
803 
804 	if (args->a3 & BIT32(OPTEE_FFA_YIELDING_CALL_BIT))
805 		handle_yielding_call(args, direct_resp_fid);
806 	else
807 		handle_blocking_call(args, direct_resp_fid);
808 
809 	/*
810 	 * Note that handle_yielding_call() typically only returns if a
811 	 * thread cannot be allocated or found. virt_unset_guest() is also
812 	 * called from thread_state_suspend() and thread_state_free().
813 	 */
814 	virt_unset_guest();
815 }
816 
817 int spmc_read_mem_transaction(uint32_t ffa_vers, void *buf, size_t blen,
818 			      struct ffa_mem_transaction_x *trans)
819 {
820 	uint16_t mem_reg_attr = 0;
821 	uint32_t flags = 0;
822 	uint32_t count = 0;
823 	uint32_t offs = 0;
824 	uint32_t size = 0;
825 	size_t n = 0;
826 
827 	if (!IS_ALIGNED_WITH_TYPE(buf, uint64_t))
828 		return FFA_INVALID_PARAMETERS;
829 
830 	if (ffa_vers >= FFA_VERSION_1_1) {
831 		struct ffa_mem_transaction_1_1 *descr = NULL;
832 
833 		if (blen < sizeof(*descr))
834 			return FFA_INVALID_PARAMETERS;
835 
836 		descr = buf;
837 		trans->sender_id = READ_ONCE(descr->sender_id);
838 		mem_reg_attr = READ_ONCE(descr->mem_reg_attr);
839 		flags = READ_ONCE(descr->flags);
840 		trans->global_handle = READ_ONCE(descr->global_handle);
841 		trans->tag = READ_ONCE(descr->tag);
842 
843 		count = READ_ONCE(descr->mem_access_count);
844 		size = READ_ONCE(descr->mem_access_size);
845 		offs = READ_ONCE(descr->mem_access_offs);
846 	} else {
847 		struct ffa_mem_transaction_1_0 *descr = NULL;
848 
849 		if (blen < sizeof(*descr))
850 			return FFA_INVALID_PARAMETERS;
851 
852 		descr = buf;
853 		trans->sender_id = READ_ONCE(descr->sender_id);
854 		mem_reg_attr = READ_ONCE(descr->mem_reg_attr);
855 		flags = READ_ONCE(descr->flags);
856 		trans->global_handle = READ_ONCE(descr->global_handle);
857 		trans->tag = READ_ONCE(descr->tag);
858 
859 		count = READ_ONCE(descr->mem_access_count);
860 		size = sizeof(struct ffa_mem_access);
861 		offs = offsetof(struct ffa_mem_transaction_1_0,
862 				mem_access_array);
863 	}
864 
865 	if (mem_reg_attr > UINT8_MAX || flags > UINT8_MAX ||
866 	    size > UINT8_MAX || count > UINT8_MAX || offs > UINT16_MAX)
867 		return FFA_INVALID_PARAMETERS;
868 
869 	/* Check that the endpoint memory access descriptor array fits */
870 	if (MUL_OVERFLOW(size, count, &n) || ADD_OVERFLOW(offs, n, &n) ||
871 	    n > blen)
872 		return FFA_INVALID_PARAMETERS;
873 
874 	trans->mem_reg_attr = mem_reg_attr;
875 	trans->flags = flags;
876 	trans->mem_access_size = size;
877 	trans->mem_access_count = count;
878 	trans->mem_access_offs = offs;
879 	return 0;
880 }
881 
882 #if defined(CFG_CORE_SEL1_SPMC)
883 static int get_acc_perms(vaddr_t mem_acc_base, unsigned int mem_access_size,
884 			 unsigned int mem_access_count, uint8_t *acc_perms,
885 			 unsigned int *region_offs)
886 {
887 	struct ffa_mem_access_perm *descr = NULL;
888 	struct ffa_mem_access *mem_acc = NULL;
889 	unsigned int n = 0;
890 
891 	for (n = 0; n < mem_access_count; n++) {
892 		mem_acc = (void *)(mem_acc_base + mem_access_size * n);
893 		descr = &mem_acc->access_perm;
894 		if (READ_ONCE(descr->endpoint_id) == my_endpoint_id) {
895 			*acc_perms = READ_ONCE(descr->perm);
896 			*region_offs = READ_ONCE(mem_acc[n].region_offs);
897 			return 0;
898 		}
899 	}
900 
901 	return FFA_INVALID_PARAMETERS;
902 }
903 
904 static int mem_share_init(struct ffa_mem_transaction_x *mem_trans, void *buf,
905 			  size_t blen, unsigned int *page_count,
906 			  unsigned int *region_count, size_t *addr_range_offs)
907 {
908 	const uint16_t exp_mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
909 	const uint8_t exp_mem_acc_perm = FFA_MEM_ACC_RW;
910 	struct ffa_mem_region *region_descr = NULL;
911 	unsigned int region_descr_offs = 0;
912 	uint8_t mem_acc_perm = 0;
913 	size_t n = 0;
914 
915 	if (mem_trans->mem_reg_attr != exp_mem_reg_attr)
916 		return FFA_INVALID_PARAMETERS;
917 
918 	/* Check that the access permissions matches what's expected */
919 	if (get_acc_perms((vaddr_t)buf + mem_trans->mem_access_offs,
920 			  mem_trans->mem_access_size,
921 			  mem_trans->mem_access_count,
922 			  &mem_acc_perm, &region_descr_offs) ||
923 	    mem_acc_perm != exp_mem_acc_perm)
924 		return FFA_INVALID_PARAMETERS;
925 
926 	/* Check that the Composite memory region descriptor fits */
927 	if (ADD_OVERFLOW(region_descr_offs, sizeof(*region_descr), &n) ||
928 	    n > blen)
929 		return FFA_INVALID_PARAMETERS;
930 
931 	if (!IS_ALIGNED_WITH_TYPE((vaddr_t)buf + region_descr_offs,
932 				  struct ffa_mem_region))
933 		return FFA_INVALID_PARAMETERS;
934 
935 	region_descr = (struct ffa_mem_region *)((vaddr_t)buf +
936 						 region_descr_offs);
937 	*page_count = READ_ONCE(region_descr->total_page_count);
938 	*region_count = READ_ONCE(region_descr->address_range_count);
939 	*addr_range_offs = n;
940 	return 0;
941 }
942 
943 static int add_mem_share_helper(struct mem_share_state *s, void *buf,
944 				size_t flen)
945 {
946 	unsigned int region_count = flen / sizeof(struct ffa_address_range);
947 	struct ffa_address_range *arange = NULL;
948 	unsigned int n = 0;
949 
950 	if (region_count > s->region_count)
951 		region_count = s->region_count;
952 
953 	if (!IS_ALIGNED_WITH_TYPE(buf, struct ffa_address_range))
954 		return FFA_INVALID_PARAMETERS;
955 	arange = buf;
956 
957 	for (n = 0; n < region_count; n++) {
958 		unsigned int page_count = READ_ONCE(arange[n].page_count);
959 		uint64_t addr = READ_ONCE(arange[n].address);
960 
961 		if (mobj_ffa_add_pages_at(s->mf, &s->current_page_idx,
962 					  addr, page_count))
963 			return FFA_INVALID_PARAMETERS;
964 	}
965 
966 	s->region_count -= region_count;
967 	if (s->region_count)
968 		return region_count * sizeof(*arange);
969 
970 	if (s->current_page_idx != s->page_count)
971 		return FFA_INVALID_PARAMETERS;
972 
973 	return 0;
974 }
975 
976 static int add_mem_share_frag(struct mem_frag_state *s, void *buf, size_t flen)
977 {
978 	int rc = 0;
979 
980 	rc = add_mem_share_helper(&s->share, buf, flen);
981 	if (rc >= 0) {
982 		if (!ADD_OVERFLOW(s->frag_offset, rc, &s->frag_offset)) {
983 			/* We're not at the end of the descriptor yet */
984 			if (s->share.region_count)
985 				return s->frag_offset;
986 
987 			/* We're done */
988 			rc = 0;
989 		} else {
990 			rc = FFA_INVALID_PARAMETERS;
991 		}
992 	}
993 
994 	SLIST_REMOVE(&frag_state_head, s, mem_frag_state, link);
995 	if (rc < 0)
996 		mobj_ffa_sel1_spmc_delete(s->share.mf);
997 	else
998 		mobj_ffa_push_to_inactive(s->share.mf);
999 	free(s);
1000 
1001 	return rc;
1002 }
1003 
1004 static bool is_sp_share(struct ffa_mem_transaction_x *mem_trans,
1005 			void *buf)
1006 {
1007 	struct ffa_mem_access_perm *perm = NULL;
1008 	struct ffa_mem_access *mem_acc = NULL;
1009 
1010 	if (!IS_ENABLED(CFG_SECURE_PARTITION))
1011 		return false;
1012 
1013 	if (mem_trans->mem_access_count < 1)
1014 		return false;
1015 
1016 	mem_acc = (void *)((vaddr_t)buf + mem_trans->mem_access_offs);
1017 	perm = &mem_acc->access_perm;
1018 
1019 	/*
1020 	 * perm->endpoint_id is read here only to check if the endpoint is
1021 	 * OP-TEE. We do read it later on again, but there are some additional
1022 	 * checks there to make sure that the data is correct.
1023 	 */
1024 	return READ_ONCE(perm->endpoint_id) != my_endpoint_id;
1025 }
1026 
1027 static int add_mem_share(struct ffa_mem_transaction_x *mem_trans,
1028 			 tee_mm_entry_t *mm, void *buf, size_t blen,
1029 			 size_t flen, uint64_t *global_handle)
1030 {
1031 	int rc = 0;
1032 	struct mem_share_state share = { };
1033 	size_t addr_range_offs = 0;
1034 	uint64_t cookie = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID;
1035 	size_t n = 0;
1036 
1037 	rc = mem_share_init(mem_trans, buf, flen, &share.page_count,
1038 			    &share.region_count, &addr_range_offs);
1039 	if (rc)
1040 		return rc;
1041 
1042 	if (MUL_OVERFLOW(share.region_count,
1043 			 sizeof(struct ffa_address_range), &n) ||
1044 	    ADD_OVERFLOW(n, addr_range_offs, &n) || n > blen)
1045 		return FFA_INVALID_PARAMETERS;
1046 
1047 	if (mem_trans->global_handle)
1048 		cookie = mem_trans->global_handle;
1049 	share.mf = mobj_ffa_sel1_spmc_new(cookie, share.page_count);
1050 	if (!share.mf)
1051 		return FFA_NO_MEMORY;
1052 
1053 	if (flen != blen) {
1054 		struct mem_frag_state *s = calloc(sizeof(*s), 1);
1055 
1056 		if (!s) {
1057 			rc = FFA_NO_MEMORY;
1058 			goto err;
1059 		}
1060 		s->share = share;
1061 		s->mm = mm;
1062 		s->frag_offset = addr_range_offs;
1063 
1064 		SLIST_INSERT_HEAD(&frag_state_head, s, link);
1065 		rc = add_mem_share_frag(s, (char *)buf + addr_range_offs,
1066 					flen - addr_range_offs);
1067 
1068 		if (rc >= 0)
1069 			*global_handle = mobj_ffa_get_cookie(share.mf);
1070 
1071 		return rc;
1072 	}
1073 
1074 	rc = add_mem_share_helper(&share, (char *)buf + addr_range_offs,
1075 				  flen - addr_range_offs);
1076 	if (rc) {
1077 		/*
1078 		 * Number of consumed bytes may be returned instead of 0 for
1079 		 * done.
1080 		 */
1081 		rc = FFA_INVALID_PARAMETERS;
1082 		goto err;
1083 	}
1084 
1085 	*global_handle = mobj_ffa_push_to_inactive(share.mf);
1086 
1087 	return 0;
1088 err:
1089 	mobj_ffa_sel1_spmc_delete(share.mf);
1090 	return rc;
1091 }
1092 
1093 static int handle_mem_share_tmem(paddr_t pbuf, size_t blen, size_t flen,
1094 				 unsigned int page_count,
1095 				 uint64_t *global_handle, struct ffa_rxtx *rxtx)
1096 {
1097 	struct ffa_mem_transaction_x mem_trans = { };
1098 	int rc = 0;
1099 	size_t len = 0;
1100 	void *buf = NULL;
1101 	tee_mm_entry_t *mm = NULL;
1102 	vaddr_t offs = pbuf & SMALL_PAGE_MASK;
1103 
1104 	if (MUL_OVERFLOW(page_count, SMALL_PAGE_SIZE, &len))
1105 		return FFA_INVALID_PARAMETERS;
1106 	if (!core_pbuf_is(CORE_MEM_NON_SEC, pbuf, len))
1107 		return FFA_INVALID_PARAMETERS;
1108 
1109 	/*
1110 	 * Check that the length reported in flen is covered by len even
1111 	 * if the offset is taken into account.
1112 	 */
1113 	if (len < flen || len - offs < flen)
1114 		return FFA_INVALID_PARAMETERS;
1115 
1116 	mm = tee_mm_alloc(&tee_mm_shm, len);
1117 	if (!mm)
1118 		return FFA_NO_MEMORY;
1119 
1120 	if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pbuf,
1121 					  page_count, MEM_AREA_NSEC_SHM)) {
1122 		rc = FFA_INVALID_PARAMETERS;
1123 		goto out;
1124 	}
1125 	buf = (void *)(tee_mm_get_smem(mm) + offs);
1126 
1127 	cpu_spin_lock(&rxtx->spinlock);
1128 	rc = spmc_read_mem_transaction(rxtx->ffa_vers, buf, flen, &mem_trans);
1129 	if (!rc && IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
1130 	    virt_set_guest(mem_trans.sender_id))
1131 		rc = FFA_DENIED;
1132 	if (!rc)
1133 		rc = add_mem_share(&mem_trans, mm, buf, blen, flen,
1134 				   global_handle);
1135 	virt_unset_guest();
1136 	cpu_spin_unlock(&rxtx->spinlock);
1137 	if (rc > 0)
1138 		return rc;
1139 
1140 	core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count);
1141 out:
1142 	tee_mm_free(mm);
1143 	return rc;
1144 }
1145 
1146 static int handle_mem_share_rxbuf(size_t blen, size_t flen,
1147 				  uint64_t *global_handle,
1148 				  struct ffa_rxtx *rxtx)
1149 {
1150 	struct ffa_mem_transaction_x mem_trans = { };
1151 	int rc = FFA_DENIED;
1152 
1153 	cpu_spin_lock(&rxtx->spinlock);
1154 
1155 	if (!rxtx->rx || flen > rxtx->size)
1156 		goto out;
1157 
1158 	rc = spmc_read_mem_transaction(rxtx->ffa_vers, rxtx->rx, flen,
1159 				       &mem_trans);
1160 	if (rc)
1161 		goto out;
1162 	if (is_sp_share(&mem_trans, rxtx->rx)) {
1163 		rc = spmc_sp_add_share(&mem_trans, rxtx, blen,
1164 				       global_handle, NULL);
1165 		goto out;
1166 	}
1167 
1168 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
1169 	    virt_set_guest(mem_trans.sender_id))
1170 		goto out;
1171 
1172 	rc = add_mem_share(&mem_trans, NULL, rxtx->rx, blen, flen,
1173 			   global_handle);
1174 
1175 	virt_unset_guest();
1176 
1177 out:
1178 	cpu_spin_unlock(&rxtx->spinlock);
1179 
1180 	return rc;
1181 }
1182 
1183 static void handle_mem_share(struct thread_smc_args *args,
1184 			     struct ffa_rxtx *rxtx)
1185 {
1186 	uint32_t tot_len = args->a1;
1187 	uint32_t frag_len = args->a2;
1188 	uint64_t addr = args->a3;
1189 	uint32_t page_count = args->a4;
1190 	uint32_t ret_w1 = 0;
1191 	uint32_t ret_w2 = FFA_INVALID_PARAMETERS;
1192 	uint32_t ret_w3 = 0;
1193 	uint32_t ret_fid = FFA_ERROR;
1194 	uint64_t global_handle = 0;
1195 	int rc = 0;
1196 
1197 	/* Check that the MBZs are indeed 0 */
1198 	if (args->a5 || args->a6 || args->a7)
1199 		goto out;
1200 
1201 	/* Check that fragment length doesn't exceed total length */
1202 	if (frag_len > tot_len)
1203 		goto out;
1204 
1205 	/* Check for 32-bit calling convention */
1206 	if (args->a0 == FFA_MEM_SHARE_32)
1207 		addr &= UINT32_MAX;
1208 
1209 	if (!addr) {
1210 		/*
1211 		 * The memory transaction descriptor is passed via our rx
1212 		 * buffer.
1213 		 */
1214 		if (page_count)
1215 			goto out;
1216 		rc = handle_mem_share_rxbuf(tot_len, frag_len, &global_handle,
1217 					    rxtx);
1218 	} else {
1219 		rc = handle_mem_share_tmem(addr, tot_len, frag_len, page_count,
1220 					   &global_handle, rxtx);
1221 	}
1222 	if (rc < 0) {
1223 		ret_w2 = rc;
1224 	} else if (rc > 0) {
1225 		ret_fid = FFA_MEM_FRAG_RX;
1226 		ret_w3 = rc;
1227 		reg_pair_from_64(global_handle, &ret_w2, &ret_w1);
1228 	} else {
1229 		ret_fid = FFA_SUCCESS_32;
1230 		reg_pair_from_64(global_handle, &ret_w3, &ret_w2);
1231 	}
1232 out:
1233 	spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0);
1234 }
1235 
1236 static struct mem_frag_state *get_frag_state(uint64_t global_handle)
1237 {
1238 	struct mem_frag_state *s = NULL;
1239 
1240 	SLIST_FOREACH(s, &frag_state_head, link)
1241 		if (mobj_ffa_get_cookie(s->share.mf) == global_handle)
1242 			return s;
1243 
1244 	return NULL;
1245 }
1246 
1247 static void handle_mem_frag_tx(struct thread_smc_args *args,
1248 			       struct ffa_rxtx *rxtx)
1249 {
1250 	uint64_t global_handle = reg_pair_to_64(args->a2, args->a1);
1251 	size_t flen = args->a3;
1252 	uint32_t endpoint_id = args->a4;
1253 	struct mem_frag_state *s = NULL;
1254 	tee_mm_entry_t *mm = NULL;
1255 	unsigned int page_count = 0;
1256 	void *buf = NULL;
1257 	uint32_t ret_w1 = 0;
1258 	uint32_t ret_w2 = 0;
1259 	uint32_t ret_w3 = 0;
1260 	uint32_t ret_fid = 0;
1261 	int rc = 0;
1262 
1263 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1264 		uint16_t guest_id = endpoint_id >> 16;
1265 
1266 		if (!guest_id || virt_set_guest(guest_id)) {
1267 			rc = FFA_INVALID_PARAMETERS;
1268 			goto out_set_rc;
1269 		}
1270 	}
1271 
1272 	/*
1273 	 * Currently we're only doing this for fragmented FFA_MEM_SHARE_*
1274 	 * requests.
1275 	 */
1276 
1277 	cpu_spin_lock(&rxtx->spinlock);
1278 
1279 	s = get_frag_state(global_handle);
1280 	if (!s) {
1281 		rc = FFA_INVALID_PARAMETERS;
1282 		goto out;
1283 	}
1284 
1285 	mm = s->mm;
1286 	if (mm) {
1287 		if (flen > tee_mm_get_bytes(mm)) {
1288 			rc = FFA_INVALID_PARAMETERS;
1289 			goto out;
1290 		}
1291 		page_count = s->share.page_count;
1292 		buf = (void *)tee_mm_get_smem(mm);
1293 	} else {
1294 		if (flen > rxtx->size) {
1295 			rc = FFA_INVALID_PARAMETERS;
1296 			goto out;
1297 		}
1298 		buf = rxtx->rx;
1299 	}
1300 
1301 	rc = add_mem_share_frag(s, buf, flen);
1302 out:
1303 	virt_unset_guest();
1304 	cpu_spin_unlock(&rxtx->spinlock);
1305 
1306 	if (rc <= 0 && mm) {
1307 		core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count);
1308 		tee_mm_free(mm);
1309 	}
1310 
1311 out_set_rc:
1312 	if (rc < 0) {
1313 		ret_fid = FFA_ERROR;
1314 		ret_w2 = rc;
1315 	} else if (rc > 0) {
1316 		ret_fid = FFA_MEM_FRAG_RX;
1317 		ret_w3 = rc;
1318 		reg_pair_from_64(global_handle, &ret_w2, &ret_w1);
1319 	} else {
1320 		ret_fid = FFA_SUCCESS_32;
1321 		reg_pair_from_64(global_handle, &ret_w3, &ret_w2);
1322 	}
1323 
1324 	spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0);
1325 }
1326 
1327 static void handle_mem_reclaim(struct thread_smc_args *args)
1328 {
1329 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1330 	uint32_t ret_fid = FFA_ERROR;
1331 	uint64_t cookie = 0;
1332 
1333 	if (args->a3 || args->a4 || args->a5 || args->a6 || args->a7)
1334 		goto out;
1335 
1336 	cookie = reg_pair_to_64(args->a2, args->a1);
1337 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1338 		uint16_t guest_id = 0;
1339 
1340 		if (cookie & FFA_MEMORY_HANDLE_HYPERVISOR_BIT) {
1341 			guest_id = virt_find_guest_by_cookie(cookie);
1342 		} else {
1343 			guest_id = (cookie >> FFA_MEMORY_HANDLE_PRTN_SHIFT) &
1344 				   FFA_MEMORY_HANDLE_PRTN_MASK;
1345 		}
1346 		if (!guest_id || virt_set_guest(guest_id))
1347 			goto out;
1348 	}
1349 
1350 	switch (mobj_ffa_sel1_spmc_reclaim(cookie)) {
1351 	case TEE_SUCCESS:
1352 		ret_fid = FFA_SUCCESS_32;
1353 		ret_val = 0;
1354 		break;
1355 	case TEE_ERROR_ITEM_NOT_FOUND:
1356 		DMSG("cookie %#"PRIx64" not found", cookie);
1357 		ret_val = FFA_INVALID_PARAMETERS;
1358 		break;
1359 	default:
1360 		DMSG("cookie %#"PRIx64" busy", cookie);
1361 		ret_val = FFA_DENIED;
1362 		break;
1363 	}
1364 
1365 	virt_unset_guest();
1366 
1367 out:
1368 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1369 }
1370 
1371 static void handle_notification_bitmap_create(struct thread_smc_args *args)
1372 {
1373 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1374 	uint32_t ret_fid = FFA_ERROR;
1375 	uint32_t old_itr_status = 0;
1376 
1377 	if (!FFA_TARGET_INFO_GET_SP_ID(args->a1) && !args->a3 && !args->a4 &&
1378 	    !args->a5 && !args->a6 && !args->a7) {
1379 		uint16_t vm_id = args->a1;
1380 
1381 		old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1382 
1383 		if (notif_vm_id_valid) {
1384 			if (vm_id == notif_vm_id)
1385 				ret_val = FFA_DENIED;
1386 			else
1387 				ret_val = FFA_NO_MEMORY;
1388 		} else {
1389 			notif_vm_id = vm_id;
1390 			notif_vm_id_valid = true;
1391 			ret_val = FFA_OK;
1392 			ret_fid = FFA_SUCCESS_32;
1393 		}
1394 
1395 		cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1396 	}
1397 
1398 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1399 }
1400 
1401 static void handle_notification_bitmap_destroy(struct thread_smc_args *args)
1402 {
1403 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1404 	uint32_t ret_fid = FFA_ERROR;
1405 	uint32_t old_itr_status = 0;
1406 
1407 	if (!FFA_TARGET_INFO_GET_SP_ID(args->a1) && !args->a3 && !args->a4 &&
1408 	    !args->a5 && !args->a6 && !args->a7) {
1409 		uint16_t vm_id = args->a1;
1410 
1411 		old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1412 
1413 		if (notif_vm_id_valid && vm_id == notif_vm_id) {
1414 			if (notif_pending_bitmap || notif_bound_bitmap) {
1415 				ret_val = FFA_DENIED;
1416 			} else {
1417 				notif_vm_id_valid = false;
1418 				ret_val = FFA_OK;
1419 				ret_fid = FFA_SUCCESS_32;
1420 			}
1421 		}
1422 
1423 		cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1424 	}
1425 
1426 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1427 }
1428 
1429 static void handle_notification_bind(struct thread_smc_args *args)
1430 {
1431 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1432 	uint32_t ret_fid = FFA_ERROR;
1433 	uint32_t old_itr_status = 0;
1434 	uint64_t bitmap = 0;
1435 	uint16_t vm_id = 0;
1436 
1437 	if (args->a5 || args->a6 || args->a7)
1438 		goto out;
1439 	if (args->a2) {
1440 		/* We only deal with global notifications for now */
1441 		ret_val = FFA_NOT_SUPPORTED;
1442 		goto out;
1443 	}
1444 
1445 	/* The destination of the eventual notification */
1446 	vm_id = FFA_DST(args->a1);
1447 	bitmap = reg_pair_to_64(args->a4, args->a3);
1448 
1449 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1450 
1451 	if (notif_vm_id_valid && vm_id == notif_vm_id) {
1452 		if (bitmap & notif_bound_bitmap) {
1453 			ret_val = FFA_DENIED;
1454 		} else {
1455 			notif_bound_bitmap |= bitmap;
1456 			ret_val = FFA_OK;
1457 			ret_fid = FFA_SUCCESS_32;
1458 		}
1459 	}
1460 
1461 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1462 out:
1463 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1464 }
1465 
1466 static void handle_notification_unbind(struct thread_smc_args *args)
1467 {
1468 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1469 	uint32_t ret_fid = FFA_ERROR;
1470 	uint32_t old_itr_status = 0;
1471 	uint64_t bitmap = 0;
1472 	uint16_t vm_id = 0;
1473 
1474 	if (args->a2 || args->a5 || args->a6 || args->a7)
1475 		goto out;
1476 
1477 	/* The destination of the eventual notification */
1478 	vm_id = FFA_DST(args->a1);
1479 	bitmap = reg_pair_to_64(args->a4, args->a3);
1480 
1481 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1482 
1483 	if (notif_vm_id_valid && vm_id == notif_vm_id) {
1484 		/*
1485 		 * Spec says:
1486 		 * At least one notification is bound to another Sender or
1487 		 * is currently pending.
1488 		 *
1489 		 * Not sure what the intention is.
1490 		 */
1491 		if (bitmap & notif_pending_bitmap) {
1492 			ret_val = FFA_DENIED;
1493 		} else {
1494 			notif_bound_bitmap &= ~bitmap;
1495 			ret_val = FFA_OK;
1496 			ret_fid = FFA_SUCCESS_32;
1497 		}
1498 	}
1499 
1500 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1501 out:
1502 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1503 }
1504 
1505 static void handle_notification_get(struct thread_smc_args *args)
1506 {
1507 	uint32_t w2 = FFA_INVALID_PARAMETERS;
1508 	uint32_t ret_fid = FFA_ERROR;
1509 	uint32_t old_itr_status = 0;
1510 	uint16_t vm_id = 0;
1511 	uint32_t w3 = 0;
1512 
1513 	if (args->a5 || args->a6 || args->a7)
1514 		goto out;
1515 	if (!(args->a2 & 0x1)) {
1516 		ret_fid = FFA_SUCCESS_32;
1517 		w2 = 0;
1518 		goto out;
1519 	}
1520 	vm_id = FFA_DST(args->a1);
1521 
1522 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1523 
1524 	if (notif_vm_id_valid && vm_id == notif_vm_id) {
1525 		reg_pair_from_64(notif_pending_bitmap, &w3, &w2);
1526 		notif_pending_bitmap = 0;
1527 		ret_fid = FFA_SUCCESS_32;
1528 	}
1529 
1530 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1531 out:
1532 	spmc_set_args(args, ret_fid, 0, w2, w3, 0, 0);
1533 }
1534 
1535 static void handle_notification_info_get(struct thread_smc_args *args)
1536 {
1537 	uint32_t w2 = FFA_INVALID_PARAMETERS;
1538 	uint32_t ret_fid = FFA_ERROR;
1539 
1540 	if (args->a1 || args->a2 || args->a3 || args->a4 || args->a5 ||
1541 	    args->a6 || args->a7)
1542 		goto out;
1543 
1544 	if (OPTEE_SMC_IS_64(args->a0))
1545 		ret_fid = FFA_SUCCESS_64;
1546 	else
1547 		ret_fid = FFA_SUCCESS_32;
1548 
1549 	/*
1550 	 * Note, we're only supporting physical OS kernel in normal world
1551 	 * with Global Notifications.
1552 	 * So one list of ID list registers (BIT[11:7])
1553 	 * and one count of IDs (BIT[13:12] + 1)
1554 	 * and the VM is always 0.
1555 	 */
1556 	w2 = SHIFT_U32(1, 7);
1557 out:
1558 	spmc_set_args(args, ret_fid, 0, w2, 0, 0, 0);
1559 }
1560 
1561 void thread_spmc_set_async_notif_intid(int intid)
1562 {
1563 	assert(interrupt_can_raise_sgi(interrupt_get_main_chip()));
1564 	notif_intid = intid;
1565 	spmc_notif_is_ready = true;
1566 	DMSG("Asynchronous notifications are ready");
1567 }
1568 
1569 void notif_send_async(uint32_t value)
1570 {
1571 	uint32_t old_itr_status = 0;
1572 
1573 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1574 	assert(value == NOTIF_VALUE_DO_BOTTOM_HALF && spmc_notif_is_ready &&
1575 	       do_bottom_half_value >= 0 && notif_intid >= 0);
1576 	notif_pending_bitmap |= BIT64(do_bottom_half_value);
1577 	interrupt_raise_sgi(interrupt_get_main_chip(), notif_intid,
1578 			    ITR_CPU_MASK_TO_THIS_CPU);
1579 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1580 }
1581 #else
1582 void __noreturn notif_send_async(uint32_t value __unused)
1583 {
1584 	panic();
1585 }
1586 #endif
1587 
1588 /* Only called from assembly */
1589 void thread_spmc_msg_recv(struct thread_smc_args *args);
1590 void thread_spmc_msg_recv(struct thread_smc_args *args)
1591 {
1592 	assert((thread_get_exceptions() & THREAD_EXCP_ALL) == THREAD_EXCP_ALL);
1593 	switch (args->a0) {
1594 #if defined(CFG_CORE_SEL1_SPMC)
1595 	case FFA_FEATURES:
1596 		handle_features(args);
1597 		break;
1598 	case FFA_SPM_ID_GET:
1599 		handle_spm_id_get(args);
1600 		break;
1601 #ifdef ARM64
1602 	case FFA_RXTX_MAP_64:
1603 #endif
1604 	case FFA_RXTX_MAP_32:
1605 		spmc_handle_rxtx_map(args, &my_rxtx);
1606 		break;
1607 	case FFA_RXTX_UNMAP:
1608 		spmc_handle_rxtx_unmap(args, &my_rxtx);
1609 		break;
1610 	case FFA_RX_RELEASE:
1611 		spmc_handle_rx_release(args, &my_rxtx);
1612 		break;
1613 	case FFA_PARTITION_INFO_GET:
1614 		spmc_handle_partition_info_get(args, &my_rxtx);
1615 		break;
1616 	case FFA_RUN:
1617 		spmc_handle_run(args);
1618 		break;
1619 #endif /*CFG_CORE_SEL1_SPMC*/
1620 	case FFA_INTERRUPT:
1621 		interrupt_main_handler();
1622 		if (IS_ENABLED(CFG_CORE_SEL1_SPMC))
1623 			spmc_set_args(args, FFA_NORMAL_WORLD_RESUME, 0, 0, 0,
1624 				      0, 0);
1625 		else
1626 			spmc_set_args(args, FFA_MSG_WAIT, 0, 0, 0, 0, 0);
1627 		break;
1628 #ifdef ARM64
1629 	case FFA_MSG_SEND_DIRECT_REQ_64:
1630 #endif
1631 	case FFA_MSG_SEND_DIRECT_REQ_32:
1632 		handle_direct_request(args, &my_rxtx);
1633 		break;
1634 #if defined(CFG_CORE_SEL1_SPMC)
1635 #ifdef ARM64
1636 	case FFA_MEM_SHARE_64:
1637 #endif
1638 	case FFA_MEM_SHARE_32:
1639 		handle_mem_share(args, &my_rxtx);
1640 		break;
1641 	case FFA_MEM_RECLAIM:
1642 		if (!IS_ENABLED(CFG_SECURE_PARTITION) ||
1643 		    !ffa_mem_reclaim(args, NULL))
1644 			handle_mem_reclaim(args);
1645 		break;
1646 	case FFA_MEM_FRAG_TX:
1647 		handle_mem_frag_tx(args, &my_rxtx);
1648 		break;
1649 	case FFA_NOTIFICATION_BITMAP_CREATE:
1650 		handle_notification_bitmap_create(args);
1651 		break;
1652 	case FFA_NOTIFICATION_BITMAP_DESTROY:
1653 		handle_notification_bitmap_destroy(args);
1654 		break;
1655 	case FFA_NOTIFICATION_BIND:
1656 		handle_notification_bind(args);
1657 		break;
1658 	case FFA_NOTIFICATION_UNBIND:
1659 		handle_notification_unbind(args);
1660 		break;
1661 	case FFA_NOTIFICATION_GET:
1662 		handle_notification_get(args);
1663 		break;
1664 #ifdef ARM64
1665 	case FFA_NOTIFICATION_INFO_GET_64:
1666 #endif
1667 	case FFA_NOTIFICATION_INFO_GET_32:
1668 		handle_notification_info_get(args);
1669 		break;
1670 #endif /*CFG_CORE_SEL1_SPMC*/
1671 	case FFA_ERROR:
1672 		EMSG("Cannot handle FFA_ERROR(%d)", (int)args->a2);
1673 		if (!IS_ENABLED(CFG_CORE_SEL1_SPMC)) {
1674 			/*
1675 			 * The SPMC will return an FFA_ERROR back so better
1676 			 * panic() now than flooding the log.
1677 			 */
1678 			panic("FFA_ERROR from SPMC is fatal");
1679 		}
1680 		spmc_set_args(args, FFA_ERROR, FFA_PARAM_MBZ, FFA_NOT_SUPPORTED,
1681 			      FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
1682 		break;
1683 	default:
1684 		EMSG("Unhandled FFA function ID %#"PRIx32, (uint32_t)args->a0);
1685 		spmc_set_args(args, FFA_ERROR, FFA_PARAM_MBZ, FFA_NOT_SUPPORTED,
1686 			      FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
1687 	}
1688 }
1689 
1690 static TEE_Result yielding_call_with_arg(uint64_t cookie, uint32_t offset)
1691 {
1692 	size_t sz_rpc = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS);
1693 	struct thread_ctx *thr = threads + thread_get_id();
1694 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1695 	struct optee_msg_arg *arg = NULL;
1696 	struct mobj *mobj = NULL;
1697 	uint32_t num_params = 0;
1698 	size_t sz = 0;
1699 
1700 	mobj = mobj_ffa_get_by_cookie(cookie, 0);
1701 	if (!mobj) {
1702 		EMSG("Can't find cookie %#"PRIx64, cookie);
1703 		return TEE_ERROR_BAD_PARAMETERS;
1704 	}
1705 
1706 	res = mobj_inc_map(mobj);
1707 	if (res)
1708 		goto out_put_mobj;
1709 
1710 	res = TEE_ERROR_BAD_PARAMETERS;
1711 	arg = mobj_get_va(mobj, offset, sizeof(*arg));
1712 	if (!arg)
1713 		goto out_dec_map;
1714 
1715 	num_params = READ_ONCE(arg->num_params);
1716 	if (num_params > OPTEE_MSG_MAX_NUM_PARAMS)
1717 		goto out_dec_map;
1718 
1719 	sz = OPTEE_MSG_GET_ARG_SIZE(num_params);
1720 
1721 	thr->rpc_arg = mobj_get_va(mobj, offset + sz, sz_rpc);
1722 	if (!thr->rpc_arg)
1723 		goto out_dec_map;
1724 
1725 	virt_on_stdcall();
1726 	res = tee_entry_std(arg, num_params);
1727 
1728 	thread_rpc_shm_cache_clear(&thr->shm_cache);
1729 	thr->rpc_arg = NULL;
1730 
1731 out_dec_map:
1732 	mobj_dec_map(mobj);
1733 out_put_mobj:
1734 	mobj_put(mobj);
1735 	return res;
1736 }
1737 
1738 /*
1739  * Helper routine for the assembly function thread_std_smc_entry()
1740  *
1741  * Note: this function is weak just to make link_dummies_paged.c happy.
1742  */
1743 uint32_t __weak __thread_std_smc_entry(uint32_t a0, uint32_t a1,
1744 				       uint32_t a2, uint32_t a3,
1745 				       uint32_t a4, uint32_t a5 __unused)
1746 {
1747 	/*
1748 	 * Arguments are supplied from handle_yielding_call() as:
1749 	 * a0 <- w1
1750 	 * a1 <- w3
1751 	 * a2 <- w4
1752 	 * a3 <- w5
1753 	 * a4 <- w6
1754 	 * a5 <- w7
1755 	 */
1756 	thread_get_tsd()->rpc_target_info = swap_src_dst(a0);
1757 	if (a1 == OPTEE_FFA_YIELDING_CALL_WITH_ARG)
1758 		return yielding_call_with_arg(reg_pair_to_64(a3, a2), a4);
1759 	return FFA_DENIED;
1760 }
1761 
1762 static bool set_fmem(struct optee_msg_param *param, struct thread_param *tpm)
1763 {
1764 	uint64_t offs = tpm->u.memref.offs;
1765 
1766 	param->attr = tpm->attr - THREAD_PARAM_ATTR_MEMREF_IN +
1767 		      OPTEE_MSG_ATTR_TYPE_FMEM_INPUT;
1768 
1769 	param->u.fmem.offs_low = offs;
1770 	param->u.fmem.offs_high = offs >> 32;
1771 	if (param->u.fmem.offs_high != offs >> 32)
1772 		return false;
1773 
1774 	param->u.fmem.size = tpm->u.memref.size;
1775 	if (tpm->u.memref.mobj) {
1776 		uint64_t cookie = mobj_get_cookie(tpm->u.memref.mobj);
1777 
1778 		/* If a mobj is passed it better be one with a valid cookie. */
1779 		if (cookie == OPTEE_MSG_FMEM_INVALID_GLOBAL_ID)
1780 			return false;
1781 		param->u.fmem.global_id = cookie;
1782 	} else {
1783 		param->u.fmem.global_id = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID;
1784 	}
1785 
1786 	return true;
1787 }
1788 
1789 static uint32_t get_rpc_arg(uint32_t cmd, size_t num_params,
1790 			    struct thread_param *params,
1791 			    struct optee_msg_arg **arg_ret)
1792 {
1793 	size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS);
1794 	struct thread_ctx *thr = threads + thread_get_id();
1795 	struct optee_msg_arg *arg = thr->rpc_arg;
1796 
1797 	if (num_params > THREAD_RPC_MAX_NUM_PARAMS)
1798 		return TEE_ERROR_BAD_PARAMETERS;
1799 
1800 	if (!arg) {
1801 		EMSG("rpc_arg not set");
1802 		return TEE_ERROR_GENERIC;
1803 	}
1804 
1805 	memset(arg, 0, sz);
1806 	arg->cmd = cmd;
1807 	arg->num_params = num_params;
1808 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1809 
1810 	for (size_t n = 0; n < num_params; n++) {
1811 		switch (params[n].attr) {
1812 		case THREAD_PARAM_ATTR_NONE:
1813 			arg->params[n].attr = OPTEE_MSG_ATTR_TYPE_NONE;
1814 			break;
1815 		case THREAD_PARAM_ATTR_VALUE_IN:
1816 		case THREAD_PARAM_ATTR_VALUE_OUT:
1817 		case THREAD_PARAM_ATTR_VALUE_INOUT:
1818 			arg->params[n].attr = params[n].attr -
1819 					      THREAD_PARAM_ATTR_VALUE_IN +
1820 					      OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
1821 			arg->params[n].u.value.a = params[n].u.value.a;
1822 			arg->params[n].u.value.b = params[n].u.value.b;
1823 			arg->params[n].u.value.c = params[n].u.value.c;
1824 			break;
1825 		case THREAD_PARAM_ATTR_MEMREF_IN:
1826 		case THREAD_PARAM_ATTR_MEMREF_OUT:
1827 		case THREAD_PARAM_ATTR_MEMREF_INOUT:
1828 			if (!set_fmem(arg->params + n, params + n))
1829 				return TEE_ERROR_BAD_PARAMETERS;
1830 			break;
1831 		default:
1832 			return TEE_ERROR_BAD_PARAMETERS;
1833 		}
1834 	}
1835 
1836 	if (arg_ret)
1837 		*arg_ret = arg;
1838 
1839 	return TEE_SUCCESS;
1840 }
1841 
1842 static uint32_t get_rpc_arg_res(struct optee_msg_arg *arg, size_t num_params,
1843 				struct thread_param *params)
1844 {
1845 	for (size_t n = 0; n < num_params; n++) {
1846 		switch (params[n].attr) {
1847 		case THREAD_PARAM_ATTR_VALUE_OUT:
1848 		case THREAD_PARAM_ATTR_VALUE_INOUT:
1849 			params[n].u.value.a = arg->params[n].u.value.a;
1850 			params[n].u.value.b = arg->params[n].u.value.b;
1851 			params[n].u.value.c = arg->params[n].u.value.c;
1852 			break;
1853 		case THREAD_PARAM_ATTR_MEMREF_OUT:
1854 		case THREAD_PARAM_ATTR_MEMREF_INOUT:
1855 			params[n].u.memref.size = arg->params[n].u.fmem.size;
1856 			break;
1857 		default:
1858 			break;
1859 		}
1860 	}
1861 
1862 	return arg->ret;
1863 }
1864 
1865 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params,
1866 			struct thread_param *params)
1867 {
1868 	struct thread_rpc_arg rpc_arg = { .call = {
1869 			.w1 = thread_get_tsd()->rpc_target_info,
1870 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
1871 		},
1872 	};
1873 	struct optee_msg_arg *arg = NULL;
1874 	uint32_t ret = 0;
1875 
1876 	ret = get_rpc_arg(cmd, num_params, params, &arg);
1877 	if (ret)
1878 		return ret;
1879 
1880 	thread_rpc(&rpc_arg);
1881 
1882 	return get_rpc_arg_res(arg, num_params, params);
1883 }
1884 
1885 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj)
1886 {
1887 	struct thread_rpc_arg rpc_arg = { .call = {
1888 			.w1 = thread_get_tsd()->rpc_target_info,
1889 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
1890 		},
1891 	};
1892 	struct thread_param param = THREAD_PARAM_VALUE(IN, bt, cookie, 0);
1893 	uint32_t res2 = 0;
1894 	uint32_t res = 0;
1895 
1896 	DMSG("freeing cookie %#"PRIx64, cookie);
1897 
1898 	res = get_rpc_arg(OPTEE_RPC_CMD_SHM_FREE, 1, &param, NULL);
1899 
1900 	mobj_put(mobj);
1901 	res2 = mobj_ffa_unregister_by_cookie(cookie);
1902 	if (res2)
1903 		DMSG("mobj_ffa_unregister_by_cookie(%#"PRIx64"): %#"PRIx32,
1904 		     cookie, res2);
1905 	if (!res)
1906 		thread_rpc(&rpc_arg);
1907 }
1908 
1909 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt)
1910 {
1911 	struct thread_rpc_arg rpc_arg = { .call = {
1912 			.w1 = thread_get_tsd()->rpc_target_info,
1913 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
1914 		},
1915 	};
1916 	struct thread_param param = THREAD_PARAM_VALUE(IN, bt, size, align);
1917 	struct optee_msg_arg *arg = NULL;
1918 	unsigned int internal_offset = 0;
1919 	struct mobj *mobj = NULL;
1920 	uint64_t cookie = 0;
1921 
1922 	if (get_rpc_arg(OPTEE_RPC_CMD_SHM_ALLOC, 1, &param, &arg))
1923 		return NULL;
1924 
1925 	thread_rpc(&rpc_arg);
1926 
1927 	if (arg->num_params != 1 ||
1928 	    arg->params->attr != OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT)
1929 		return NULL;
1930 
1931 	internal_offset = READ_ONCE(arg->params->u.fmem.internal_offs);
1932 	cookie = READ_ONCE(arg->params->u.fmem.global_id);
1933 	mobj = mobj_ffa_get_by_cookie(cookie, internal_offset);
1934 	if (!mobj) {
1935 		DMSG("mobj_ffa_get_by_cookie(%#"PRIx64", %#x): failed",
1936 		     cookie, internal_offset);
1937 		return NULL;
1938 	}
1939 
1940 	assert(mobj_is_nonsec(mobj));
1941 
1942 	if (mobj->size < size) {
1943 		DMSG("Mobj %#"PRIx64": wrong size", cookie);
1944 		mobj_put(mobj);
1945 		return NULL;
1946 	}
1947 
1948 	if (mobj_inc_map(mobj)) {
1949 		DMSG("mobj_inc_map(%#"PRIx64"): failed", cookie);
1950 		mobj_put(mobj);
1951 		return NULL;
1952 	}
1953 
1954 	return mobj;
1955 }
1956 
1957 struct mobj *thread_rpc_alloc_payload(size_t size)
1958 {
1959 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_APPL);
1960 }
1961 
1962 struct mobj *thread_rpc_alloc_kernel_payload(size_t size)
1963 {
1964 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_KERNEL);
1965 }
1966 
1967 void thread_rpc_free_kernel_payload(struct mobj *mobj)
1968 {
1969 	if (mobj)
1970 		thread_rpc_free(OPTEE_RPC_SHM_TYPE_KERNEL,
1971 				mobj_get_cookie(mobj), mobj);
1972 }
1973 
1974 void thread_rpc_free_payload(struct mobj *mobj)
1975 {
1976 	if (mobj)
1977 		thread_rpc_free(OPTEE_RPC_SHM_TYPE_APPL, mobj_get_cookie(mobj),
1978 				mobj);
1979 }
1980 
1981 struct mobj *thread_rpc_alloc_global_payload(size_t size)
1982 {
1983 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_GLOBAL);
1984 }
1985 
1986 void thread_rpc_free_global_payload(struct mobj *mobj)
1987 {
1988 	if (mobj)
1989 		thread_rpc_free(OPTEE_RPC_SHM_TYPE_GLOBAL,
1990 				mobj_get_cookie(mobj), mobj);
1991 }
1992 
1993 void thread_spmc_register_secondary_ep(vaddr_t ep)
1994 {
1995 	unsigned long ret = 0;
1996 
1997 	/* Let the SPM know the entry point for secondary CPUs */
1998 	ret = thread_smc(FFA_SECONDARY_EP_REGISTER_64, ep, 0, 0);
1999 
2000 	if (ret != FFA_SUCCESS_32 && ret != FFA_SUCCESS_64)
2001 		EMSG("FFA_SECONDARY_EP_REGISTER_64 ret %#lx", ret);
2002 }
2003 
2004 #if defined(CFG_CORE_SEL1_SPMC)
2005 static TEE_Result spmc_init(void)
2006 {
2007 	my_endpoint_id = SPMC_ENDPOINT_ID;
2008 	DMSG("My endpoint ID %#x", my_endpoint_id);
2009 
2010 	/*
2011 	 * If SPMD think we are version 1.0 it will report version 1.0 to
2012 	 * normal world regardless of what version we query the SPM with.
2013 	 * However, if SPMD think we are version 1.1 it will forward
2014 	 * queries from normal world to let us negotiate version. So by
2015 	 * setting version 1.0 here we should be compatible.
2016 	 *
2017 	 * Note that disagreement on negotiated version means that we'll
2018 	 * have communication problems with normal world.
2019 	 */
2020 	my_rxtx.ffa_vers = FFA_VERSION_1_0;
2021 
2022 	return TEE_SUCCESS;
2023 }
2024 #else /* !defined(CFG_CORE_SEL1_SPMC) */
2025 static bool is_ffa_success(uint32_t fid)
2026 {
2027 #ifdef ARM64
2028 	if (fid == FFA_SUCCESS_64)
2029 		return true;
2030 #endif
2031 	return fid == FFA_SUCCESS_32;
2032 }
2033 
2034 static void spmc_rxtx_map(struct ffa_rxtx *rxtx)
2035 {
2036 	struct thread_smc_args args = {
2037 #ifdef ARM64
2038 		.a0 = FFA_RXTX_MAP_64,
2039 #else
2040 		.a0 = FFA_RXTX_MAP_32,
2041 #endif
2042 		.a1 = virt_to_phys(rxtx->tx),
2043 		.a2 = virt_to_phys(rxtx->rx),
2044 		.a3 = 1,
2045 	};
2046 
2047 	thread_smccc(&args);
2048 	if (!is_ffa_success(args.a0)) {
2049 		if (args.a0 == FFA_ERROR)
2050 			EMSG("rxtx map failed with error %ld", args.a2);
2051 		else
2052 			EMSG("rxtx map failed");
2053 		panic();
2054 	}
2055 }
2056 
2057 static uint16_t get_my_id(void)
2058 {
2059 	struct thread_smc_args args = {
2060 		.a0 = FFA_ID_GET,
2061 	};
2062 
2063 	thread_smccc(&args);
2064 	if (!is_ffa_success(args.a0)) {
2065 		if (args.a0 == FFA_ERROR)
2066 			EMSG("Get id failed with error %ld", args.a2);
2067 		else
2068 			EMSG("Get id failed");
2069 		panic();
2070 	}
2071 
2072 	return args.a2;
2073 }
2074 
2075 static uint32_t get_ffa_version(uint32_t my_version)
2076 {
2077 	struct thread_smc_args args = {
2078 		.a0 = FFA_VERSION,
2079 		.a1 = my_version,
2080 	};
2081 
2082 	thread_smccc(&args);
2083 	if (args.a0 & BIT(31)) {
2084 		EMSG("FF-A version failed with error %ld", args.a0);
2085 		panic();
2086 	}
2087 
2088 	return args.a0;
2089 }
2090 
2091 static void *spmc_retrieve_req(uint64_t cookie,
2092 			       struct ffa_mem_transaction_x *trans)
2093 {
2094 	struct ffa_mem_access *acc_descr_array = NULL;
2095 	struct ffa_mem_access_perm *perm_descr = NULL;
2096 	struct thread_smc_args args = {
2097 		.a0 = FFA_MEM_RETRIEVE_REQ_32,
2098 		.a3 =	0,	/* Address, Using TX -> MBZ */
2099 		.a4 =   0,	/* Using TX -> MBZ */
2100 	};
2101 	size_t size = 0;
2102 	int rc = 0;
2103 
2104 	if (my_rxtx.ffa_vers == FFA_VERSION_1_0) {
2105 		struct ffa_mem_transaction_1_0 *trans_descr = my_rxtx.tx;
2106 
2107 		size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access);
2108 		memset(trans_descr, 0, size);
2109 		trans_descr->sender_id = thread_get_tsd()->rpc_target_info;
2110 		trans_descr->mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
2111 		trans_descr->global_handle = cookie;
2112 		trans_descr->flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE |
2113 				     FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT;
2114 		trans_descr->mem_access_count = 1;
2115 		acc_descr_array = trans_descr->mem_access_array;
2116 	} else {
2117 		struct ffa_mem_transaction_1_1 *trans_descr = my_rxtx.tx;
2118 
2119 		size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access);
2120 		memset(trans_descr, 0, size);
2121 		trans_descr->sender_id = thread_get_tsd()->rpc_target_info;
2122 		trans_descr->mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
2123 		trans_descr->global_handle = cookie;
2124 		trans_descr->flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE |
2125 				     FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT;
2126 		trans_descr->mem_access_count = 1;
2127 		trans_descr->mem_access_offs = sizeof(*trans_descr);
2128 		trans_descr->mem_access_size = sizeof(struct ffa_mem_access);
2129 		acc_descr_array = (void *)((vaddr_t)my_rxtx.tx +
2130 					   sizeof(*trans_descr));
2131 	}
2132 	acc_descr_array->region_offs = 0;
2133 	acc_descr_array->reserved = 0;
2134 	perm_descr = &acc_descr_array->access_perm;
2135 	perm_descr->endpoint_id = my_endpoint_id;
2136 	perm_descr->perm = FFA_MEM_ACC_RW;
2137 	perm_descr->flags = 0;
2138 
2139 	args.a1 = size; /* Total Length */
2140 	args.a2 = size; /* Frag Length == Total length */
2141 	thread_smccc(&args);
2142 	if (args.a0 != FFA_MEM_RETRIEVE_RESP) {
2143 		if (args.a0 == FFA_ERROR)
2144 			EMSG("Failed to fetch cookie %#"PRIx64" error code %d",
2145 			     cookie, (int)args.a2);
2146 		else
2147 			EMSG("Failed to fetch cookie %#"PRIx64" a0 %#"PRIx64,
2148 			     cookie, args.a0);
2149 		return NULL;
2150 	}
2151 	rc = spmc_read_mem_transaction(my_rxtx.ffa_vers, my_rxtx.rx,
2152 				       my_rxtx.size, trans);
2153 	if (rc) {
2154 		EMSG("Memory transaction failure for cookie %#"PRIx64" rc %d",
2155 		     cookie, rc);
2156 		return NULL;
2157 	}
2158 
2159 	return my_rxtx.rx;
2160 }
2161 
2162 void thread_spmc_relinquish(uint64_t cookie)
2163 {
2164 	struct ffa_mem_relinquish *relinquish_desc = my_rxtx.tx;
2165 	struct thread_smc_args args = {
2166 		.a0 = FFA_MEM_RELINQUISH,
2167 	};
2168 
2169 	memset(relinquish_desc, 0, sizeof(*relinquish_desc));
2170 	relinquish_desc->handle = cookie;
2171 	relinquish_desc->flags = 0;
2172 	relinquish_desc->endpoint_count = 1;
2173 	relinquish_desc->endpoint_id_array[0] = my_endpoint_id;
2174 	thread_smccc(&args);
2175 	if (!is_ffa_success(args.a0))
2176 		EMSG("Failed to relinquish cookie %#"PRIx64, cookie);
2177 }
2178 
2179 static int set_pages(struct ffa_address_range *regions,
2180 		     unsigned int num_regions, unsigned int num_pages,
2181 		     struct mobj_ffa *mf)
2182 {
2183 	unsigned int n = 0;
2184 	unsigned int idx = 0;
2185 
2186 	for (n = 0; n < num_regions; n++) {
2187 		unsigned int page_count = READ_ONCE(regions[n].page_count);
2188 		uint64_t addr = READ_ONCE(regions[n].address);
2189 
2190 		if (mobj_ffa_add_pages_at(mf, &idx, addr, page_count))
2191 			return FFA_INVALID_PARAMETERS;
2192 	}
2193 
2194 	if (idx != num_pages)
2195 		return FFA_INVALID_PARAMETERS;
2196 
2197 	return 0;
2198 }
2199 
2200 struct mobj_ffa *thread_spmc_populate_mobj_from_rx(uint64_t cookie)
2201 {
2202 	struct mobj_ffa *ret = NULL;
2203 	struct ffa_mem_transaction_x retrieve_desc = { };
2204 	struct ffa_mem_access *descr_array = NULL;
2205 	struct ffa_mem_region *descr = NULL;
2206 	struct mobj_ffa *mf = NULL;
2207 	unsigned int num_pages = 0;
2208 	unsigned int offs = 0;
2209 	void *buf = NULL;
2210 	struct thread_smc_args ffa_rx_release_args = {
2211 		.a0 = FFA_RX_RELEASE
2212 	};
2213 
2214 	/*
2215 	 * OP-TEE is only supporting a single mem_region while the
2216 	 * specification allows for more than one.
2217 	 */
2218 	buf = spmc_retrieve_req(cookie, &retrieve_desc);
2219 	if (!buf) {
2220 		EMSG("Failed to retrieve cookie from rx buffer %#"PRIx64,
2221 		     cookie);
2222 		return NULL;
2223 	}
2224 
2225 	descr_array = (void *)((vaddr_t)buf + retrieve_desc.mem_access_offs);
2226 	offs = READ_ONCE(descr_array->region_offs);
2227 	descr = (struct ffa_mem_region *)((vaddr_t)buf + offs);
2228 
2229 	num_pages = READ_ONCE(descr->total_page_count);
2230 	mf = mobj_ffa_spmc_new(cookie, num_pages);
2231 	if (!mf)
2232 		goto out;
2233 
2234 	if (set_pages(descr->address_range_array,
2235 		      READ_ONCE(descr->address_range_count), num_pages, mf)) {
2236 		mobj_ffa_spmc_delete(mf);
2237 		goto out;
2238 	}
2239 
2240 	ret = mf;
2241 
2242 out:
2243 	/* Release RX buffer after the mem retrieve request. */
2244 	thread_smccc(&ffa_rx_release_args);
2245 
2246 	return ret;
2247 }
2248 
2249 static TEE_Result spmc_init(void)
2250 {
2251 	unsigned int major = 0;
2252 	unsigned int minor __maybe_unused = 0;
2253 	uint32_t my_vers = 0;
2254 	uint32_t vers = 0;
2255 
2256 	my_vers = MAKE_FFA_VERSION(FFA_VERSION_MAJOR, FFA_VERSION_MINOR);
2257 	vers = get_ffa_version(my_vers);
2258 	major = (vers >> FFA_VERSION_MAJOR_SHIFT) & FFA_VERSION_MAJOR_MASK;
2259 	minor = (vers >> FFA_VERSION_MINOR_SHIFT) & FFA_VERSION_MINOR_MASK;
2260 	DMSG("SPMC reported version %u.%u", major, minor);
2261 	if (major != FFA_VERSION_MAJOR) {
2262 		EMSG("Incompatible major version %u, expected %u",
2263 		     major, FFA_VERSION_MAJOR);
2264 		panic();
2265 	}
2266 	if (vers < my_vers)
2267 		my_vers = vers;
2268 	DMSG("Using version %u.%u",
2269 	     (my_vers >> FFA_VERSION_MAJOR_SHIFT) & FFA_VERSION_MAJOR_MASK,
2270 	     (my_vers >> FFA_VERSION_MINOR_SHIFT) & FFA_VERSION_MINOR_MASK);
2271 	my_rxtx.ffa_vers = my_vers;
2272 
2273 	spmc_rxtx_map(&my_rxtx);
2274 	my_endpoint_id = get_my_id();
2275 	DMSG("My endpoint ID %#x", my_endpoint_id);
2276 
2277 	return TEE_SUCCESS;
2278 }
2279 #endif /* !defined(CFG_CORE_SEL1_SPMC) */
2280 
2281 /*
2282  * boot_final() is always done before exiting at end of boot
2283  * initialization.  In case of virtualization the init-calls are done only
2284  * once a OP-TEE partition has been created. So with virtualization we have
2285  * to initialize via boot_final() to make sure we have a value assigned
2286  * before it's used the first time.
2287  */
2288 #ifdef CFG_NS_VIRTUALIZATION
2289 boot_final(spmc_init);
2290 #else
2291 service_init(spmc_init);
2292 #endif
2293