xref: /optee_os/core/arch/arm/kernel/thread_spmc.c (revision 78af2f1266c6cd6284a29137ad2f9545270caef9)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2021, Linaro Limited.
4  * Copyright (c) 2019-2021, Arm Limited. All rights reserved.
5  */
6 
7 #include <assert.h>
8 #include <ffa.h>
9 #include <initcall.h>
10 #include <io.h>
11 #include <kernel/interrupt.h>
12 #include <kernel/panic.h>
13 #include <kernel/secure_partition.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/spmc_sp_handler.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/thread.h>
18 #include <kernel/thread_private.h>
19 #include <kernel/thread_spmc.h>
20 #include <kernel/virtualization.h>
21 #include <mm/core_mmu.h>
22 #include <mm/mobj.h>
23 #include <optee_ffa.h>
24 #include <optee_msg.h>
25 #include <optee_rpc_cmd.h>
26 #include <sm/optee_smc.h>
27 #include <string.h>
28 #include <sys/queue.h>
29 #include <tee/entry_std.h>
30 #include <tee/uuid.h>
31 #include <util.h>
32 
33 #if defined(CFG_CORE_SEL1_SPMC)
34 struct mem_share_state {
35 	struct mobj_ffa *mf;
36 	unsigned int page_count;
37 	unsigned int region_count;
38 	unsigned int current_page_idx;
39 };
40 
41 struct mem_frag_state {
42 	struct mem_share_state share;
43 	tee_mm_entry_t *mm;
44 	unsigned int frag_offset;
45 	SLIST_ENTRY(mem_frag_state) link;
46 };
47 #endif
48 
49 /* Initialized in spmc_init() below */
50 static uint16_t my_endpoint_id __nex_bss;
51 #ifdef CFG_CORE_SEL1_SPMC
52 static const uint32_t my_part_props = FFA_PART_PROP_DIRECT_REQ_RECV |
53 				      FFA_PART_PROP_DIRECT_REQ_SEND |
54 #ifdef CFG_NS_VIRTUALIZATION
55 				      FFA_PART_PROP_NOTIF_CREATED |
56 				      FFA_PART_PROP_NOTIF_DESTROYED |
57 #endif
58 #ifdef ARM64
59 				      FFA_PART_PROP_AARCH64_STATE |
60 #endif
61 				      FFA_PART_PROP_IS_PE_ID;
62 
63 static uint32_t my_uuid_words[] = {
64 	/*
65 	 * - if the SPMC is in S-EL2 this UUID describes OP-TEE as a S-EL1
66 	 *   SP, or
67 	 * - if the SPMC is in S-EL1 then this UUID is for OP-TEE as a
68 	 *   logical partition, residing in the same exception level as the
69 	 *   SPMC
70 	 * UUID 486178e0-e7f8-11e3-bc5e-0002a5d5c51b
71 	 */
72 	0xe0786148, 0xe311f8e7, 0x02005ebc, 0x1bc5d5a5,
73 };
74 
75 /*
76  * If struct ffa_rxtx::size is 0 RX/TX buffers are not mapped or initialized.
77  *
78  * struct ffa_rxtx::spin_lock protects the variables below from concurrent
79  * access this includes the use of content of struct ffa_rxtx::rx and
80  * @frag_state_head.
81  *
82  * struct ffa_rxtx::tx_buf_is_mine is true when we may write to struct
83  * ffa_rxtx::tx and false when it is owned by normal world.
84  *
85  * Note that we can't prevent normal world from updating the content of
86  * these buffers so we must always be careful when reading. while we hold
87  * the lock.
88  */
89 
90 static struct ffa_rxtx my_rxtx __nex_bss;
91 
92 static bool is_nw_buf(struct ffa_rxtx *rxtx)
93 {
94 	return rxtx == &my_rxtx;
95 }
96 
97 static SLIST_HEAD(mem_frag_state_head, mem_frag_state) frag_state_head =
98 	SLIST_HEAD_INITIALIZER(&frag_state_head);
99 #else
100 static uint8_t __rx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE);
101 static uint8_t __tx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE);
102 static struct ffa_rxtx my_rxtx = {
103 	.rx = __rx_buf,
104 	.tx = __tx_buf,
105 	.size = sizeof(__rx_buf),
106 };
107 #endif
108 
109 static uint32_t swap_src_dst(uint32_t src_dst)
110 {
111 	return (src_dst >> 16) | (src_dst << 16);
112 }
113 
114 static uint16_t get_sender_id(uint32_t src_dst)
115 {
116 	return src_dst >> 16;
117 }
118 
119 void spmc_set_args(struct thread_smc_args *args, uint32_t fid, uint32_t src_dst,
120 		   uint32_t w2, uint32_t w3, uint32_t w4, uint32_t w5)
121 {
122 	*args = (struct thread_smc_args){ .a0 = fid,
123 					  .a1 = src_dst,
124 					  .a2 = w2,
125 					  .a3 = w3,
126 					  .a4 = w4,
127 					  .a5 = w5, };
128 }
129 
130 uint32_t spmc_exchange_version(uint32_t vers, struct ffa_rxtx *rxtx)
131 {
132 	/*
133 	 * No locking, if the caller does concurrent calls to this it's
134 	 * only making a mess for itself. We must be able to renegotiate
135 	 * the FF-A version in order to support differing versions between
136 	 * the loader and the driver.
137 	 */
138 	if (vers < FFA_VERSION_1_1)
139 		rxtx->ffa_vers = FFA_VERSION_1_0;
140 	else
141 		rxtx->ffa_vers = FFA_VERSION_1_1;
142 
143 	return rxtx->ffa_vers;
144 }
145 
146 #if defined(CFG_CORE_SEL1_SPMC)
147 static void handle_features(struct thread_smc_args *args)
148 {
149 	uint32_t ret_fid = 0;
150 	uint32_t ret_w2 = FFA_PARAM_MBZ;
151 
152 	switch (args->a1) {
153 #ifdef ARM64
154 	case FFA_RXTX_MAP_64:
155 #endif
156 	case FFA_RXTX_MAP_32:
157 		ret_fid = FFA_SUCCESS_32;
158 		ret_w2 = 0; /* 4kB Minimum buffer size and alignment boundary */
159 		break;
160 #ifdef ARM64
161 	case FFA_MEM_SHARE_64:
162 #endif
163 	case FFA_MEM_SHARE_32:
164 		ret_fid = FFA_SUCCESS_32;
165 		/*
166 		 * Partition manager supports transmission of a memory
167 		 * transaction descriptor in a buffer dynamically allocated
168 		 * by the endpoint.
169 		 */
170 		ret_w2 = BIT(0);
171 		break;
172 
173 	case FFA_ERROR:
174 	case FFA_VERSION:
175 	case FFA_SUCCESS_32:
176 #ifdef ARM64
177 	case FFA_SUCCESS_64:
178 #endif
179 	case FFA_FEATURES:
180 	case FFA_SPM_ID_GET:
181 	case FFA_MEM_FRAG_TX:
182 	case FFA_MEM_RECLAIM:
183 	case FFA_MSG_SEND_DIRECT_REQ_64:
184 	case FFA_MSG_SEND_DIRECT_REQ_32:
185 	case FFA_INTERRUPT:
186 	case FFA_PARTITION_INFO_GET:
187 	case FFA_RXTX_UNMAP:
188 	case FFA_RX_RELEASE:
189 	case FFA_FEATURE_MANAGED_EXIT_INTR:
190 		ret_fid = FFA_SUCCESS_32;
191 		break;
192 	default:
193 		ret_fid = FFA_ERROR;
194 		ret_w2 = FFA_NOT_SUPPORTED;
195 		break;
196 	}
197 
198 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, ret_w2, FFA_PARAM_MBZ,
199 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
200 }
201 
202 static int map_buf(paddr_t pa, unsigned int sz, void **va_ret)
203 {
204 	tee_mm_entry_t *mm = NULL;
205 
206 	if (!core_pbuf_is(CORE_MEM_NON_SEC, pa, sz))
207 		return FFA_INVALID_PARAMETERS;
208 
209 	mm = tee_mm_alloc(&tee_mm_shm, sz);
210 	if (!mm)
211 		return FFA_NO_MEMORY;
212 
213 	if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pa,
214 					  sz / SMALL_PAGE_SIZE,
215 					  MEM_AREA_NSEC_SHM)) {
216 		tee_mm_free(mm);
217 		return FFA_INVALID_PARAMETERS;
218 	}
219 
220 	*va_ret = (void *)tee_mm_get_smem(mm);
221 	return 0;
222 }
223 
224 static void handle_spm_id_get(struct thread_smc_args *args)
225 {
226 	spmc_set_args(args, FFA_SUCCESS_32, FFA_PARAM_MBZ, my_endpoint_id,
227 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
228 }
229 
230 static void unmap_buf(void *va, size_t sz)
231 {
232 	tee_mm_entry_t *mm = tee_mm_find(&tee_mm_shm, (vaddr_t)va);
233 
234 	assert(mm);
235 	core_mmu_unmap_pages(tee_mm_get_smem(mm), sz / SMALL_PAGE_SIZE);
236 	tee_mm_free(mm);
237 }
238 
239 void spmc_handle_rxtx_map(struct thread_smc_args *args, struct ffa_rxtx *rxtx)
240 {
241 	int rc = 0;
242 	uint32_t ret_fid = FFA_ERROR;
243 	unsigned int sz = 0;
244 	paddr_t rx_pa = 0;
245 	paddr_t tx_pa = 0;
246 	void *rx = NULL;
247 	void *tx = NULL;
248 
249 	cpu_spin_lock(&rxtx->spinlock);
250 
251 	if (args->a3 & GENMASK_64(63, 6)) {
252 		rc = FFA_INVALID_PARAMETERS;
253 		goto out;
254 	}
255 
256 	sz = args->a3 * SMALL_PAGE_SIZE;
257 	if (!sz) {
258 		rc = FFA_INVALID_PARAMETERS;
259 		goto out;
260 	}
261 	/* TX/RX are swapped compared to the caller */
262 	tx_pa = args->a2;
263 	rx_pa = args->a1;
264 
265 	if (rxtx->size) {
266 		rc = FFA_DENIED;
267 		goto out;
268 	}
269 
270 	/*
271 	 * If the buffer comes from a SP the address is virtual and already
272 	 * mapped.
273 	 */
274 	if (is_nw_buf(rxtx)) {
275 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
276 			enum teecore_memtypes mt = MEM_AREA_NEX_NSEC_SHM;
277 			bool tx_alloced = false;
278 
279 			/*
280 			 * With virtualization we establish this mapping in
281 			 * the nexus mapping which then is replicated to
282 			 * each partition.
283 			 *
284 			 * This means that this mapping must be done before
285 			 * any partition is created and then must not be
286 			 * changed.
287 			 */
288 
289 			/*
290 			 * core_mmu_add_mapping() may reuse previous
291 			 * mappings. First check if there's any mappings to
292 			 * reuse so we know how to clean up in case of
293 			 * failure.
294 			 */
295 			tx = phys_to_virt(tx_pa, mt, sz);
296 			rx = phys_to_virt(rx_pa, mt, sz);
297 			if (!tx) {
298 				tx = core_mmu_add_mapping(mt, tx_pa, sz);
299 				if (!tx) {
300 					rc = FFA_NO_MEMORY;
301 					goto out;
302 				}
303 				tx_alloced = true;
304 			}
305 			if (!rx)
306 				rx = core_mmu_add_mapping(mt, rx_pa, sz);
307 
308 			if (!rx) {
309 				if (tx_alloced && tx)
310 					core_mmu_remove_mapping(mt, tx, sz);
311 				rc = FFA_NO_MEMORY;
312 				goto out;
313 			}
314 		} else {
315 			rc = map_buf(tx_pa, sz, &tx);
316 			if (rc)
317 				goto out;
318 			rc = map_buf(rx_pa, sz, &rx);
319 			if (rc) {
320 				unmap_buf(tx, sz);
321 				goto out;
322 			}
323 		}
324 		rxtx->tx = tx;
325 		rxtx->rx = rx;
326 	} else {
327 		if ((tx_pa & SMALL_PAGE_MASK) || (rx_pa & SMALL_PAGE_MASK)) {
328 			rc = FFA_INVALID_PARAMETERS;
329 			goto out;
330 		}
331 
332 		if (!virt_to_phys((void *)tx_pa) ||
333 		    !virt_to_phys((void *)rx_pa)) {
334 			rc = FFA_INVALID_PARAMETERS;
335 			goto out;
336 		}
337 
338 		rxtx->tx = (void *)tx_pa;
339 		rxtx->rx = (void *)rx_pa;
340 	}
341 
342 	rxtx->size = sz;
343 	rxtx->tx_is_mine = true;
344 	ret_fid = FFA_SUCCESS_32;
345 	DMSG("Mapped tx %#"PRIxPA" size %#x @ %p", tx_pa, sz, tx);
346 	DMSG("Mapped rx %#"PRIxPA" size %#x @ %p", rx_pa, sz, rx);
347 out:
348 	cpu_spin_unlock(&rxtx->spinlock);
349 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, FFA_PARAM_MBZ,
350 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
351 }
352 
353 void spmc_handle_rxtx_unmap(struct thread_smc_args *args, struct ffa_rxtx *rxtx)
354 {
355 	uint32_t ret_fid = FFA_ERROR;
356 	int rc = FFA_INVALID_PARAMETERS;
357 
358 	cpu_spin_lock(&rxtx->spinlock);
359 
360 	if (!rxtx->size)
361 		goto out;
362 
363 	/* We don't unmap the SP memory as the SP might still use it */
364 	if (is_nw_buf(rxtx)) {
365 		unmap_buf(rxtx->rx, rxtx->size);
366 		unmap_buf(rxtx->tx, rxtx->size);
367 	}
368 	rxtx->size = 0;
369 	rxtx->rx = NULL;
370 	rxtx->tx = NULL;
371 	ret_fid = FFA_SUCCESS_32;
372 	rc = 0;
373 out:
374 	cpu_spin_unlock(&rxtx->spinlock);
375 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, FFA_PARAM_MBZ,
376 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
377 }
378 
379 void spmc_handle_rx_release(struct thread_smc_args *args, struct ffa_rxtx *rxtx)
380 {
381 	uint32_t ret_fid = 0;
382 	int rc = 0;
383 
384 	cpu_spin_lock(&rxtx->spinlock);
385 	/* The senders RX is our TX */
386 	if (!rxtx->size || rxtx->tx_is_mine) {
387 		ret_fid = FFA_ERROR;
388 		rc = FFA_DENIED;
389 	} else {
390 		ret_fid = FFA_SUCCESS_32;
391 		rc = 0;
392 		rxtx->tx_is_mine = true;
393 	}
394 	cpu_spin_unlock(&rxtx->spinlock);
395 
396 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, FFA_PARAM_MBZ,
397 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
398 }
399 
400 static bool is_nil_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3)
401 {
402 	return !w0 && !w1 && !w2 && !w3;
403 }
404 
405 static bool is_my_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3)
406 {
407 	/*
408 	 * This depends on which UUID we have been assigned.
409 	 * TODO add a generic mechanism to obtain our UUID.
410 	 *
411 	 * The test below is for the hard coded UUID
412 	 * 486178e0-e7f8-11e3-bc5e-0002a5d5c51b
413 	 */
414 	return w0 == my_uuid_words[0] && w1 == my_uuid_words[1] &&
415 	       w2 == my_uuid_words[2] && w3 == my_uuid_words[3];
416 }
417 
418 TEE_Result spmc_fill_partition_entry(uint32_t ffa_vers, void *buf, size_t blen,
419 				     size_t idx, uint16_t endpoint_id,
420 				     uint16_t execution_context,
421 				     uint32_t part_props,
422 				     const uint32_t uuid_words[4])
423 {
424 	struct ffa_partition_info_x *fpi = NULL;
425 	size_t fpi_size = sizeof(*fpi);
426 
427 	if (ffa_vers >= FFA_VERSION_1_1)
428 		fpi_size += FFA_UUID_SIZE;
429 
430 	if ((idx + 1) * fpi_size > blen)
431 		return TEE_ERROR_OUT_OF_MEMORY;
432 
433 	fpi = (void *)((vaddr_t)buf + idx * fpi_size);
434 	fpi->id = endpoint_id;
435 	/* Number of execution contexts implemented by this partition */
436 	fpi->execution_context = execution_context;
437 
438 	fpi->partition_properties = part_props;
439 
440 	if (ffa_vers >= FFA_VERSION_1_1) {
441 		if (uuid_words)
442 			memcpy(fpi->uuid, uuid_words, FFA_UUID_SIZE);
443 		else
444 			memset(fpi->uuid, 0, FFA_UUID_SIZE);
445 	}
446 
447 	return TEE_SUCCESS;
448 }
449 
450 static int handle_partition_info_get_all(size_t *elem_count,
451 					 struct ffa_rxtx *rxtx, bool count_only)
452 {
453 	if (!count_only) {
454 		/* Add OP-TEE SP */
455 		if (spmc_fill_partition_entry(rxtx->ffa_vers, rxtx->tx,
456 					      rxtx->size, 0, my_endpoint_id,
457 					      CFG_TEE_CORE_NB_CORE,
458 					      my_part_props, my_uuid_words))
459 			return FFA_NO_MEMORY;
460 	}
461 	*elem_count = 1;
462 
463 	if (IS_ENABLED(CFG_SECURE_PARTITION)) {
464 		if (sp_partition_info_get(rxtx->ffa_vers, rxtx->tx, rxtx->size,
465 					  NULL, elem_count, count_only))
466 			return FFA_NO_MEMORY;
467 	}
468 
469 	return FFA_OK;
470 }
471 
472 void spmc_handle_partition_info_get(struct thread_smc_args *args,
473 				    struct ffa_rxtx *rxtx)
474 {
475 	TEE_Result res = TEE_SUCCESS;
476 	uint32_t ret_fid = FFA_ERROR;
477 	uint32_t rc = 0;
478 	bool count_only = args->a5 & FFA_PARTITION_INFO_GET_COUNT_FLAG;
479 
480 	if (!count_only) {
481 		cpu_spin_lock(&rxtx->spinlock);
482 
483 		if (!rxtx->size || !rxtx->tx_is_mine) {
484 			rc = FFA_BUSY;
485 			goto out;
486 		}
487 	}
488 
489 	if (is_nil_uuid(args->a1, args->a2, args->a3, args->a4)) {
490 		size_t elem_count = 0;
491 
492 		ret_fid = handle_partition_info_get_all(&elem_count, rxtx,
493 							count_only);
494 
495 		if (ret_fid) {
496 			rc = ret_fid;
497 			ret_fid = FFA_ERROR;
498 		} else {
499 			ret_fid = FFA_SUCCESS_32;
500 			rc = elem_count;
501 		}
502 
503 		goto out;
504 	}
505 
506 	if (is_my_uuid(args->a1, args->a2, args->a3, args->a4)) {
507 		if (!count_only) {
508 			res = spmc_fill_partition_entry(rxtx->ffa_vers,
509 							rxtx->tx, rxtx->size, 0,
510 							my_endpoint_id,
511 							CFG_TEE_CORE_NB_CORE,
512 							my_part_props,
513 							my_uuid_words);
514 			if (res) {
515 				ret_fid = FFA_ERROR;
516 				rc = FFA_INVALID_PARAMETERS;
517 				goto out;
518 			}
519 		}
520 		rc = 1;
521 	} else if (IS_ENABLED(CFG_SECURE_PARTITION)) {
522 		uint32_t uuid_array[4] = { 0 };
523 		TEE_UUID uuid = { };
524 		size_t count = 0;
525 
526 		uuid_array[0] = args->a1;
527 		uuid_array[1] = args->a2;
528 		uuid_array[2] = args->a3;
529 		uuid_array[3] = args->a4;
530 		tee_uuid_from_octets(&uuid, (uint8_t *)uuid_array);
531 
532 		res = sp_partition_info_get(rxtx->ffa_vers, rxtx->tx,
533 					    rxtx->size, &uuid, &count,
534 					    count_only);
535 		if (res != TEE_SUCCESS) {
536 			ret_fid = FFA_ERROR;
537 			rc = FFA_INVALID_PARAMETERS;
538 			goto out;
539 		}
540 		rc = count;
541 	} else {
542 		ret_fid = FFA_ERROR;
543 		rc = FFA_INVALID_PARAMETERS;
544 		goto out;
545 	}
546 
547 	ret_fid = FFA_SUCCESS_32;
548 
549 out:
550 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, FFA_PARAM_MBZ,
551 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
552 	if (!count_only) {
553 		rxtx->tx_is_mine = false;
554 		cpu_spin_unlock(&rxtx->spinlock);
555 	}
556 }
557 
558 static void spmc_handle_run(struct thread_smc_args *args)
559 {
560 	uint16_t endpoint = FFA_TARGET_INFO_GET_SP_ID(args->a1);
561 	uint16_t thread_id = FFA_TARGET_INFO_GET_VCPU_ID(args->a1);
562 	uint32_t rc = FFA_OK;
563 
564 	if (endpoint != my_endpoint_id) {
565 		/*
566 		 * The endpoint should be an SP, try to resume the SP from
567 		 * preempted into busy state.
568 		 */
569 		rc = spmc_sp_resume_from_preempted(endpoint);
570 		if (rc)
571 			goto out;
572 	}
573 
574 	thread_resume_from_rpc(thread_id, 0, 0, 0, 0);
575 
576 	/* thread_resume_from_rpc return only of the thread_id is invalid */
577 	rc = FFA_INVALID_PARAMETERS;
578 
579 out:
580 	spmc_set_args(args, FFA_ERROR, FFA_PARAM_MBZ, rc, FFA_PARAM_MBZ,
581 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
582 }
583 #endif /*CFG_CORE_SEL1_SPMC*/
584 
585 static void handle_yielding_call(struct thread_smc_args *args,
586 				 uint32_t direct_resp_fid)
587 {
588 	TEE_Result res = 0;
589 
590 	thread_check_canaries();
591 
592 #ifdef ARM64
593 	/* Saving this for an eventual RPC */
594 	thread_get_core_local()->direct_resp_fid = direct_resp_fid;
595 #endif
596 
597 	if (args->a3 == OPTEE_FFA_YIELDING_CALL_RESUME) {
598 		/* Note connection to struct thread_rpc_arg::ret */
599 		thread_resume_from_rpc(args->a7, args->a4, args->a5, args->a6,
600 				       0);
601 		res = TEE_ERROR_BAD_PARAMETERS;
602 	} else {
603 		thread_alloc_and_run(args->a1, args->a3, args->a4, args->a5,
604 				     args->a6, args->a7);
605 		res = TEE_ERROR_BUSY;
606 	}
607 	spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1),
608 		      0, res, 0, 0);
609 }
610 
611 static uint32_t handle_unregister_shm(uint32_t a4, uint32_t a5)
612 {
613 	uint64_t cookie = reg_pair_to_64(a5, a4);
614 	uint32_t res = 0;
615 
616 	res = mobj_ffa_unregister_by_cookie(cookie);
617 	switch (res) {
618 	case TEE_SUCCESS:
619 	case TEE_ERROR_ITEM_NOT_FOUND:
620 		return 0;
621 	case TEE_ERROR_BUSY:
622 		EMSG("res %#"PRIx32, res);
623 		return FFA_BUSY;
624 	default:
625 		EMSG("res %#"PRIx32, res);
626 		return FFA_INVALID_PARAMETERS;
627 	}
628 }
629 
630 static void handle_blocking_call(struct thread_smc_args *args,
631 				 uint32_t direct_resp_fid)
632 {
633 	switch (args->a3) {
634 	case OPTEE_FFA_GET_API_VERSION:
635 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
636 			      OPTEE_FFA_VERSION_MAJOR, OPTEE_FFA_VERSION_MINOR,
637 			      0);
638 		break;
639 	case OPTEE_FFA_GET_OS_VERSION:
640 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
641 			      CFG_OPTEE_REVISION_MAJOR,
642 			      CFG_OPTEE_REVISION_MINOR, TEE_IMPL_GIT_SHA1);
643 		break;
644 	case OPTEE_FFA_EXCHANGE_CAPABILITIES:
645 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
646 			      0, THREAD_RPC_MAX_NUM_PARAMS,
647 			      OPTEE_FFA_SEC_CAP_ARG_OFFSET);
648 		break;
649 	case OPTEE_FFA_UNREGISTER_SHM:
650 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
651 			      handle_unregister_shm(args->a4, args->a5), 0, 0);
652 		break;
653 	default:
654 		EMSG("Unhandled blocking service ID %#"PRIx32,
655 		     (uint32_t)args->a3);
656 		panic();
657 	}
658 }
659 
660 static void handle_framework_direct_request(struct thread_smc_args *args,
661 					    struct ffa_rxtx *rxtx,
662 					    uint32_t direct_resp_fid)
663 {
664 	uint32_t w0 = FFA_ERROR;
665 	uint32_t w1 = FFA_PARAM_MBZ;
666 	uint32_t w2 = FFA_NOT_SUPPORTED;
667 	uint32_t w3 = FFA_PARAM_MBZ;
668 
669 	switch (args->a2 & FFA_MSG_TYPE_MASK) {
670 	case FFA_MSG_SEND_VM_CREATED:
671 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
672 			uint16_t guest_id = args->a5;
673 			TEE_Result res = virt_guest_created(guest_id);
674 
675 			w0 = direct_resp_fid;
676 			w1 = swap_src_dst(args->a1);
677 			w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_CREATED;
678 			if (res == TEE_SUCCESS)
679 				w3 = FFA_OK;
680 			else if (res == TEE_ERROR_OUT_OF_MEMORY)
681 				w3 = FFA_DENIED;
682 			else
683 				w3 = FFA_INVALID_PARAMETERS;
684 		}
685 		break;
686 	case FFA_MSG_SEND_VM_DESTROYED:
687 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
688 			uint16_t guest_id = args->a5;
689 			TEE_Result res = virt_guest_destroyed(guest_id);
690 
691 			w0 = direct_resp_fid;
692 			w1 = swap_src_dst(args->a1);
693 			w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_DESTROYED;
694 			if (res == TEE_SUCCESS)
695 				w3 = FFA_OK;
696 			else
697 				w3 = FFA_INVALID_PARAMETERS;
698 		}
699 		break;
700 	case FFA_MSG_VERSION_REQ:
701 		w0 = direct_resp_fid;
702 		w1 = swap_src_dst(args->a1);
703 		w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_VERSION_RESP;
704 		w3 = spmc_exchange_version(args->a3, rxtx);
705 		break;
706 	default:
707 		break;
708 	}
709 	spmc_set_args(args, w0, w1, w2, w3, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
710 }
711 
712 static void handle_direct_request(struct thread_smc_args *args,
713 				  struct ffa_rxtx *rxtx)
714 {
715 	uint32_t direct_resp_fid = 0;
716 
717 	if (IS_ENABLED(CFG_SECURE_PARTITION) &&
718 	    FFA_DST(args->a1) != my_endpoint_id) {
719 		spmc_sp_start_thread(args);
720 		return;
721 	}
722 
723 	if (OPTEE_SMC_IS_64(args->a0))
724 		direct_resp_fid = FFA_MSG_SEND_DIRECT_RESP_64;
725 	else
726 		direct_resp_fid = FFA_MSG_SEND_DIRECT_RESP_32;
727 
728 	if (args->a2 & FFA_MSG_FLAG_FRAMEWORK) {
729 		handle_framework_direct_request(args, rxtx, direct_resp_fid);
730 		return;
731 	}
732 
733 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
734 	    virt_set_guest(get_sender_id(args->a1))) {
735 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
736 			      TEE_ERROR_ITEM_NOT_FOUND, 0, 0);
737 		return;
738 	}
739 
740 	if (args->a3 & BIT32(OPTEE_FFA_YIELDING_CALL_BIT))
741 		handle_yielding_call(args, direct_resp_fid);
742 	else
743 		handle_blocking_call(args, direct_resp_fid);
744 
745 	/*
746 	 * Note that handle_yielding_call() typically only returns if a
747 	 * thread cannot be allocated or found. virt_unset_guest() is also
748 	 * called from thread_state_suspend() and thread_state_free().
749 	 */
750 	virt_unset_guest();
751 }
752 
753 int spmc_read_mem_transaction(uint32_t ffa_vers, void *buf, size_t blen,
754 			      struct ffa_mem_transaction_x *trans)
755 {
756 	uint16_t mem_reg_attr = 0;
757 	uint32_t flags = 0;
758 	uint32_t count = 0;
759 	uint32_t offs = 0;
760 	uint32_t size = 0;
761 	size_t n = 0;
762 
763 	if (!IS_ALIGNED_WITH_TYPE(buf, uint64_t))
764 		return FFA_INVALID_PARAMETERS;
765 
766 	if (ffa_vers >= FFA_VERSION_1_1) {
767 		struct ffa_mem_transaction_1_1 *descr = NULL;
768 
769 		if (blen < sizeof(*descr))
770 			return FFA_INVALID_PARAMETERS;
771 
772 		descr = buf;
773 		trans->sender_id = READ_ONCE(descr->sender_id);
774 		mem_reg_attr = READ_ONCE(descr->mem_reg_attr);
775 		flags = READ_ONCE(descr->flags);
776 		trans->global_handle = READ_ONCE(descr->global_handle);
777 		trans->tag = READ_ONCE(descr->tag);
778 
779 		count = READ_ONCE(descr->mem_access_count);
780 		size = READ_ONCE(descr->mem_access_size);
781 		offs = READ_ONCE(descr->mem_access_offs);
782 	} else {
783 		struct ffa_mem_transaction_1_0 *descr = NULL;
784 
785 		if (blen < sizeof(*descr))
786 			return FFA_INVALID_PARAMETERS;
787 
788 		descr = buf;
789 		trans->sender_id = READ_ONCE(descr->sender_id);
790 		mem_reg_attr = READ_ONCE(descr->mem_reg_attr);
791 		flags = READ_ONCE(descr->flags);
792 		trans->global_handle = READ_ONCE(descr->global_handle);
793 		trans->tag = READ_ONCE(descr->tag);
794 
795 		count = READ_ONCE(descr->mem_access_count);
796 		size = sizeof(struct ffa_mem_access);
797 		offs = offsetof(struct ffa_mem_transaction_1_0,
798 				mem_access_array);
799 	}
800 
801 	if (mem_reg_attr > UINT8_MAX || flags > UINT8_MAX ||
802 	    size > UINT8_MAX || count > UINT8_MAX || offs > UINT16_MAX)
803 		return FFA_INVALID_PARAMETERS;
804 
805 	/* Check that the endpoint memory access descriptor array fits */
806 	if (MUL_OVERFLOW(size, count, &n) || ADD_OVERFLOW(offs, n, &n) ||
807 	    n > blen)
808 		return FFA_INVALID_PARAMETERS;
809 
810 	trans->mem_reg_attr = mem_reg_attr;
811 	trans->flags = flags;
812 	trans->mem_access_size = size;
813 	trans->mem_access_count = count;
814 	trans->mem_access_offs = offs;
815 	return 0;
816 }
817 
818 #if defined(CFG_CORE_SEL1_SPMC)
819 static int get_acc_perms(vaddr_t mem_acc_base, unsigned int mem_access_size,
820 			 unsigned int mem_access_count, uint8_t *acc_perms,
821 			 unsigned int *region_offs)
822 {
823 	struct ffa_mem_access_perm *descr = NULL;
824 	struct ffa_mem_access *mem_acc = NULL;
825 	unsigned int n = 0;
826 
827 	for (n = 0; n < mem_access_count; n++) {
828 		mem_acc = (void *)(mem_acc_base + mem_access_size * n);
829 		descr = &mem_acc->access_perm;
830 		if (READ_ONCE(descr->endpoint_id) == my_endpoint_id) {
831 			*acc_perms = READ_ONCE(descr->perm);
832 			*region_offs = READ_ONCE(mem_acc[n].region_offs);
833 			return 0;
834 		}
835 	}
836 
837 	return FFA_INVALID_PARAMETERS;
838 }
839 
840 static int mem_share_init(struct ffa_mem_transaction_x *mem_trans, void *buf,
841 			  size_t blen, unsigned int *page_count,
842 			  unsigned int *region_count, size_t *addr_range_offs)
843 {
844 	const uint16_t exp_mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
845 	const uint8_t exp_mem_acc_perm = FFA_MEM_ACC_RW;
846 	struct ffa_mem_region *region_descr = NULL;
847 	unsigned int region_descr_offs = 0;
848 	uint8_t mem_acc_perm = 0;
849 	size_t n = 0;
850 
851 	if (mem_trans->mem_reg_attr != exp_mem_reg_attr)
852 		return FFA_INVALID_PARAMETERS;
853 
854 	/* Check that the access permissions matches what's expected */
855 	if (get_acc_perms((vaddr_t)buf + mem_trans->mem_access_offs,
856 			  mem_trans->mem_access_size,
857 			  mem_trans->mem_access_count,
858 			  &mem_acc_perm, &region_descr_offs) ||
859 	    mem_acc_perm != exp_mem_acc_perm)
860 		return FFA_INVALID_PARAMETERS;
861 
862 	/* Check that the Composite memory region descriptor fits */
863 	if (ADD_OVERFLOW(region_descr_offs, sizeof(*region_descr), &n) ||
864 	    n > blen)
865 		return FFA_INVALID_PARAMETERS;
866 
867 	if (!IS_ALIGNED_WITH_TYPE((vaddr_t)buf + region_descr_offs,
868 				  struct ffa_mem_region))
869 		return FFA_INVALID_PARAMETERS;
870 
871 	region_descr = (struct ffa_mem_region *)((vaddr_t)buf +
872 						 region_descr_offs);
873 	*page_count = READ_ONCE(region_descr->total_page_count);
874 	*region_count = READ_ONCE(region_descr->address_range_count);
875 	*addr_range_offs = n;
876 	return 0;
877 }
878 
879 static int add_mem_share_helper(struct mem_share_state *s, void *buf,
880 				size_t flen)
881 {
882 	unsigned int region_count = flen / sizeof(struct ffa_address_range);
883 	struct ffa_address_range *arange = NULL;
884 	unsigned int n = 0;
885 
886 	if (region_count > s->region_count)
887 		region_count = s->region_count;
888 
889 	if (!IS_ALIGNED_WITH_TYPE(buf, struct ffa_address_range))
890 		return FFA_INVALID_PARAMETERS;
891 	arange = buf;
892 
893 	for (n = 0; n < region_count; n++) {
894 		unsigned int page_count = READ_ONCE(arange[n].page_count);
895 		uint64_t addr = READ_ONCE(arange[n].address);
896 
897 		if (mobj_ffa_add_pages_at(s->mf, &s->current_page_idx,
898 					  addr, page_count))
899 			return FFA_INVALID_PARAMETERS;
900 	}
901 
902 	s->region_count -= region_count;
903 	if (s->region_count)
904 		return region_count * sizeof(*arange);
905 
906 	if (s->current_page_idx != s->page_count)
907 		return FFA_INVALID_PARAMETERS;
908 
909 	return 0;
910 }
911 
912 static int add_mem_share_frag(struct mem_frag_state *s, void *buf, size_t flen)
913 {
914 	int rc = 0;
915 
916 	rc = add_mem_share_helper(&s->share, buf, flen);
917 	if (rc >= 0) {
918 		if (!ADD_OVERFLOW(s->frag_offset, rc, &s->frag_offset)) {
919 			/* We're not at the end of the descriptor yet */
920 			if (s->share.region_count)
921 				return s->frag_offset;
922 
923 			/* We're done */
924 			rc = 0;
925 		} else {
926 			rc = FFA_INVALID_PARAMETERS;
927 		}
928 	}
929 
930 	SLIST_REMOVE(&frag_state_head, s, mem_frag_state, link);
931 	if (rc < 0)
932 		mobj_ffa_sel1_spmc_delete(s->share.mf);
933 	else
934 		mobj_ffa_push_to_inactive(s->share.mf);
935 	free(s);
936 
937 	return rc;
938 }
939 
940 static bool is_sp_share(struct ffa_mem_transaction_x *mem_trans,
941 			void *buf)
942 {
943 	struct ffa_mem_access_perm *perm = NULL;
944 	struct ffa_mem_access *mem_acc = NULL;
945 
946 	if (!IS_ENABLED(CFG_SECURE_PARTITION))
947 		return false;
948 
949 	if (mem_trans->mem_access_count < 1)
950 		return false;
951 
952 	mem_acc = (void *)((vaddr_t)buf + mem_trans->mem_access_offs);
953 	perm = &mem_acc->access_perm;
954 
955 	/*
956 	 * perm->endpoint_id is read here only to check if the endpoint is
957 	 * OP-TEE. We do read it later on again, but there are some additional
958 	 * checks there to make sure that the data is correct.
959 	 */
960 	return READ_ONCE(perm->endpoint_id) != my_endpoint_id;
961 }
962 
963 static int add_mem_share(struct ffa_mem_transaction_x *mem_trans,
964 			 tee_mm_entry_t *mm, void *buf, size_t blen,
965 			 size_t flen, uint64_t *global_handle)
966 {
967 	int rc = 0;
968 	struct mem_share_state share = { };
969 	size_t addr_range_offs = 0;
970 	uint64_t cookie = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID;
971 	size_t n = 0;
972 
973 	rc = mem_share_init(mem_trans, buf, flen, &share.page_count,
974 			    &share.region_count, &addr_range_offs);
975 	if (rc)
976 		return rc;
977 
978 	if (MUL_OVERFLOW(share.region_count,
979 			 sizeof(struct ffa_address_range), &n) ||
980 	    ADD_OVERFLOW(n, addr_range_offs, &n) || n > blen)
981 		return FFA_INVALID_PARAMETERS;
982 
983 	if (mem_trans->global_handle)
984 		cookie = mem_trans->global_handle;
985 	share.mf = mobj_ffa_sel1_spmc_new(cookie, share.page_count);
986 	if (!share.mf)
987 		return FFA_NO_MEMORY;
988 
989 	if (flen != blen) {
990 		struct mem_frag_state *s = calloc(sizeof(*s), 1);
991 
992 		if (!s) {
993 			rc = FFA_NO_MEMORY;
994 			goto err;
995 		}
996 		s->share = share;
997 		s->mm = mm;
998 		s->frag_offset = addr_range_offs;
999 
1000 		SLIST_INSERT_HEAD(&frag_state_head, s, link);
1001 		rc = add_mem_share_frag(s, (char *)buf + addr_range_offs,
1002 					flen - addr_range_offs);
1003 
1004 		if (rc >= 0)
1005 			*global_handle = mobj_ffa_get_cookie(share.mf);
1006 
1007 		return rc;
1008 	}
1009 
1010 	rc = add_mem_share_helper(&share, (char *)buf + addr_range_offs,
1011 				  flen - addr_range_offs);
1012 	if (rc) {
1013 		/*
1014 		 * Number of consumed bytes may be returned instead of 0 for
1015 		 * done.
1016 		 */
1017 		rc = FFA_INVALID_PARAMETERS;
1018 		goto err;
1019 	}
1020 
1021 	*global_handle = mobj_ffa_push_to_inactive(share.mf);
1022 
1023 	return 0;
1024 err:
1025 	mobj_ffa_sel1_spmc_delete(share.mf);
1026 	return rc;
1027 }
1028 
1029 static int handle_mem_share_tmem(paddr_t pbuf, size_t blen, size_t flen,
1030 				 unsigned int page_count,
1031 				 uint64_t *global_handle, struct ffa_rxtx *rxtx)
1032 {
1033 	struct ffa_mem_transaction_x mem_trans = { };
1034 	int rc = 0;
1035 	size_t len = 0;
1036 	void *buf = NULL;
1037 	tee_mm_entry_t *mm = NULL;
1038 	vaddr_t offs = pbuf & SMALL_PAGE_MASK;
1039 
1040 	if (MUL_OVERFLOW(page_count, SMALL_PAGE_SIZE, &len))
1041 		return FFA_INVALID_PARAMETERS;
1042 	if (!core_pbuf_is(CORE_MEM_NON_SEC, pbuf, len))
1043 		return FFA_INVALID_PARAMETERS;
1044 
1045 	/*
1046 	 * Check that the length reported in flen is covered by len even
1047 	 * if the offset is taken into account.
1048 	 */
1049 	if (len < flen || len - offs < flen)
1050 		return FFA_INVALID_PARAMETERS;
1051 
1052 	mm = tee_mm_alloc(&tee_mm_shm, len);
1053 	if (!mm)
1054 		return FFA_NO_MEMORY;
1055 
1056 	if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pbuf,
1057 					  page_count, MEM_AREA_NSEC_SHM)) {
1058 		rc = FFA_INVALID_PARAMETERS;
1059 		goto out;
1060 	}
1061 	buf = (void *)(tee_mm_get_smem(mm) + offs);
1062 
1063 	cpu_spin_lock(&rxtx->spinlock);
1064 	rc = spmc_read_mem_transaction(rxtx->ffa_vers, buf, flen, &mem_trans);
1065 	if (!rc && IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
1066 	    virt_set_guest(mem_trans.sender_id))
1067 		rc = FFA_DENIED;
1068 	if (!rc)
1069 		rc = add_mem_share(&mem_trans, mm, buf, blen, flen,
1070 				   global_handle);
1071 	virt_unset_guest();
1072 	cpu_spin_unlock(&rxtx->spinlock);
1073 	if (rc > 0)
1074 		return rc;
1075 
1076 	core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count);
1077 out:
1078 	tee_mm_free(mm);
1079 	return rc;
1080 }
1081 
1082 static int handle_mem_share_rxbuf(size_t blen, size_t flen,
1083 				  uint64_t *global_handle,
1084 				  struct ffa_rxtx *rxtx)
1085 {
1086 	struct ffa_mem_transaction_x mem_trans = { };
1087 	int rc = FFA_DENIED;
1088 
1089 	cpu_spin_lock(&rxtx->spinlock);
1090 
1091 	if (!rxtx->rx || flen > rxtx->size)
1092 		goto out;
1093 
1094 	rc = spmc_read_mem_transaction(rxtx->ffa_vers, rxtx->rx, flen,
1095 				       &mem_trans);
1096 	if (rc)
1097 		goto out;
1098 	if (is_sp_share(&mem_trans, rxtx->rx)) {
1099 		rc = spmc_sp_add_share(&mem_trans, rxtx, blen,
1100 				       global_handle, NULL);
1101 		goto out;
1102 	}
1103 
1104 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
1105 	    virt_set_guest(mem_trans.sender_id))
1106 		goto out;
1107 
1108 	rc = add_mem_share(&mem_trans, NULL, rxtx->rx, blen, flen,
1109 			   global_handle);
1110 
1111 	virt_unset_guest();
1112 
1113 out:
1114 	cpu_spin_unlock(&rxtx->spinlock);
1115 
1116 	return rc;
1117 }
1118 
1119 static void handle_mem_share(struct thread_smc_args *args,
1120 			     struct ffa_rxtx *rxtx)
1121 {
1122 	uint32_t tot_len = args->a1;
1123 	uint32_t frag_len = args->a2;
1124 	uint64_t addr = args->a3;
1125 	uint32_t page_count = args->a4;
1126 	uint32_t ret_w1 = 0;
1127 	uint32_t ret_w2 = FFA_INVALID_PARAMETERS;
1128 	uint32_t ret_w3 = 0;
1129 	uint32_t ret_fid = FFA_ERROR;
1130 	uint64_t global_handle = 0;
1131 	int rc = 0;
1132 
1133 	/* Check that the MBZs are indeed 0 */
1134 	if (args->a5 || args->a6 || args->a7)
1135 		goto out;
1136 
1137 	/* Check that fragment length doesn't exceed total length */
1138 	if (frag_len > tot_len)
1139 		goto out;
1140 
1141 	/* Check for 32-bit calling convention */
1142 	if (args->a0 == FFA_MEM_SHARE_32)
1143 		addr &= UINT32_MAX;
1144 
1145 	if (!addr) {
1146 		/*
1147 		 * The memory transaction descriptor is passed via our rx
1148 		 * buffer.
1149 		 */
1150 		if (page_count)
1151 			goto out;
1152 		rc = handle_mem_share_rxbuf(tot_len, frag_len, &global_handle,
1153 					    rxtx);
1154 	} else {
1155 		rc = handle_mem_share_tmem(addr, tot_len, frag_len, page_count,
1156 					   &global_handle, rxtx);
1157 	}
1158 	if (rc < 0) {
1159 		ret_w2 = rc;
1160 	} else if (rc > 0) {
1161 		ret_fid = FFA_MEM_FRAG_RX;
1162 		ret_w3 = rc;
1163 		reg_pair_from_64(global_handle, &ret_w2, &ret_w1);
1164 	} else {
1165 		ret_fid = FFA_SUCCESS_32;
1166 		reg_pair_from_64(global_handle, &ret_w3, &ret_w2);
1167 	}
1168 out:
1169 	spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0);
1170 }
1171 
1172 static struct mem_frag_state *get_frag_state(uint64_t global_handle)
1173 {
1174 	struct mem_frag_state *s = NULL;
1175 
1176 	SLIST_FOREACH(s, &frag_state_head, link)
1177 		if (mobj_ffa_get_cookie(s->share.mf) == global_handle)
1178 			return s;
1179 
1180 	return NULL;
1181 }
1182 
1183 static void handle_mem_frag_tx(struct thread_smc_args *args,
1184 			       struct ffa_rxtx *rxtx)
1185 {
1186 	uint64_t global_handle = reg_pair_to_64(args->a2, args->a1);
1187 	size_t flen = args->a3;
1188 	uint32_t endpoint_id = args->a4;
1189 	struct mem_frag_state *s = NULL;
1190 	tee_mm_entry_t *mm = NULL;
1191 	unsigned int page_count = 0;
1192 	void *buf = NULL;
1193 	uint32_t ret_w1 = 0;
1194 	uint32_t ret_w2 = 0;
1195 	uint32_t ret_w3 = 0;
1196 	uint32_t ret_fid = 0;
1197 	int rc = 0;
1198 
1199 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1200 		uint16_t guest_id = endpoint_id >> 16;
1201 
1202 		if (!guest_id || virt_set_guest(guest_id)) {
1203 			rc = FFA_INVALID_PARAMETERS;
1204 			goto out_set_rc;
1205 		}
1206 	}
1207 
1208 	/*
1209 	 * Currently we're only doing this for fragmented FFA_MEM_SHARE_*
1210 	 * requests.
1211 	 */
1212 
1213 	cpu_spin_lock(&rxtx->spinlock);
1214 
1215 	s = get_frag_state(global_handle);
1216 	if (!s) {
1217 		rc = FFA_INVALID_PARAMETERS;
1218 		goto out;
1219 	}
1220 
1221 	mm = s->mm;
1222 	if (mm) {
1223 		if (flen > tee_mm_get_bytes(mm)) {
1224 			rc = FFA_INVALID_PARAMETERS;
1225 			goto out;
1226 		}
1227 		page_count = s->share.page_count;
1228 		buf = (void *)tee_mm_get_smem(mm);
1229 	} else {
1230 		if (flen > rxtx->size) {
1231 			rc = FFA_INVALID_PARAMETERS;
1232 			goto out;
1233 		}
1234 		buf = rxtx->rx;
1235 	}
1236 
1237 	rc = add_mem_share_frag(s, buf, flen);
1238 out:
1239 	virt_unset_guest();
1240 	cpu_spin_unlock(&rxtx->spinlock);
1241 
1242 	if (rc <= 0 && mm) {
1243 		core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count);
1244 		tee_mm_free(mm);
1245 	}
1246 
1247 out_set_rc:
1248 	if (rc < 0) {
1249 		ret_fid = FFA_ERROR;
1250 		ret_w2 = rc;
1251 	} else if (rc > 0) {
1252 		ret_fid = FFA_MEM_FRAG_RX;
1253 		ret_w3 = rc;
1254 		reg_pair_from_64(global_handle, &ret_w2, &ret_w1);
1255 	} else {
1256 		ret_fid = FFA_SUCCESS_32;
1257 		reg_pair_from_64(global_handle, &ret_w3, &ret_w2);
1258 	}
1259 
1260 	spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0);
1261 }
1262 
1263 static void handle_mem_reclaim(struct thread_smc_args *args)
1264 {
1265 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1266 	uint32_t ret_fid = FFA_ERROR;
1267 	uint64_t cookie = 0;
1268 
1269 	if (args->a3 || args->a4 || args->a5 || args->a6 || args->a7)
1270 		goto out;
1271 
1272 	cookie = reg_pair_to_64(args->a2, args->a1);
1273 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1274 		uint16_t guest_id = 0;
1275 
1276 		if (cookie & FFA_MEMORY_HANDLE_HYPERVISOR_BIT) {
1277 			guest_id = virt_find_guest_by_cookie(cookie);
1278 		} else {
1279 			guest_id = (cookie >> FFA_MEMORY_HANDLE_PRTN_SHIFT) &
1280 				   FFA_MEMORY_HANDLE_PRTN_MASK;
1281 		}
1282 		if (!guest_id || virt_set_guest(guest_id))
1283 			goto out;
1284 	}
1285 
1286 	switch (mobj_ffa_sel1_spmc_reclaim(cookie)) {
1287 	case TEE_SUCCESS:
1288 		ret_fid = FFA_SUCCESS_32;
1289 		ret_val = 0;
1290 		break;
1291 	case TEE_ERROR_ITEM_NOT_FOUND:
1292 		DMSG("cookie %#"PRIx64" not found", cookie);
1293 		ret_val = FFA_INVALID_PARAMETERS;
1294 		break;
1295 	default:
1296 		DMSG("cookie %#"PRIx64" busy", cookie);
1297 		ret_val = FFA_DENIED;
1298 		break;
1299 	}
1300 
1301 	virt_unset_guest();
1302 
1303 out:
1304 	spmc_set_args(args, ret_fid, ret_val, 0, 0, 0, 0);
1305 }
1306 #endif
1307 
1308 /* Only called from assembly */
1309 void thread_spmc_msg_recv(struct thread_smc_args *args);
1310 void thread_spmc_msg_recv(struct thread_smc_args *args)
1311 {
1312 	assert((thread_get_exceptions() & THREAD_EXCP_ALL) == THREAD_EXCP_ALL);
1313 	switch (args->a0) {
1314 #if defined(CFG_CORE_SEL1_SPMC)
1315 	case FFA_FEATURES:
1316 		handle_features(args);
1317 		break;
1318 	case FFA_SPM_ID_GET:
1319 		handle_spm_id_get(args);
1320 		break;
1321 #ifdef ARM64
1322 	case FFA_RXTX_MAP_64:
1323 #endif
1324 	case FFA_RXTX_MAP_32:
1325 		spmc_handle_rxtx_map(args, &my_rxtx);
1326 		break;
1327 	case FFA_RXTX_UNMAP:
1328 		spmc_handle_rxtx_unmap(args, &my_rxtx);
1329 		break;
1330 	case FFA_RX_RELEASE:
1331 		spmc_handle_rx_release(args, &my_rxtx);
1332 		break;
1333 	case FFA_PARTITION_INFO_GET:
1334 		spmc_handle_partition_info_get(args, &my_rxtx);
1335 		break;
1336 	case FFA_RUN:
1337 		spmc_handle_run(args);
1338 		break;
1339 #endif /*CFG_CORE_SEL1_SPMC*/
1340 	case FFA_INTERRUPT:
1341 		interrupt_main_handler();
1342 		spmc_set_args(args, FFA_MSG_WAIT, 0, 0, 0, 0, 0);
1343 		break;
1344 #ifdef ARM64
1345 	case FFA_MSG_SEND_DIRECT_REQ_64:
1346 #endif
1347 	case FFA_MSG_SEND_DIRECT_REQ_32:
1348 		handle_direct_request(args, &my_rxtx);
1349 		break;
1350 #if defined(CFG_CORE_SEL1_SPMC)
1351 #ifdef ARM64
1352 	case FFA_MEM_SHARE_64:
1353 #endif
1354 	case FFA_MEM_SHARE_32:
1355 		handle_mem_share(args, &my_rxtx);
1356 		break;
1357 	case FFA_MEM_RECLAIM:
1358 		if (!IS_ENABLED(CFG_SECURE_PARTITION) ||
1359 		    !ffa_mem_reclaim(args, NULL))
1360 			handle_mem_reclaim(args);
1361 		break;
1362 	case FFA_MEM_FRAG_TX:
1363 		handle_mem_frag_tx(args, &my_rxtx);
1364 		break;
1365 #endif /*CFG_CORE_SEL1_SPMC*/
1366 	default:
1367 		EMSG("Unhandled FFA function ID %#"PRIx32, (uint32_t)args->a0);
1368 		spmc_set_args(args, FFA_ERROR, FFA_PARAM_MBZ, FFA_NOT_SUPPORTED,
1369 			      FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
1370 	}
1371 }
1372 
1373 static TEE_Result yielding_call_with_arg(uint64_t cookie, uint32_t offset)
1374 {
1375 	size_t sz_rpc = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS);
1376 	struct thread_ctx *thr = threads + thread_get_id();
1377 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1378 	struct optee_msg_arg *arg = NULL;
1379 	struct mobj *mobj = NULL;
1380 	uint32_t num_params = 0;
1381 	size_t sz = 0;
1382 
1383 	mobj = mobj_ffa_get_by_cookie(cookie, 0);
1384 	if (!mobj) {
1385 		EMSG("Can't find cookie %#"PRIx64, cookie);
1386 		return TEE_ERROR_BAD_PARAMETERS;
1387 	}
1388 
1389 	res = mobj_inc_map(mobj);
1390 	if (res)
1391 		goto out_put_mobj;
1392 
1393 	res = TEE_ERROR_BAD_PARAMETERS;
1394 	arg = mobj_get_va(mobj, offset, sizeof(*arg));
1395 	if (!arg)
1396 		goto out_dec_map;
1397 
1398 	num_params = READ_ONCE(arg->num_params);
1399 	if (num_params > OPTEE_MSG_MAX_NUM_PARAMS)
1400 		goto out_dec_map;
1401 
1402 	sz = OPTEE_MSG_GET_ARG_SIZE(num_params);
1403 
1404 	thr->rpc_arg = mobj_get_va(mobj, offset + sz, sz_rpc);
1405 	if (!thr->rpc_arg)
1406 		goto out_dec_map;
1407 
1408 	virt_on_stdcall();
1409 	res = tee_entry_std(arg, num_params);
1410 
1411 	thread_rpc_shm_cache_clear(&thr->shm_cache);
1412 	thr->rpc_arg = NULL;
1413 
1414 out_dec_map:
1415 	mobj_dec_map(mobj);
1416 out_put_mobj:
1417 	mobj_put(mobj);
1418 	return res;
1419 }
1420 
1421 /*
1422  * Helper routine for the assembly function thread_std_smc_entry()
1423  *
1424  * Note: this function is weak just to make link_dummies_paged.c happy.
1425  */
1426 uint32_t __weak __thread_std_smc_entry(uint32_t a0, uint32_t a1,
1427 				       uint32_t a2, uint32_t a3,
1428 				       uint32_t a4, uint32_t a5 __unused)
1429 {
1430 	/*
1431 	 * Arguments are supplied from handle_yielding_call() as:
1432 	 * a0 <- w1
1433 	 * a1 <- w3
1434 	 * a2 <- w4
1435 	 * a3 <- w5
1436 	 * a4 <- w6
1437 	 * a5 <- w7
1438 	 */
1439 	thread_get_tsd()->rpc_target_info = swap_src_dst(a0);
1440 	if (a1 == OPTEE_FFA_YIELDING_CALL_WITH_ARG)
1441 		return yielding_call_with_arg(reg_pair_to_64(a3, a2), a4);
1442 	return FFA_DENIED;
1443 }
1444 
1445 static bool set_fmem(struct optee_msg_param *param, struct thread_param *tpm)
1446 {
1447 	uint64_t offs = tpm->u.memref.offs;
1448 
1449 	param->attr = tpm->attr - THREAD_PARAM_ATTR_MEMREF_IN +
1450 		      OPTEE_MSG_ATTR_TYPE_FMEM_INPUT;
1451 
1452 	param->u.fmem.offs_low = offs;
1453 	param->u.fmem.offs_high = offs >> 32;
1454 	if (param->u.fmem.offs_high != offs >> 32)
1455 		return false;
1456 
1457 	param->u.fmem.size = tpm->u.memref.size;
1458 	if (tpm->u.memref.mobj) {
1459 		uint64_t cookie = mobj_get_cookie(tpm->u.memref.mobj);
1460 
1461 		/* If a mobj is passed it better be one with a valid cookie. */
1462 		if (cookie == OPTEE_MSG_FMEM_INVALID_GLOBAL_ID)
1463 			return false;
1464 		param->u.fmem.global_id = cookie;
1465 	} else {
1466 		param->u.fmem.global_id = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID;
1467 	}
1468 
1469 	return true;
1470 }
1471 
1472 static uint32_t get_rpc_arg(uint32_t cmd, size_t num_params,
1473 			    struct thread_param *params,
1474 			    struct optee_msg_arg **arg_ret)
1475 {
1476 	size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS);
1477 	struct thread_ctx *thr = threads + thread_get_id();
1478 	struct optee_msg_arg *arg = thr->rpc_arg;
1479 
1480 	if (num_params > THREAD_RPC_MAX_NUM_PARAMS)
1481 		return TEE_ERROR_BAD_PARAMETERS;
1482 
1483 	if (!arg) {
1484 		EMSG("rpc_arg not set");
1485 		return TEE_ERROR_GENERIC;
1486 	}
1487 
1488 	memset(arg, 0, sz);
1489 	arg->cmd = cmd;
1490 	arg->num_params = num_params;
1491 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1492 
1493 	for (size_t n = 0; n < num_params; n++) {
1494 		switch (params[n].attr) {
1495 		case THREAD_PARAM_ATTR_NONE:
1496 			arg->params[n].attr = OPTEE_MSG_ATTR_TYPE_NONE;
1497 			break;
1498 		case THREAD_PARAM_ATTR_VALUE_IN:
1499 		case THREAD_PARAM_ATTR_VALUE_OUT:
1500 		case THREAD_PARAM_ATTR_VALUE_INOUT:
1501 			arg->params[n].attr = params[n].attr -
1502 					      THREAD_PARAM_ATTR_VALUE_IN +
1503 					      OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
1504 			arg->params[n].u.value.a = params[n].u.value.a;
1505 			arg->params[n].u.value.b = params[n].u.value.b;
1506 			arg->params[n].u.value.c = params[n].u.value.c;
1507 			break;
1508 		case THREAD_PARAM_ATTR_MEMREF_IN:
1509 		case THREAD_PARAM_ATTR_MEMREF_OUT:
1510 		case THREAD_PARAM_ATTR_MEMREF_INOUT:
1511 			if (!set_fmem(arg->params + n, params + n))
1512 				return TEE_ERROR_BAD_PARAMETERS;
1513 			break;
1514 		default:
1515 			return TEE_ERROR_BAD_PARAMETERS;
1516 		}
1517 	}
1518 
1519 	if (arg_ret)
1520 		*arg_ret = arg;
1521 
1522 	return TEE_SUCCESS;
1523 }
1524 
1525 static uint32_t get_rpc_arg_res(struct optee_msg_arg *arg, size_t num_params,
1526 				struct thread_param *params)
1527 {
1528 	for (size_t n = 0; n < num_params; n++) {
1529 		switch (params[n].attr) {
1530 		case THREAD_PARAM_ATTR_VALUE_OUT:
1531 		case THREAD_PARAM_ATTR_VALUE_INOUT:
1532 			params[n].u.value.a = arg->params[n].u.value.a;
1533 			params[n].u.value.b = arg->params[n].u.value.b;
1534 			params[n].u.value.c = arg->params[n].u.value.c;
1535 			break;
1536 		case THREAD_PARAM_ATTR_MEMREF_OUT:
1537 		case THREAD_PARAM_ATTR_MEMREF_INOUT:
1538 			params[n].u.memref.size = arg->params[n].u.fmem.size;
1539 			break;
1540 		default:
1541 			break;
1542 		}
1543 	}
1544 
1545 	return arg->ret;
1546 }
1547 
1548 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params,
1549 			struct thread_param *params)
1550 {
1551 	struct thread_rpc_arg rpc_arg = { .call = {
1552 			.w1 = thread_get_tsd()->rpc_target_info,
1553 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
1554 		},
1555 	};
1556 	struct optee_msg_arg *arg = NULL;
1557 	uint32_t ret = 0;
1558 
1559 	ret = get_rpc_arg(cmd, num_params, params, &arg);
1560 	if (ret)
1561 		return ret;
1562 
1563 	thread_rpc(&rpc_arg);
1564 
1565 	return get_rpc_arg_res(arg, num_params, params);
1566 }
1567 
1568 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj)
1569 {
1570 	struct thread_rpc_arg rpc_arg = { .call = {
1571 			.w1 = thread_get_tsd()->rpc_target_info,
1572 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
1573 		},
1574 	};
1575 	struct thread_param param = THREAD_PARAM_VALUE(IN, bt, cookie, 0);
1576 	uint32_t res2 = 0;
1577 	uint32_t res = 0;
1578 
1579 	DMSG("freeing cookie %#"PRIx64, cookie);
1580 
1581 	res = get_rpc_arg(OPTEE_RPC_CMD_SHM_FREE, 1, &param, NULL);
1582 
1583 	mobj_put(mobj);
1584 	res2 = mobj_ffa_unregister_by_cookie(cookie);
1585 	if (res2)
1586 		DMSG("mobj_ffa_unregister_by_cookie(%#"PRIx64"): %#"PRIx32,
1587 		     cookie, res2);
1588 	if (!res)
1589 		thread_rpc(&rpc_arg);
1590 }
1591 
1592 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt)
1593 {
1594 	struct thread_rpc_arg rpc_arg = { .call = {
1595 			.w1 = thread_get_tsd()->rpc_target_info,
1596 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
1597 		},
1598 	};
1599 	struct thread_param param = THREAD_PARAM_VALUE(IN, bt, size, align);
1600 	struct optee_msg_arg *arg = NULL;
1601 	unsigned int internal_offset = 0;
1602 	struct mobj *mobj = NULL;
1603 	uint64_t cookie = 0;
1604 
1605 	if (get_rpc_arg(OPTEE_RPC_CMD_SHM_ALLOC, 1, &param, &arg))
1606 		return NULL;
1607 
1608 	thread_rpc(&rpc_arg);
1609 
1610 	if (arg->num_params != 1 ||
1611 	    arg->params->attr != OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT)
1612 		return NULL;
1613 
1614 	internal_offset = READ_ONCE(arg->params->u.fmem.internal_offs);
1615 	cookie = READ_ONCE(arg->params->u.fmem.global_id);
1616 	mobj = mobj_ffa_get_by_cookie(cookie, internal_offset);
1617 	if (!mobj) {
1618 		DMSG("mobj_ffa_get_by_cookie(%#"PRIx64", %#x): failed",
1619 		     cookie, internal_offset);
1620 		return NULL;
1621 	}
1622 
1623 	assert(mobj_is_nonsec(mobj));
1624 
1625 	if (mobj->size < size) {
1626 		DMSG("Mobj %#"PRIx64": wrong size", cookie);
1627 		mobj_put(mobj);
1628 		return NULL;
1629 	}
1630 
1631 	if (mobj_inc_map(mobj)) {
1632 		DMSG("mobj_inc_map(%#"PRIx64"): failed", cookie);
1633 		mobj_put(mobj);
1634 		return NULL;
1635 	}
1636 
1637 	return mobj;
1638 }
1639 
1640 struct mobj *thread_rpc_alloc_payload(size_t size)
1641 {
1642 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_APPL);
1643 }
1644 
1645 struct mobj *thread_rpc_alloc_kernel_payload(size_t size)
1646 {
1647 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_KERNEL);
1648 }
1649 
1650 void thread_rpc_free_kernel_payload(struct mobj *mobj)
1651 {
1652 	thread_rpc_free(OPTEE_RPC_SHM_TYPE_KERNEL, mobj_get_cookie(mobj), mobj);
1653 }
1654 
1655 void thread_rpc_free_payload(struct mobj *mobj)
1656 {
1657 	thread_rpc_free(OPTEE_RPC_SHM_TYPE_APPL, mobj_get_cookie(mobj),
1658 			mobj);
1659 }
1660 
1661 struct mobj *thread_rpc_alloc_global_payload(size_t size)
1662 {
1663 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_GLOBAL);
1664 }
1665 
1666 void thread_rpc_free_global_payload(struct mobj *mobj)
1667 {
1668 	thread_rpc_free(OPTEE_RPC_SHM_TYPE_GLOBAL, mobj_get_cookie(mobj),
1669 			mobj);
1670 }
1671 
1672 void thread_spmc_register_secondary_ep(vaddr_t ep)
1673 {
1674 	unsigned long ret = 0;
1675 
1676 	/* Let the SPM know the entry point for secondary CPUs */
1677 	ret = thread_smc(FFA_SECONDARY_EP_REGISTER_64, ep, 0, 0);
1678 
1679 	if (ret != FFA_SUCCESS_32 && ret != FFA_SUCCESS_64)
1680 		EMSG("FFA_SECONDARY_EP_REGISTER_64 ret %#lx", ret);
1681 }
1682 
1683 #if defined(CFG_CORE_SEL1_SPMC)
1684 static TEE_Result spmc_init(void)
1685 {
1686 	my_endpoint_id = SPMC_ENDPOINT_ID;
1687 	DMSG("My endpoint ID %#x", my_endpoint_id);
1688 
1689 	/*
1690 	 * If SPMD think we are version 1.0 it will report version 1.0 to
1691 	 * normal world regardless of what version we query the SPM with.
1692 	 * However, if SPMD think we are version 1.1 it will forward
1693 	 * queries from normal world to let us negotiate version. So by
1694 	 * setting version 1.0 here we should be compatible.
1695 	 *
1696 	 * Note that disagreement on negotiated version means that we'll
1697 	 * have communication problems with normal world.
1698 	 */
1699 	my_rxtx.ffa_vers = FFA_VERSION_1_0;
1700 
1701 	return TEE_SUCCESS;
1702 }
1703 #else /* !defined(CFG_CORE_SEL1_SPMC) */
1704 static bool is_ffa_success(uint32_t fid)
1705 {
1706 #ifdef ARM64
1707 	if (fid == FFA_SUCCESS_64)
1708 		return true;
1709 #endif
1710 	return fid == FFA_SUCCESS_32;
1711 }
1712 
1713 static void spmc_rxtx_map(struct ffa_rxtx *rxtx)
1714 {
1715 	struct thread_smc_args args = {
1716 #ifdef ARM64
1717 		.a0 = FFA_RXTX_MAP_64,
1718 #else
1719 		.a0 = FFA_RXTX_MAP_32,
1720 #endif
1721 		.a1 = virt_to_phys(rxtx->tx),
1722 		.a2 = virt_to_phys(rxtx->rx),
1723 		.a3 = 1,
1724 	};
1725 
1726 	thread_smccc(&args);
1727 	if (!is_ffa_success(args.a0)) {
1728 		if (args.a0 == FFA_ERROR)
1729 			EMSG("rxtx map failed with error %ld", args.a2);
1730 		else
1731 			EMSG("rxtx map failed");
1732 		panic();
1733 	}
1734 }
1735 
1736 static uint16_t get_my_id(void)
1737 {
1738 	struct thread_smc_args args = {
1739 		.a0 = FFA_ID_GET,
1740 	};
1741 
1742 	thread_smccc(&args);
1743 	if (!is_ffa_success(args.a0)) {
1744 		if (args.a0 == FFA_ERROR)
1745 			EMSG("Get id failed with error %ld", args.a2);
1746 		else
1747 			EMSG("Get id failed");
1748 		panic();
1749 	}
1750 
1751 	return args.a2;
1752 }
1753 
1754 static uint32_t get_ffa_version(uint32_t my_version)
1755 {
1756 	struct thread_smc_args args = {
1757 		.a0 = FFA_VERSION,
1758 		.a1 = my_version,
1759 	};
1760 
1761 	thread_smccc(&args);
1762 	if (args.a0 & BIT(31)) {
1763 		EMSG("FF-A version failed with error %ld", args.a0);
1764 		panic();
1765 	}
1766 
1767 	return args.a0;
1768 }
1769 
1770 static void *spmc_retrieve_req(uint64_t cookie,
1771 			       struct ffa_mem_transaction_x *trans)
1772 {
1773 	struct ffa_mem_access *acc_descr_array = NULL;
1774 	struct ffa_mem_access_perm *perm_descr = NULL;
1775 	struct thread_smc_args args = {
1776 		.a0 = FFA_MEM_RETRIEVE_REQ_32,
1777 		.a3 =	0,	/* Address, Using TX -> MBZ */
1778 		.a4 =   0,	/* Using TX -> MBZ */
1779 	};
1780 	size_t size = 0;
1781 	int rc = 0;
1782 
1783 	if (my_rxtx.ffa_vers == FFA_VERSION_1_0) {
1784 		struct ffa_mem_transaction_1_0 *trans_descr = my_rxtx.tx;
1785 
1786 		size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access);
1787 		memset(trans_descr, 0, size);
1788 		trans_descr->sender_id = thread_get_tsd()->rpc_target_info;
1789 		trans_descr->mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
1790 		trans_descr->global_handle = cookie;
1791 		trans_descr->flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE |
1792 				     FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT;
1793 		trans_descr->mem_access_count = 1;
1794 		acc_descr_array = trans_descr->mem_access_array;
1795 	} else {
1796 		struct ffa_mem_transaction_1_1 *trans_descr = my_rxtx.tx;
1797 
1798 		size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access);
1799 		memset(trans_descr, 0, size);
1800 		trans_descr->sender_id = thread_get_tsd()->rpc_target_info;
1801 		trans_descr->mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
1802 		trans_descr->global_handle = cookie;
1803 		trans_descr->flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE |
1804 				     FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT;
1805 		trans_descr->mem_access_count = 1;
1806 		trans_descr->mem_access_offs = sizeof(*trans_descr);
1807 		trans_descr->mem_access_size = sizeof(struct ffa_mem_access);
1808 		acc_descr_array = (void *)((vaddr_t)my_rxtx.tx +
1809 					   sizeof(*trans_descr));
1810 	}
1811 	acc_descr_array->region_offs = 0;
1812 	acc_descr_array->reserved = 0;
1813 	perm_descr = &acc_descr_array->access_perm;
1814 	perm_descr->endpoint_id = my_endpoint_id;
1815 	perm_descr->perm = FFA_MEM_ACC_RW;
1816 	perm_descr->flags = 0;
1817 
1818 	args.a1 = size; /* Total Length */
1819 	args.a2 = size; /* Frag Length == Total length */
1820 	thread_smccc(&args);
1821 	if (args.a0 != FFA_MEM_RETRIEVE_RESP) {
1822 		if (args.a0 == FFA_ERROR)
1823 			EMSG("Failed to fetch cookie %#"PRIx64" error code %d",
1824 			     cookie, (int)args.a2);
1825 		else
1826 			EMSG("Failed to fetch cookie %#"PRIx64" a0 %#"PRIx64,
1827 			     cookie, args.a0);
1828 		return NULL;
1829 	}
1830 	rc = spmc_read_mem_transaction(my_rxtx.ffa_vers, my_rxtx.tx,
1831 				       my_rxtx.size, trans);
1832 	if (rc) {
1833 		EMSG("Memory transaction failure for cookie %#"PRIx64" rc %d",
1834 		     cookie, rc);
1835 		return NULL;
1836 	}
1837 
1838 	return my_rxtx.rx;
1839 }
1840 
1841 void thread_spmc_relinquish(uint64_t cookie)
1842 {
1843 	struct ffa_mem_relinquish *relinquish_desc = my_rxtx.tx;
1844 	struct thread_smc_args args = {
1845 		.a0 = FFA_MEM_RELINQUISH,
1846 	};
1847 
1848 	memset(relinquish_desc, 0, sizeof(*relinquish_desc));
1849 	relinquish_desc->handle = cookie;
1850 	relinquish_desc->flags = 0;
1851 	relinquish_desc->endpoint_count = 1;
1852 	relinquish_desc->endpoint_id_array[0] = my_endpoint_id;
1853 	thread_smccc(&args);
1854 	if (!is_ffa_success(args.a0))
1855 		EMSG("Failed to relinquish cookie %#"PRIx64, cookie);
1856 }
1857 
1858 static int set_pages(struct ffa_address_range *regions,
1859 		     unsigned int num_regions, unsigned int num_pages,
1860 		     struct mobj_ffa *mf)
1861 {
1862 	unsigned int n = 0;
1863 	unsigned int idx = 0;
1864 
1865 	for (n = 0; n < num_regions; n++) {
1866 		unsigned int page_count = READ_ONCE(regions[n].page_count);
1867 		uint64_t addr = READ_ONCE(regions[n].address);
1868 
1869 		if (mobj_ffa_add_pages_at(mf, &idx, addr, page_count))
1870 			return FFA_INVALID_PARAMETERS;
1871 	}
1872 
1873 	if (idx != num_pages)
1874 		return FFA_INVALID_PARAMETERS;
1875 
1876 	return 0;
1877 }
1878 
1879 struct mobj_ffa *thread_spmc_populate_mobj_from_rx(uint64_t cookie)
1880 {
1881 	struct mobj_ffa *ret = NULL;
1882 	struct ffa_mem_transaction_x retrieve_desc = { };
1883 	struct ffa_mem_access *descr_array = NULL;
1884 	struct ffa_mem_region *descr = NULL;
1885 	struct mobj_ffa *mf = NULL;
1886 	unsigned int num_pages = 0;
1887 	unsigned int offs = 0;
1888 	void *buf = NULL;
1889 	struct thread_smc_args ffa_rx_release_args = {
1890 		.a0 = FFA_RX_RELEASE
1891 	};
1892 
1893 	/*
1894 	 * OP-TEE is only supporting a single mem_region while the
1895 	 * specification allows for more than one.
1896 	 */
1897 	buf = spmc_retrieve_req(cookie, &retrieve_desc);
1898 	if (!buf) {
1899 		EMSG("Failed to retrieve cookie from rx buffer %#"PRIx64,
1900 		     cookie);
1901 		return NULL;
1902 	}
1903 
1904 	descr_array = (void *)((vaddr_t)buf + retrieve_desc.mem_access_offs);
1905 	offs = READ_ONCE(descr_array->region_offs);
1906 	descr = (struct ffa_mem_region *)((vaddr_t)buf + offs);
1907 
1908 	num_pages = READ_ONCE(descr->total_page_count);
1909 	mf = mobj_ffa_spmc_new(cookie, num_pages);
1910 	if (!mf)
1911 		goto out;
1912 
1913 	if (set_pages(descr->address_range_array,
1914 		      READ_ONCE(descr->address_range_count), num_pages, mf)) {
1915 		mobj_ffa_spmc_delete(mf);
1916 		goto out;
1917 	}
1918 
1919 	ret = mf;
1920 
1921 out:
1922 	/* Release RX buffer after the mem retrieve request. */
1923 	thread_smccc(&ffa_rx_release_args);
1924 
1925 	return ret;
1926 }
1927 
1928 static TEE_Result spmc_init(void)
1929 {
1930 	unsigned int major = 0;
1931 	unsigned int minor __maybe_unused = 0;
1932 	uint32_t my_vers = 0;
1933 	uint32_t vers = 0;
1934 
1935 	my_vers = MAKE_FFA_VERSION(FFA_VERSION_MAJOR, FFA_VERSION_MINOR);
1936 	vers = get_ffa_version(my_vers);
1937 	major = (vers >> FFA_VERSION_MAJOR_SHIFT) & FFA_VERSION_MAJOR_MASK;
1938 	minor = (vers >> FFA_VERSION_MINOR_SHIFT) & FFA_VERSION_MINOR_MASK;
1939 	DMSG("SPMC reported version %u.%u", major, minor);
1940 	if (major != FFA_VERSION_MAJOR) {
1941 		EMSG("Incompatible major version %u, expected %u",
1942 		     major, FFA_VERSION_MAJOR);
1943 		panic();
1944 	}
1945 	if (vers < my_vers)
1946 		my_vers = vers;
1947 	DMSG("Using version %u.%u",
1948 	     (my_vers >> FFA_VERSION_MAJOR_SHIFT) & FFA_VERSION_MAJOR_MASK,
1949 	     (my_vers >> FFA_VERSION_MINOR_SHIFT) & FFA_VERSION_MINOR_MASK);
1950 	my_rxtx.ffa_vers = my_vers;
1951 
1952 	spmc_rxtx_map(&my_rxtx);
1953 	my_endpoint_id = get_my_id();
1954 	DMSG("My endpoint ID %#x", my_endpoint_id);
1955 
1956 	return TEE_SUCCESS;
1957 }
1958 #endif /* !defined(CFG_CORE_SEL1_SPMC) */
1959 
1960 /*
1961  * boot_final() is always done before exiting at end of boot
1962  * initialization.  In case of virtualization the init-calls are done only
1963  * once a OP-TEE partition has been created. So with virtualization we have
1964  * to initialize via boot_final() to make sure we have a value assigned
1965  * before it's used the first time.
1966  */
1967 #ifdef CFG_NS_VIRTUALIZATION
1968 boot_final(spmc_init);
1969 #else
1970 service_init(spmc_init);
1971 #endif
1972