xref: /optee_os/core/arch/arm/kernel/thread_spmc.c (revision 5c85c87ea8b3da0fffff2407e952044be468cbd7)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2025, Linaro Limited.
4  * Copyright (c) 2019-2024, Arm Limited. All rights reserved.
5  */
6 
7 #include <assert.h>
8 #include <ffa.h>
9 #include <initcall.h>
10 #include <io.h>
11 #include <kernel/dt.h>
12 #include <kernel/interrupt.h>
13 #include <kernel/notif.h>
14 #include <kernel/panic.h>
15 #include <kernel/secure_partition.h>
16 #include <kernel/spinlock.h>
17 #include <kernel/spmc_sp_handler.h>
18 #include <kernel/tee_misc.h>
19 #include <kernel/thread.h>
20 #include <kernel/thread_private.h>
21 #include <kernel/thread_spmc.h>
22 #include <kernel/virtualization.h>
23 #include <libfdt.h>
24 #include <mm/core_mmu.h>
25 #include <mm/mobj.h>
26 #include <optee_ffa.h>
27 #include <optee_msg.h>
28 #include <optee_rpc_cmd.h>
29 #include <sm/optee_smc.h>
30 #include <string.h>
31 #include <sys/queue.h>
32 #include <tee/entry_std.h>
33 #include <tee/uuid.h>
34 #include <util.h>
35 
36 #if defined(CFG_CORE_SEL1_SPMC)
37 struct mem_share_state {
38 	struct mobj_ffa *mf;
39 	unsigned int page_count;
40 	unsigned int region_count;
41 	unsigned int current_page_idx;
42 };
43 
44 struct mem_frag_state {
45 	struct mem_share_state share;
46 	tee_mm_entry_t *mm;
47 	unsigned int frag_offset;
48 	SLIST_ENTRY(mem_frag_state) link;
49 };
50 #endif
51 
52 struct notif_vm_bitmap {
53 	bool initialized;
54 	int do_bottom_half_value;
55 	uint64_t pending;
56 	uint64_t bound;
57 };
58 
59 static unsigned int spmc_notif_lock __nex_data = SPINLOCK_UNLOCK;
60 static bool spmc_notif_is_ready __nex_bss;
61 static int notif_intid __nex_data __maybe_unused = -1;
62 
63 /* Id used to look up the guest specific struct notif_vm_bitmap */
64 static unsigned int notif_vm_bitmap_id __nex_bss;
65 /* Notification state when ns-virtualization isn't enabled */
66 static struct notif_vm_bitmap default_notif_vm_bitmap;
67 
68 /* Initialized in spmc_init() below */
69 uint16_t optee_endpoint_id __nex_bss;
70 static uint16_t spmc_id __nex_bss;
71 #ifdef CFG_CORE_SEL1_SPMC
72 static uint16_t spmd_id __nex_bss;
73 static const uint32_t my_part_props = FFA_PART_PROP_DIRECT_REQ_RECV |
74 				      FFA_PART_PROP_DIRECT_REQ_SEND |
75 #ifdef CFG_NS_VIRTUALIZATION
76 				      FFA_PART_PROP_NOTIF_CREATED |
77 				      FFA_PART_PROP_NOTIF_DESTROYED |
78 #endif
79 #ifdef ARM64
80 				      FFA_PART_PROP_AARCH64_STATE |
81 #endif
82 				      FFA_PART_PROP_IS_PE_ID;
83 
84 static uint32_t my_uuid_words[] = {
85 	/*
86 	 * - if the SPMC is in S-EL2 this UUID describes OP-TEE as a S-EL1
87 	 *   SP, or
88 	 * - if the SPMC is in S-EL1 then this UUID is for OP-TEE as a
89 	 *   logical partition, residing in the same exception level as the
90 	 *   SPMC
91 	 * UUID 486178e0-e7f8-11e3-bc5e-0002a5d5c51b
92 	 */
93 	0xe0786148, 0xe311f8e7, 0x02005ebc, 0x1bc5d5a5,
94 };
95 
96 /*
97  * If struct ffa_rxtx::size is 0 RX/TX buffers are not mapped or initialized.
98  *
99  * struct ffa_rxtx::spin_lock protects the variables below from concurrent
100  * access this includes the use of content of struct ffa_rxtx::rx and
101  * @frag_state_head.
102  *
103  * struct ffa_rxtx::tx_buf_is_mine is true when we may write to struct
104  * ffa_rxtx::tx and false when it is owned by normal world.
105  *
106  * Note that we can't prevent normal world from updating the content of
107  * these buffers so we must always be careful when reading. while we hold
108  * the lock.
109  */
110 
111 static struct ffa_rxtx my_rxtx __nex_bss;
112 
113 static bool is_nw_buf(struct ffa_rxtx *rxtx)
114 {
115 	return rxtx == &my_rxtx;
116 }
117 
118 static SLIST_HEAD(mem_frag_state_head, mem_frag_state) frag_state_head =
119 	SLIST_HEAD_INITIALIZER(&frag_state_head);
120 
121 #else
122 static uint8_t __rx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE) __nex_bss;
123 static uint8_t __tx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE) __nex_bss;
124 static struct ffa_rxtx my_rxtx __nex_data = {
125 	.rx = __rx_buf,
126 	.tx = __tx_buf,
127 	.size = sizeof(__rx_buf),
128 };
129 #endif
130 
131 bool spmc_is_reserved_id(uint16_t id)
132 {
133 #ifdef CFG_CORE_SEL1_SPMC
134 	if (id == spmd_id)
135 		return true;
136 #endif
137 	return id == spmc_id;
138 }
139 
140 static uint32_t swap_src_dst(uint32_t src_dst)
141 {
142 	return (src_dst >> 16) | (src_dst << 16);
143 }
144 
145 static uint16_t get_sender_id(uint32_t src_dst)
146 {
147 	return src_dst >> 16;
148 }
149 
150 void spmc_set_args(struct thread_smc_1_2_regs *args, uint32_t fid,
151 		   uint32_t src_dst, uint32_t w2, uint32_t w3, uint32_t w4,
152 		   uint32_t w5)
153 {
154 	*args = (struct thread_smc_1_2_regs){
155 		.a0 = fid,
156 		.a1 = src_dst,
157 		.a2 = w2,
158 		.a3 = w3,
159 		.a4 = w4,
160 		.a5 = w5,
161 	};
162 }
163 
164 static void set_simple_ret_val(struct thread_smc_1_2_regs *args, int ffa_ret)
165 {
166 	if (ffa_ret)
167 		spmc_set_args(args, FFA_ERROR, 0, ffa_ret, 0, 0, 0);
168 	else
169 		spmc_set_args(args, FFA_SUCCESS_32, 0, 0, 0, 0, 0);
170 }
171 
172 uint32_t spmc_exchange_version(uint32_t vers, struct ffa_rxtx *rxtx)
173 {
174 	uint32_t major_vers = FFA_GET_MAJOR_VERSION(vers);
175 	uint32_t minor_vers = FFA_GET_MINOR_VERSION(vers);
176 	uint32_t my_vers = FFA_VERSION_1_2;
177 	uint32_t my_major_vers = 0;
178 	uint32_t my_minor_vers = 0;
179 
180 	my_major_vers = FFA_GET_MAJOR_VERSION(my_vers);
181 	my_minor_vers = FFA_GET_MINOR_VERSION(my_vers);
182 
183 	/*
184 	 * No locking, if the caller does concurrent calls to this it's
185 	 * only making a mess for itself. We must be able to renegotiate
186 	 * the FF-A version in order to support differing versions between
187 	 * the loader and the driver.
188 	 *
189 	 * Callers should use the version requested if we return a matching
190 	 * major version and a matching or larger minor version. The caller
191 	 * should downgrade to our minor version if our minor version is
192 	 * smaller. Regardless, always return our version as recommended by
193 	 * the specification.
194 	 */
195 	if (major_vers == my_major_vers) {
196 		if (minor_vers > my_minor_vers)
197 			rxtx->ffa_vers = my_vers;
198 		else
199 			rxtx->ffa_vers = vers;
200 	}
201 
202 	return my_vers;
203 }
204 
205 static bool is_ffa_success(uint32_t fid)
206 {
207 #ifdef ARM64
208 	if (fid == FFA_SUCCESS_64)
209 		return true;
210 #endif
211 	return fid == FFA_SUCCESS_32;
212 }
213 
214 static int32_t get_ffa_ret_code(const struct thread_smc_args *args)
215 {
216 	if (is_ffa_success(args->a0))
217 		return FFA_OK;
218 	if (args->a0 == FFA_ERROR && args->a2)
219 		return args->a2;
220 	return FFA_NOT_SUPPORTED;
221 }
222 
223 static int ffa_simple_call(uint32_t fid, unsigned long a1, unsigned long a2,
224 			   unsigned long a3, unsigned long a4)
225 {
226 	struct thread_smc_args args = {
227 		.a0 = fid,
228 		.a1 = a1,
229 		.a2 = a2,
230 		.a3 = a3,
231 		.a4 = a4,
232 	};
233 
234 	thread_smccc(&args);
235 
236 	return get_ffa_ret_code(&args);
237 }
238 
239 static int __maybe_unused ffa_features(uint32_t id)
240 {
241 	return ffa_simple_call(FFA_FEATURES, id, 0, 0, 0);
242 }
243 
244 static int __maybe_unused ffa_set_notification(uint16_t dst, uint16_t src,
245 					       uint32_t flags, uint64_t bitmap)
246 {
247 	return ffa_simple_call(FFA_NOTIFICATION_SET,
248 			       SHIFT_U32(src, 16) | dst, flags,
249 			       low32_from_64(bitmap), high32_from_64(bitmap));
250 }
251 
252 #if defined(CFG_CORE_SEL1_SPMC)
253 static void handle_features(struct thread_smc_1_2_regs *args)
254 {
255 	uint32_t ret_fid = FFA_ERROR;
256 	uint32_t ret_w2 = FFA_NOT_SUPPORTED;
257 
258 	switch (args->a1) {
259 	case FFA_FEATURE_SCHEDULE_RECV_INTR:
260 		if (spmc_notif_is_ready) {
261 			ret_fid = FFA_SUCCESS_32;
262 			ret_w2 = notif_intid;
263 		}
264 		break;
265 
266 #ifdef ARM64
267 	case FFA_RXTX_MAP_64:
268 #endif
269 	case FFA_RXTX_MAP_32:
270 		ret_fid = FFA_SUCCESS_32;
271 		ret_w2 = 0; /* 4kB Minimum buffer size and alignment boundary */
272 		break;
273 #ifdef ARM64
274 	case FFA_MEM_SHARE_64:
275 #endif
276 	case FFA_MEM_SHARE_32:
277 		ret_fid = FFA_SUCCESS_32;
278 		/*
279 		 * Partition manager supports transmission of a memory
280 		 * transaction descriptor in a buffer dynamically allocated
281 		 * by the endpoint.
282 		 */
283 		ret_w2 = BIT(0);
284 		break;
285 
286 	case FFA_ERROR:
287 	case FFA_VERSION:
288 	case FFA_SUCCESS_32:
289 #ifdef ARM64
290 	case FFA_SUCCESS_64:
291 #endif
292 	case FFA_FEATURES:
293 	case FFA_SPM_ID_GET:
294 	case FFA_MEM_FRAG_TX:
295 	case FFA_MEM_RECLAIM:
296 	case FFA_MSG_SEND_DIRECT_REQ_64:
297 	case FFA_MSG_SEND_DIRECT_REQ_32:
298 	case FFA_INTERRUPT:
299 	case FFA_PARTITION_INFO_GET:
300 	case FFA_RXTX_UNMAP:
301 	case FFA_RX_RELEASE:
302 	case FFA_FEATURE_MANAGED_EXIT_INTR:
303 	case FFA_NOTIFICATION_BITMAP_CREATE:
304 	case FFA_NOTIFICATION_BITMAP_DESTROY:
305 	case FFA_NOTIFICATION_BIND:
306 	case FFA_NOTIFICATION_UNBIND:
307 	case FFA_NOTIFICATION_SET:
308 	case FFA_NOTIFICATION_GET:
309 	case FFA_NOTIFICATION_INFO_GET_32:
310 #ifdef ARM64
311 	case FFA_NOTIFICATION_INFO_GET_64:
312 #endif
313 		ret_fid = FFA_SUCCESS_32;
314 		ret_w2 = FFA_PARAM_MBZ;
315 		break;
316 	default:
317 		break;
318 	}
319 
320 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, ret_w2, FFA_PARAM_MBZ,
321 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
322 }
323 
324 static int map_buf(paddr_t pa, unsigned int sz, void **va_ret)
325 {
326 	tee_mm_entry_t *mm = NULL;
327 
328 	if (!core_pbuf_is(CORE_MEM_NON_SEC, pa, sz))
329 		return FFA_INVALID_PARAMETERS;
330 
331 	mm = tee_mm_alloc(&core_virt_shm_pool, sz);
332 	if (!mm)
333 		return FFA_NO_MEMORY;
334 
335 	if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pa,
336 					  sz / SMALL_PAGE_SIZE,
337 					  MEM_AREA_NSEC_SHM)) {
338 		tee_mm_free(mm);
339 		return FFA_INVALID_PARAMETERS;
340 	}
341 
342 	*va_ret = (void *)tee_mm_get_smem(mm);
343 	return 0;
344 }
345 
346 void spmc_handle_spm_id_get(struct thread_smc_1_2_regs *args)
347 {
348 	spmc_set_args(args, FFA_SUCCESS_32, FFA_PARAM_MBZ, spmc_id,
349 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
350 }
351 
352 static void unmap_buf(void *va, size_t sz)
353 {
354 	tee_mm_entry_t *mm = tee_mm_find(&core_virt_shm_pool, (vaddr_t)va);
355 
356 	assert(mm);
357 	core_mmu_unmap_pages(tee_mm_get_smem(mm), sz / SMALL_PAGE_SIZE);
358 	tee_mm_free(mm);
359 }
360 
361 void spmc_handle_rxtx_map(struct thread_smc_1_2_regs *args,
362 			  struct ffa_rxtx *rxtx)
363 {
364 	int rc = 0;
365 	unsigned int sz = 0;
366 	paddr_t rx_pa = 0;
367 	paddr_t tx_pa = 0;
368 	void *rx = NULL;
369 	void *tx = NULL;
370 
371 	cpu_spin_lock(&rxtx->spinlock);
372 
373 	if (args->a3 & GENMASK_64(63, 6)) {
374 		rc = FFA_INVALID_PARAMETERS;
375 		goto out;
376 	}
377 
378 	sz = args->a3 * SMALL_PAGE_SIZE;
379 	if (!sz) {
380 		rc = FFA_INVALID_PARAMETERS;
381 		goto out;
382 	}
383 	/* TX/RX are swapped compared to the caller */
384 	tx_pa = args->a2;
385 	rx_pa = args->a1;
386 
387 	if (rxtx->size) {
388 		rc = FFA_DENIED;
389 		goto out;
390 	}
391 
392 	/*
393 	 * If the buffer comes from a SP the address is virtual and already
394 	 * mapped.
395 	 */
396 	if (is_nw_buf(rxtx)) {
397 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
398 			enum teecore_memtypes mt = MEM_AREA_NEX_NSEC_SHM;
399 			bool tx_alloced = false;
400 
401 			/*
402 			 * With virtualization we establish this mapping in
403 			 * the nexus mapping which then is replicated to
404 			 * each partition.
405 			 *
406 			 * This means that this mapping must be done before
407 			 * any partition is created and then must not be
408 			 * changed.
409 			 */
410 
411 			/*
412 			 * core_mmu_add_mapping() may reuse previous
413 			 * mappings. First check if there's any mappings to
414 			 * reuse so we know how to clean up in case of
415 			 * failure.
416 			 */
417 			tx = phys_to_virt(tx_pa, mt, sz);
418 			rx = phys_to_virt(rx_pa, mt, sz);
419 			if (!tx) {
420 				tx = core_mmu_add_mapping(mt, tx_pa, sz);
421 				if (!tx) {
422 					rc = FFA_NO_MEMORY;
423 					goto out;
424 				}
425 				tx_alloced = true;
426 			}
427 			if (!rx)
428 				rx = core_mmu_add_mapping(mt, rx_pa, sz);
429 
430 			if (!rx) {
431 				if (tx_alloced && tx)
432 					core_mmu_remove_mapping(mt, tx, sz);
433 				rc = FFA_NO_MEMORY;
434 				goto out;
435 			}
436 		} else {
437 			rc = map_buf(tx_pa, sz, &tx);
438 			if (rc)
439 				goto out;
440 			rc = map_buf(rx_pa, sz, &rx);
441 			if (rc) {
442 				unmap_buf(tx, sz);
443 				goto out;
444 			}
445 		}
446 		rxtx->tx = tx;
447 		rxtx->rx = rx;
448 	} else {
449 		if ((tx_pa & SMALL_PAGE_MASK) || (rx_pa & SMALL_PAGE_MASK)) {
450 			rc = FFA_INVALID_PARAMETERS;
451 			goto out;
452 		}
453 
454 		if (!virt_to_phys((void *)tx_pa) ||
455 		    !virt_to_phys((void *)rx_pa)) {
456 			rc = FFA_INVALID_PARAMETERS;
457 			goto out;
458 		}
459 
460 		rxtx->tx = (void *)tx_pa;
461 		rxtx->rx = (void *)rx_pa;
462 	}
463 
464 	rxtx->size = sz;
465 	rxtx->tx_is_mine = true;
466 	DMSG("Mapped tx %#"PRIxPA" size %#x @ %p", tx_pa, sz, tx);
467 	DMSG("Mapped rx %#"PRIxPA" size %#x @ %p", rx_pa, sz, rx);
468 out:
469 	cpu_spin_unlock(&rxtx->spinlock);
470 	set_simple_ret_val(args, rc);
471 }
472 
473 void spmc_handle_rxtx_unmap(struct thread_smc_1_2_regs *args,
474 			    struct ffa_rxtx *rxtx)
475 {
476 	int rc = FFA_INVALID_PARAMETERS;
477 
478 	cpu_spin_lock(&rxtx->spinlock);
479 
480 	if (!rxtx->size)
481 		goto out;
482 
483 	/*
484 	 * We don't unmap the SP memory as the SP might still use it.
485 	 * We avoid to make changes to nexus mappings at this stage since
486 	 * there currently isn't a way to replicate those changes to all
487 	 * partitions.
488 	 */
489 	if (is_nw_buf(rxtx) && !IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
490 		unmap_buf(rxtx->rx, rxtx->size);
491 		unmap_buf(rxtx->tx, rxtx->size);
492 	}
493 	rxtx->size = 0;
494 	rxtx->rx = NULL;
495 	rxtx->tx = NULL;
496 	rc = 0;
497 out:
498 	cpu_spin_unlock(&rxtx->spinlock);
499 	set_simple_ret_val(args, rc);
500 }
501 
502 void spmc_handle_rx_release(struct thread_smc_1_2_regs *args,
503 			    struct ffa_rxtx *rxtx)
504 {
505 	int rc = 0;
506 
507 	cpu_spin_lock(&rxtx->spinlock);
508 	/* The senders RX is our TX */
509 	if (!rxtx->size || rxtx->tx_is_mine) {
510 		rc = FFA_DENIED;
511 	} else {
512 		rc = 0;
513 		rxtx->tx_is_mine = true;
514 	}
515 	cpu_spin_unlock(&rxtx->spinlock);
516 
517 	set_simple_ret_val(args, rc);
518 }
519 
520 static bool is_nil_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3)
521 {
522 	return !w0 && !w1 && !w2 && !w3;
523 }
524 
525 static bool is_my_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3)
526 {
527 	/*
528 	 * This depends on which UUID we have been assigned.
529 	 * TODO add a generic mechanism to obtain our UUID.
530 	 *
531 	 * The test below is for the hard coded UUID
532 	 * 486178e0-e7f8-11e3-bc5e-0002a5d5c51b
533 	 */
534 	return w0 == my_uuid_words[0] && w1 == my_uuid_words[1] &&
535 	       w2 == my_uuid_words[2] && w3 == my_uuid_words[3];
536 }
537 
538 TEE_Result spmc_fill_partition_entry(uint32_t ffa_vers, void *buf, size_t blen,
539 				     size_t idx, uint16_t endpoint_id,
540 				     uint16_t execution_context,
541 				     uint32_t part_props,
542 				     const uint32_t uuid_words[4])
543 {
544 	struct ffa_partition_info_x *fpi = NULL;
545 	size_t fpi_size = sizeof(*fpi);
546 
547 	if (ffa_vers >= FFA_VERSION_1_1)
548 		fpi_size += FFA_UUID_SIZE;
549 
550 	if ((idx + 1) * fpi_size > blen)
551 		return TEE_ERROR_OUT_OF_MEMORY;
552 
553 	fpi = (void *)((vaddr_t)buf + idx * fpi_size);
554 	fpi->id = endpoint_id;
555 	/* Number of execution contexts implemented by this partition */
556 	fpi->execution_context = execution_context;
557 
558 	fpi->partition_properties = part_props;
559 
560 	/* In FF-A 1.0 only bits [2:0] are defined, let's mask others */
561 	if (ffa_vers < FFA_VERSION_1_1)
562 		fpi->partition_properties &= FFA_PART_PROP_DIRECT_REQ_RECV |
563 					     FFA_PART_PROP_DIRECT_REQ_SEND |
564 					     FFA_PART_PROP_INDIRECT_MSGS;
565 
566 	if (ffa_vers >= FFA_VERSION_1_1) {
567 		if (uuid_words)
568 			memcpy(fpi->uuid, uuid_words, FFA_UUID_SIZE);
569 		else
570 			memset(fpi->uuid, 0, FFA_UUID_SIZE);
571 	}
572 
573 	return TEE_SUCCESS;
574 }
575 
576 static int handle_partition_info_get_all(size_t *elem_count,
577 					 struct ffa_rxtx *rxtx, bool count_only)
578 {
579 	if (!count_only) {
580 		/* Add OP-TEE SP */
581 		if (spmc_fill_partition_entry(rxtx->ffa_vers, rxtx->tx,
582 					      rxtx->size, 0, optee_endpoint_id,
583 					      CFG_TEE_CORE_NB_CORE,
584 					      my_part_props, my_uuid_words))
585 			return FFA_NO_MEMORY;
586 	}
587 	*elem_count = 1;
588 
589 	if (IS_ENABLED(CFG_SECURE_PARTITION)) {
590 		if (sp_partition_info_get(rxtx->ffa_vers, rxtx->tx, rxtx->size,
591 					  NULL, elem_count, count_only))
592 			return FFA_NO_MEMORY;
593 	}
594 
595 	return FFA_OK;
596 }
597 
598 void spmc_handle_partition_info_get(struct thread_smc_1_2_regs *args,
599 				    struct ffa_rxtx *rxtx)
600 {
601 	TEE_Result res = TEE_SUCCESS;
602 	uint32_t ret_fid = FFA_ERROR;
603 	uint32_t fpi_size = 0;
604 	uint32_t rc = 0;
605 	bool count_only = args->a5 & FFA_PARTITION_INFO_GET_COUNT_FLAG;
606 
607 	if (!count_only) {
608 		cpu_spin_lock(&rxtx->spinlock);
609 
610 		if (!rxtx->size || !rxtx->tx_is_mine) {
611 			rc = FFA_BUSY;
612 			goto out;
613 		}
614 	}
615 
616 	if (is_nil_uuid(args->a1, args->a2, args->a3, args->a4)) {
617 		size_t elem_count = 0;
618 
619 		ret_fid = handle_partition_info_get_all(&elem_count, rxtx,
620 							count_only);
621 
622 		if (ret_fid) {
623 			rc = ret_fid;
624 			ret_fid = FFA_ERROR;
625 		} else {
626 			ret_fid = FFA_SUCCESS_32;
627 			rc = elem_count;
628 		}
629 
630 		goto out;
631 	}
632 
633 	if (is_my_uuid(args->a1, args->a2, args->a3, args->a4)) {
634 		if (!count_only) {
635 			res = spmc_fill_partition_entry(rxtx->ffa_vers,
636 							rxtx->tx, rxtx->size, 0,
637 							optee_endpoint_id,
638 							CFG_TEE_CORE_NB_CORE,
639 							my_part_props,
640 							my_uuid_words);
641 			if (res) {
642 				ret_fid = FFA_ERROR;
643 				rc = FFA_INVALID_PARAMETERS;
644 				goto out;
645 			}
646 		}
647 		rc = 1;
648 	} else if (IS_ENABLED(CFG_SECURE_PARTITION)) {
649 		uint32_t uuid_array[4] = { 0 };
650 		size_t count = 0;
651 
652 		uuid_array[0] = args->a1;
653 		uuid_array[1] = args->a2;
654 		uuid_array[2] = args->a3;
655 		uuid_array[3] = args->a4;
656 
657 		res = sp_partition_info_get(rxtx->ffa_vers, rxtx->tx,
658 					    rxtx->size, uuid_array, &count,
659 					    count_only);
660 		if (res != TEE_SUCCESS) {
661 			ret_fid = FFA_ERROR;
662 			rc = FFA_INVALID_PARAMETERS;
663 			goto out;
664 		}
665 		rc = count;
666 	} else {
667 		ret_fid = FFA_ERROR;
668 		rc = FFA_INVALID_PARAMETERS;
669 		goto out;
670 	}
671 
672 	ret_fid = FFA_SUCCESS_32;
673 
674 out:
675 	if (ret_fid == FFA_SUCCESS_32 && !count_only &&
676 	    rxtx->ffa_vers >= FFA_VERSION_1_1)
677 		fpi_size = sizeof(struct ffa_partition_info_x) + FFA_UUID_SIZE;
678 
679 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, fpi_size,
680 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
681 	if (!count_only) {
682 		rxtx->tx_is_mine = false;
683 		cpu_spin_unlock(&rxtx->spinlock);
684 	}
685 }
686 
687 static void spmc_handle_run(struct thread_smc_1_2_regs *args)
688 {
689 	uint16_t endpoint = FFA_TARGET_INFO_GET_SP_ID(args->a1);
690 	uint16_t thread_id = FFA_TARGET_INFO_GET_VCPU_ID(args->a1);
691 	uint32_t rc = FFA_OK;
692 
693 	if (endpoint != optee_endpoint_id) {
694 		/*
695 		 * The endpoint should be an SP, try to resume the SP from
696 		 * preempted into busy state.
697 		 */
698 		rc = spmc_sp_resume_from_preempted(endpoint);
699 		if (rc)
700 			goto out;
701 	}
702 
703 	thread_resume_from_rpc(thread_id, 0, 0, 0, 0);
704 
705 	/* thread_resume_from_rpc return only of the thread_id is invalid */
706 	rc = FFA_INVALID_PARAMETERS;
707 
708 out:
709 	set_simple_ret_val(args, rc);
710 }
711 #endif /*CFG_CORE_SEL1_SPMC*/
712 
713 static struct notif_vm_bitmap *get_notif_vm_bitmap(struct guest_partition *prtn,
714 						   uint16_t vm_id)
715 {
716 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
717 		if (!prtn)
718 			return NULL;
719 		assert(vm_id == virt_get_guest_id(prtn));
720 		return virt_get_guest_spec_data(prtn, notif_vm_bitmap_id);
721 	}
722 	if (vm_id)
723 		return NULL;
724 	return &default_notif_vm_bitmap;
725 }
726 
727 static uint32_t spmc_enable_async_notif(uint32_t bottom_half_value,
728 					uint16_t vm_id)
729 {
730 	struct guest_partition *prtn = NULL;
731 	struct notif_vm_bitmap *nvb = NULL;
732 	uint32_t old_itr_status = 0;
733 	uint32_t res = 0;
734 
735 	if (!spmc_notif_is_ready) {
736 		/*
737 		 * This should never happen, not if normal world respects the
738 		 * exchanged capabilities.
739 		 */
740 		EMSG("Asynchronous notifications are not ready");
741 		return TEE_ERROR_NOT_IMPLEMENTED;
742 	}
743 
744 	if (bottom_half_value >= OPTEE_FFA_MAX_ASYNC_NOTIF_VALUE) {
745 		EMSG("Invalid bottom half value %"PRIu32, bottom_half_value);
746 		return TEE_ERROR_BAD_PARAMETERS;
747 	}
748 
749 	prtn = virt_get_guest(vm_id);
750 	nvb = get_notif_vm_bitmap(prtn, vm_id);
751 	if (!nvb) {
752 		res = TEE_ERROR_BAD_PARAMETERS;
753 		goto out;
754 	}
755 
756 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
757 	nvb->do_bottom_half_value = bottom_half_value;
758 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
759 
760 	notif_deliver_atomic_event(NOTIF_EVENT_STARTED, vm_id);
761 	res = TEE_SUCCESS;
762 out:
763 	virt_put_guest(prtn);
764 	return res;
765 }
766 
767 static void handle_yielding_call(struct thread_smc_1_2_regs *args,
768 				 uint32_t direct_resp_fid)
769 {
770 	TEE_Result res = 0;
771 
772 	thread_check_canaries();
773 
774 #ifdef ARM64
775 	/* Saving this for an eventual RPC */
776 	thread_get_core_local()->direct_resp_fid = direct_resp_fid;
777 #endif
778 
779 	if (args->a3 == OPTEE_FFA_YIELDING_CALL_RESUME) {
780 		/* Note connection to struct thread_rpc_arg::ret */
781 		thread_resume_from_rpc(args->a7, args->a4, args->a5, args->a6,
782 				       0);
783 		res = TEE_ERROR_BAD_PARAMETERS;
784 	} else {
785 		thread_alloc_and_run(args->a1, args->a3, args->a4, args->a5,
786 				     args->a6, args->a7);
787 		res = TEE_ERROR_BUSY;
788 	}
789 	spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1),
790 		      0, res, 0, 0);
791 }
792 
793 static uint32_t handle_unregister_shm(uint32_t a4, uint32_t a5)
794 {
795 	uint64_t cookie = reg_pair_to_64(a5, a4);
796 	uint32_t res = 0;
797 
798 	res = mobj_ffa_unregister_by_cookie(cookie);
799 	switch (res) {
800 	case TEE_SUCCESS:
801 	case TEE_ERROR_ITEM_NOT_FOUND:
802 		return 0;
803 	case TEE_ERROR_BUSY:
804 		EMSG("res %#"PRIx32, res);
805 		return FFA_BUSY;
806 	default:
807 		EMSG("res %#"PRIx32, res);
808 		return FFA_INVALID_PARAMETERS;
809 	}
810 }
811 
812 static void handle_blocking_call(struct thread_smc_1_2_regs *args,
813 				 uint32_t direct_resp_fid)
814 {
815 	uint32_t sec_caps = 0;
816 
817 	switch (args->a3) {
818 	case OPTEE_FFA_GET_API_VERSION:
819 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
820 			      OPTEE_FFA_VERSION_MAJOR, OPTEE_FFA_VERSION_MINOR,
821 			      0);
822 		break;
823 	case OPTEE_FFA_GET_OS_VERSION:
824 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
825 			      CFG_OPTEE_REVISION_MAJOR,
826 			      CFG_OPTEE_REVISION_MINOR,
827 			      TEE_IMPL_GIT_SHA1 >> 32);
828 		break;
829 	case OPTEE_FFA_EXCHANGE_CAPABILITIES:
830 		sec_caps = OPTEE_FFA_SEC_CAP_ARG_OFFSET;
831 		if (spmc_notif_is_ready)
832 			sec_caps |= OPTEE_FFA_SEC_CAP_ASYNC_NOTIF;
833 		if (IS_ENABLED(CFG_RPMB_ANNOUNCE_PROBE_CAP))
834 			sec_caps |= OPTEE_FFA_SEC_CAP_RPMB_PROBE;
835 		spmc_set_args(args, direct_resp_fid,
836 			      swap_src_dst(args->a1), 0, 0,
837 			      THREAD_RPC_MAX_NUM_PARAMS, sec_caps);
838 		break;
839 	case OPTEE_FFA_UNREGISTER_SHM:
840 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
841 			      handle_unregister_shm(args->a4, args->a5), 0, 0);
842 		break;
843 	case OPTEE_FFA_ENABLE_ASYNC_NOTIF:
844 		spmc_set_args(args, direct_resp_fid,
845 			      swap_src_dst(args->a1), 0,
846 			      spmc_enable_async_notif(args->a4,
847 						      FFA_SRC(args->a1)),
848 			      0, 0);
849 		break;
850 	default:
851 		EMSG("Unhandled blocking service ID %#"PRIx32,
852 		     (uint32_t)args->a3);
853 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
854 			      TEE_ERROR_BAD_PARAMETERS, 0, 0);
855 	}
856 }
857 
858 static void handle_framework_direct_request(struct thread_smc_1_2_regs *args,
859 					    struct ffa_rxtx *rxtx,
860 					    uint32_t direct_resp_fid)
861 {
862 	uint32_t w0 = FFA_ERROR;
863 	uint32_t w1 = FFA_PARAM_MBZ;
864 	uint32_t w2 = FFA_NOT_SUPPORTED;
865 	uint32_t w3 = FFA_PARAM_MBZ;
866 
867 	switch (args->a2 & FFA_MSG_TYPE_MASK) {
868 	case FFA_MSG_SEND_VM_CREATED:
869 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
870 			uint16_t guest_id = args->a5;
871 			TEE_Result res = virt_guest_created(guest_id);
872 
873 			w0 = direct_resp_fid;
874 			w1 = swap_src_dst(args->a1);
875 			w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_CREATED;
876 			if (res == TEE_SUCCESS)
877 				w3 = FFA_OK;
878 			else if (res == TEE_ERROR_OUT_OF_MEMORY)
879 				w3 = FFA_DENIED;
880 			else
881 				w3 = FFA_INVALID_PARAMETERS;
882 		}
883 		break;
884 	case FFA_MSG_SEND_VM_DESTROYED:
885 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
886 			uint16_t guest_id = args->a5;
887 			TEE_Result res = virt_guest_destroyed(guest_id);
888 
889 			w0 = direct_resp_fid;
890 			w1 = swap_src_dst(args->a1);
891 			w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_DESTROYED;
892 			if (res == TEE_SUCCESS)
893 				w3 = FFA_OK;
894 			else
895 				w3 = FFA_INVALID_PARAMETERS;
896 		}
897 		break;
898 	case FFA_MSG_VERSION_REQ:
899 		w0 = direct_resp_fid;
900 		w1 = swap_src_dst(args->a1);
901 		w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_VERSION_RESP;
902 		w3 = spmc_exchange_version(args->a3, rxtx);
903 		break;
904 	default:
905 		break;
906 	}
907 	spmc_set_args(args, w0, w1, w2, w3, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
908 }
909 
910 static void handle_direct_request(struct thread_smc_1_2_regs *args,
911 				  struct ffa_rxtx *rxtx)
912 {
913 	uint32_t direct_resp_fid = 0;
914 
915 	if (IS_ENABLED(CFG_SECURE_PARTITION) &&
916 	    FFA_DST(args->a1) != spmc_id &&
917 	    FFA_DST(args->a1) != optee_endpoint_id) {
918 		spmc_sp_start_thread(args);
919 		return;
920 	}
921 
922 	if (OPTEE_SMC_IS_64(args->a0))
923 		direct_resp_fid = FFA_MSG_SEND_DIRECT_RESP_64;
924 	else
925 		direct_resp_fid = FFA_MSG_SEND_DIRECT_RESP_32;
926 
927 	if (args->a2 & FFA_MSG_FLAG_FRAMEWORK) {
928 		handle_framework_direct_request(args, rxtx, direct_resp_fid);
929 		return;
930 	}
931 
932 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
933 	    virt_set_guest(get_sender_id(args->a1))) {
934 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
935 			      TEE_ERROR_ITEM_NOT_FOUND, 0, 0);
936 		return;
937 	}
938 
939 	if (args->a3 & BIT32(OPTEE_FFA_YIELDING_CALL_BIT))
940 		handle_yielding_call(args, direct_resp_fid);
941 	else
942 		handle_blocking_call(args, direct_resp_fid);
943 
944 	/*
945 	 * Note that handle_yielding_call() typically only returns if a
946 	 * thread cannot be allocated or found. virt_unset_guest() is also
947 	 * called from thread_state_suspend() and thread_state_free().
948 	 */
949 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
950 		virt_unset_guest();
951 }
952 
953 int spmc_read_mem_transaction(uint32_t ffa_vers, void *buf, size_t blen,
954 			      struct ffa_mem_transaction_x *trans)
955 {
956 	uint16_t mem_reg_attr = 0;
957 	uint32_t flags = 0;
958 	uint32_t count = 0;
959 	uint32_t offs = 0;
960 	uint32_t size = 0;
961 	size_t n = 0;
962 
963 	if (!IS_ALIGNED_WITH_TYPE(buf, uint64_t))
964 		return FFA_INVALID_PARAMETERS;
965 
966 	if (ffa_vers >= FFA_VERSION_1_1) {
967 		struct ffa_mem_transaction_1_1 *descr = NULL;
968 
969 		if (blen < sizeof(*descr))
970 			return FFA_INVALID_PARAMETERS;
971 
972 		descr = buf;
973 		trans->sender_id = READ_ONCE(descr->sender_id);
974 		mem_reg_attr = READ_ONCE(descr->mem_reg_attr);
975 		flags = READ_ONCE(descr->flags);
976 		trans->global_handle = READ_ONCE(descr->global_handle);
977 		trans->tag = READ_ONCE(descr->tag);
978 
979 		count = READ_ONCE(descr->mem_access_count);
980 		size = READ_ONCE(descr->mem_access_size);
981 		offs = READ_ONCE(descr->mem_access_offs);
982 	} else {
983 		struct ffa_mem_transaction_1_0 *descr = NULL;
984 
985 		if (blen < sizeof(*descr))
986 			return FFA_INVALID_PARAMETERS;
987 
988 		descr = buf;
989 		trans->sender_id = READ_ONCE(descr->sender_id);
990 		mem_reg_attr = READ_ONCE(descr->mem_reg_attr);
991 		flags = READ_ONCE(descr->flags);
992 		trans->global_handle = READ_ONCE(descr->global_handle);
993 		trans->tag = READ_ONCE(descr->tag);
994 
995 		count = READ_ONCE(descr->mem_access_count);
996 		size = sizeof(struct ffa_mem_access);
997 		offs = offsetof(struct ffa_mem_transaction_1_0,
998 				mem_access_array);
999 	}
1000 
1001 	if (mem_reg_attr > UINT8_MAX || flags > UINT8_MAX ||
1002 	    size > UINT8_MAX || count > UINT8_MAX || offs > UINT16_MAX)
1003 		return FFA_INVALID_PARAMETERS;
1004 
1005 	/* Check that the endpoint memory access descriptor array fits */
1006 	if (MUL_OVERFLOW(size, count, &n) || ADD_OVERFLOW(offs, n, &n) ||
1007 	    n > blen)
1008 		return FFA_INVALID_PARAMETERS;
1009 
1010 	trans->mem_reg_attr = mem_reg_attr;
1011 	trans->flags = flags;
1012 	trans->mem_access_size = size;
1013 	trans->mem_access_count = count;
1014 	trans->mem_access_offs = offs;
1015 	return 0;
1016 }
1017 
1018 #if defined(CFG_CORE_SEL1_SPMC)
1019 static int get_acc_perms(vaddr_t mem_acc_base, unsigned int mem_access_size,
1020 			 unsigned int mem_access_count, uint8_t *acc_perms,
1021 			 unsigned int *region_offs)
1022 {
1023 	struct ffa_mem_access_perm *descr = NULL;
1024 	struct ffa_mem_access *mem_acc = NULL;
1025 	unsigned int n = 0;
1026 
1027 	for (n = 0; n < mem_access_count; n++) {
1028 		mem_acc = (void *)(mem_acc_base + mem_access_size * n);
1029 		descr = &mem_acc->access_perm;
1030 		if (READ_ONCE(descr->endpoint_id) == optee_endpoint_id) {
1031 			*acc_perms = READ_ONCE(descr->perm);
1032 			*region_offs = READ_ONCE(mem_acc[n].region_offs);
1033 			return 0;
1034 		}
1035 	}
1036 
1037 	return FFA_INVALID_PARAMETERS;
1038 }
1039 
1040 static int mem_share_init(struct ffa_mem_transaction_x *mem_trans, void *buf,
1041 			  size_t blen, unsigned int *page_count,
1042 			  unsigned int *region_count, size_t *addr_range_offs)
1043 {
1044 	const uint16_t exp_mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
1045 	const uint8_t exp_mem_acc_perm = FFA_MEM_ACC_RW;
1046 	struct ffa_mem_region *region_descr = NULL;
1047 	unsigned int region_descr_offs = 0;
1048 	uint8_t mem_acc_perm = 0;
1049 	size_t n = 0;
1050 
1051 	if (mem_trans->mem_reg_attr != exp_mem_reg_attr)
1052 		return FFA_INVALID_PARAMETERS;
1053 
1054 	/* Check that the access permissions matches what's expected */
1055 	if (get_acc_perms((vaddr_t)buf + mem_trans->mem_access_offs,
1056 			  mem_trans->mem_access_size,
1057 			  mem_trans->mem_access_count,
1058 			  &mem_acc_perm, &region_descr_offs) ||
1059 	    mem_acc_perm != exp_mem_acc_perm)
1060 		return FFA_INVALID_PARAMETERS;
1061 
1062 	/* Check that the Composite memory region descriptor fits */
1063 	if (ADD_OVERFLOW(region_descr_offs, sizeof(*region_descr), &n) ||
1064 	    n > blen)
1065 		return FFA_INVALID_PARAMETERS;
1066 
1067 	if (!IS_ALIGNED_WITH_TYPE((vaddr_t)buf + region_descr_offs,
1068 				  struct ffa_mem_region))
1069 		return FFA_INVALID_PARAMETERS;
1070 
1071 	region_descr = (struct ffa_mem_region *)((vaddr_t)buf +
1072 						 region_descr_offs);
1073 	*page_count = READ_ONCE(region_descr->total_page_count);
1074 	*region_count = READ_ONCE(region_descr->address_range_count);
1075 	*addr_range_offs = n;
1076 	return 0;
1077 }
1078 
1079 static int add_mem_share_helper(struct mem_share_state *s, void *buf,
1080 				size_t flen)
1081 {
1082 	unsigned int region_count = flen / sizeof(struct ffa_address_range);
1083 	struct ffa_address_range *arange = NULL;
1084 	unsigned int n = 0;
1085 
1086 	if (region_count > s->region_count)
1087 		region_count = s->region_count;
1088 
1089 	if (!IS_ALIGNED_WITH_TYPE(buf, struct ffa_address_range))
1090 		return FFA_INVALID_PARAMETERS;
1091 	arange = buf;
1092 
1093 	for (n = 0; n < region_count; n++) {
1094 		unsigned int page_count = READ_ONCE(arange[n].page_count);
1095 		uint64_t addr = READ_ONCE(arange[n].address);
1096 
1097 		if (mobj_ffa_add_pages_at(s->mf, &s->current_page_idx,
1098 					  addr, page_count))
1099 			return FFA_INVALID_PARAMETERS;
1100 	}
1101 
1102 	s->region_count -= region_count;
1103 	if (s->region_count)
1104 		return region_count * sizeof(*arange);
1105 
1106 	if (s->current_page_idx != s->page_count)
1107 		return FFA_INVALID_PARAMETERS;
1108 
1109 	return 0;
1110 }
1111 
1112 static int add_mem_share_frag(struct mem_frag_state *s, void *buf, size_t flen)
1113 {
1114 	int rc = 0;
1115 
1116 	rc = add_mem_share_helper(&s->share, buf, flen);
1117 	if (rc >= 0) {
1118 		if (!ADD_OVERFLOW(s->frag_offset, rc, &s->frag_offset)) {
1119 			/* We're not at the end of the descriptor yet */
1120 			if (s->share.region_count)
1121 				return s->frag_offset;
1122 
1123 			/* We're done */
1124 			rc = 0;
1125 		} else {
1126 			rc = FFA_INVALID_PARAMETERS;
1127 		}
1128 	}
1129 
1130 	SLIST_REMOVE(&frag_state_head, s, mem_frag_state, link);
1131 	if (rc < 0)
1132 		mobj_ffa_sel1_spmc_delete(s->share.mf);
1133 	else
1134 		mobj_ffa_push_to_inactive(s->share.mf);
1135 	free(s);
1136 
1137 	return rc;
1138 }
1139 
1140 static bool is_sp_share(struct ffa_mem_transaction_x *mem_trans,
1141 			void *buf)
1142 {
1143 	struct ffa_mem_access_perm *perm = NULL;
1144 	struct ffa_mem_access *mem_acc = NULL;
1145 
1146 	if (!IS_ENABLED(CFG_SECURE_PARTITION))
1147 		return false;
1148 
1149 	if (mem_trans->mem_access_count < 1)
1150 		return false;
1151 
1152 	mem_acc = (void *)((vaddr_t)buf + mem_trans->mem_access_offs);
1153 	perm = &mem_acc->access_perm;
1154 
1155 	/*
1156 	 * perm->endpoint_id is read here only to check if the endpoint is
1157 	 * OP-TEE. We do read it later on again, but there are some additional
1158 	 * checks there to make sure that the data is correct.
1159 	 */
1160 	return READ_ONCE(perm->endpoint_id) != optee_endpoint_id;
1161 }
1162 
1163 static int add_mem_share(struct ffa_mem_transaction_x *mem_trans,
1164 			 tee_mm_entry_t *mm, void *buf, size_t blen,
1165 			 size_t flen, uint64_t *global_handle)
1166 {
1167 	int rc = 0;
1168 	struct mem_share_state share = { };
1169 	size_t addr_range_offs = 0;
1170 	uint64_t cookie = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID;
1171 	size_t n = 0;
1172 
1173 	rc = mem_share_init(mem_trans, buf, flen, &share.page_count,
1174 			    &share.region_count, &addr_range_offs);
1175 	if (rc)
1176 		return rc;
1177 
1178 	if (!share.page_count || !share.region_count)
1179 		return FFA_INVALID_PARAMETERS;
1180 
1181 	if (MUL_OVERFLOW(share.region_count,
1182 			 sizeof(struct ffa_address_range), &n) ||
1183 	    ADD_OVERFLOW(n, addr_range_offs, &n) || n > blen)
1184 		return FFA_INVALID_PARAMETERS;
1185 
1186 	if (mem_trans->global_handle)
1187 		cookie = mem_trans->global_handle;
1188 	share.mf = mobj_ffa_sel1_spmc_new(cookie, share.page_count);
1189 	if (!share.mf)
1190 		return FFA_NO_MEMORY;
1191 
1192 	if (flen != blen) {
1193 		struct mem_frag_state *s = calloc(1, sizeof(*s));
1194 
1195 		if (!s) {
1196 			rc = FFA_NO_MEMORY;
1197 			goto err;
1198 		}
1199 		s->share = share;
1200 		s->mm = mm;
1201 		s->frag_offset = addr_range_offs;
1202 
1203 		SLIST_INSERT_HEAD(&frag_state_head, s, link);
1204 		rc = add_mem_share_frag(s, (char *)buf + addr_range_offs,
1205 					flen - addr_range_offs);
1206 
1207 		if (rc >= 0)
1208 			*global_handle = mobj_ffa_get_cookie(share.mf);
1209 
1210 		return rc;
1211 	}
1212 
1213 	rc = add_mem_share_helper(&share, (char *)buf + addr_range_offs,
1214 				  flen - addr_range_offs);
1215 	if (rc) {
1216 		/*
1217 		 * Number of consumed bytes may be returned instead of 0 for
1218 		 * done.
1219 		 */
1220 		rc = FFA_INVALID_PARAMETERS;
1221 		goto err;
1222 	}
1223 
1224 	*global_handle = mobj_ffa_push_to_inactive(share.mf);
1225 
1226 	return 0;
1227 err:
1228 	mobj_ffa_sel1_spmc_delete(share.mf);
1229 	return rc;
1230 }
1231 
1232 static int handle_mem_share_tmem(paddr_t pbuf, size_t blen, size_t flen,
1233 				 unsigned int page_count,
1234 				 uint64_t *global_handle, struct ffa_rxtx *rxtx)
1235 {
1236 	struct ffa_mem_transaction_x mem_trans = { };
1237 	int rc = 0;
1238 	size_t len = 0;
1239 	void *buf = NULL;
1240 	tee_mm_entry_t *mm = NULL;
1241 	vaddr_t offs = pbuf & SMALL_PAGE_MASK;
1242 
1243 	if (MUL_OVERFLOW(page_count, SMALL_PAGE_SIZE, &len))
1244 		return FFA_INVALID_PARAMETERS;
1245 	if (!core_pbuf_is(CORE_MEM_NON_SEC, pbuf, len))
1246 		return FFA_INVALID_PARAMETERS;
1247 
1248 	/*
1249 	 * Check that the length reported in flen is covered by len even
1250 	 * if the offset is taken into account.
1251 	 */
1252 	if (len < flen || len - offs < flen)
1253 		return FFA_INVALID_PARAMETERS;
1254 
1255 	mm = tee_mm_alloc(&core_virt_shm_pool, len);
1256 	if (!mm)
1257 		return FFA_NO_MEMORY;
1258 
1259 	if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pbuf,
1260 					  page_count, MEM_AREA_NSEC_SHM)) {
1261 		rc = FFA_INVALID_PARAMETERS;
1262 		goto out;
1263 	}
1264 	buf = (void *)(tee_mm_get_smem(mm) + offs);
1265 
1266 	cpu_spin_lock(&rxtx->spinlock);
1267 	rc = spmc_read_mem_transaction(rxtx->ffa_vers, buf, flen, &mem_trans);
1268 	if (rc)
1269 		goto unlock;
1270 
1271 	if (is_sp_share(&mem_trans, buf)) {
1272 		rc = spmc_sp_add_share(&mem_trans, buf, blen, flen,
1273 				       global_handle, NULL);
1274 		goto unlock;
1275 	}
1276 
1277 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
1278 	    virt_set_guest(mem_trans.sender_id)) {
1279 		rc = FFA_DENIED;
1280 		goto unlock;
1281 	}
1282 
1283 	rc = add_mem_share(&mem_trans, mm, buf, blen, flen, global_handle);
1284 
1285 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1286 		virt_unset_guest();
1287 
1288 unlock:
1289 	cpu_spin_unlock(&rxtx->spinlock);
1290 	if (rc > 0)
1291 		return rc;
1292 
1293 	core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count);
1294 out:
1295 	tee_mm_free(mm);
1296 	return rc;
1297 }
1298 
1299 static int handle_mem_share_rxbuf(size_t blen, size_t flen,
1300 				  uint64_t *global_handle,
1301 				  struct ffa_rxtx *rxtx)
1302 {
1303 	struct ffa_mem_transaction_x mem_trans = { };
1304 	int rc = FFA_DENIED;
1305 
1306 	cpu_spin_lock(&rxtx->spinlock);
1307 
1308 	if (!rxtx->rx || flen > rxtx->size)
1309 		goto out;
1310 
1311 	rc = spmc_read_mem_transaction(rxtx->ffa_vers, rxtx->rx, flen,
1312 				       &mem_trans);
1313 	if (rc)
1314 		goto out;
1315 	if (is_sp_share(&mem_trans, rxtx->rx)) {
1316 		rc = spmc_sp_add_share(&mem_trans, rxtx, blen, flen,
1317 				       global_handle, NULL);
1318 		goto out;
1319 	}
1320 
1321 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
1322 	    virt_set_guest(mem_trans.sender_id))
1323 		goto out;
1324 
1325 	rc = add_mem_share(&mem_trans, NULL, rxtx->rx, blen, flen,
1326 			   global_handle);
1327 
1328 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1329 		virt_unset_guest();
1330 
1331 out:
1332 	cpu_spin_unlock(&rxtx->spinlock);
1333 
1334 	return rc;
1335 }
1336 
1337 static void handle_mem_share(struct thread_smc_1_2_regs *args,
1338 			     struct ffa_rxtx *rxtx)
1339 {
1340 	uint32_t tot_len = args->a1;
1341 	uint32_t frag_len = args->a2;
1342 	uint64_t addr = args->a3;
1343 	uint32_t page_count = args->a4;
1344 	uint32_t ret_w1 = 0;
1345 	uint32_t ret_w2 = FFA_INVALID_PARAMETERS;
1346 	uint32_t ret_w3 = 0;
1347 	uint32_t ret_fid = FFA_ERROR;
1348 	uint64_t global_handle = 0;
1349 	int rc = 0;
1350 
1351 	/* Check that the MBZs are indeed 0 */
1352 	if (args->a5 || args->a6 || args->a7)
1353 		goto out;
1354 
1355 	/* Check that fragment length doesn't exceed total length */
1356 	if (frag_len > tot_len)
1357 		goto out;
1358 
1359 	/* Check for 32-bit calling convention */
1360 	if (args->a0 == FFA_MEM_SHARE_32)
1361 		addr &= UINT32_MAX;
1362 
1363 	if (!addr) {
1364 		/*
1365 		 * The memory transaction descriptor is passed via our rx
1366 		 * buffer.
1367 		 */
1368 		if (page_count)
1369 			goto out;
1370 		rc = handle_mem_share_rxbuf(tot_len, frag_len, &global_handle,
1371 					    rxtx);
1372 	} else {
1373 		rc = handle_mem_share_tmem(addr, tot_len, frag_len, page_count,
1374 					   &global_handle, rxtx);
1375 	}
1376 	if (rc < 0) {
1377 		ret_w2 = rc;
1378 	} else if (rc > 0) {
1379 		ret_fid = FFA_MEM_FRAG_RX;
1380 		ret_w3 = rc;
1381 		reg_pair_from_64(global_handle, &ret_w2, &ret_w1);
1382 	} else {
1383 		ret_fid = FFA_SUCCESS_32;
1384 		reg_pair_from_64(global_handle, &ret_w3, &ret_w2);
1385 	}
1386 out:
1387 	spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0);
1388 }
1389 
1390 static struct mem_frag_state *get_frag_state(uint64_t global_handle)
1391 {
1392 	struct mem_frag_state *s = NULL;
1393 
1394 	SLIST_FOREACH(s, &frag_state_head, link)
1395 		if (mobj_ffa_get_cookie(s->share.mf) == global_handle)
1396 			return s;
1397 
1398 	return NULL;
1399 }
1400 
1401 static void handle_mem_frag_tx(struct thread_smc_1_2_regs *args,
1402 			       struct ffa_rxtx *rxtx)
1403 {
1404 	uint64_t global_handle = reg_pair_to_64(args->a2, args->a1);
1405 	size_t flen = args->a3;
1406 	uint32_t endpoint_id = args->a4;
1407 	struct mem_frag_state *s = NULL;
1408 	tee_mm_entry_t *mm = NULL;
1409 	unsigned int page_count = 0;
1410 	void *buf = NULL;
1411 	uint32_t ret_w1 = 0;
1412 	uint32_t ret_w2 = 0;
1413 	uint32_t ret_w3 = 0;
1414 	uint32_t ret_fid = 0;
1415 	int rc = 0;
1416 
1417 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1418 		uint16_t guest_id = endpoint_id >> 16;
1419 
1420 		if (!guest_id || virt_set_guest(guest_id)) {
1421 			rc = FFA_INVALID_PARAMETERS;
1422 			goto out_set_rc;
1423 		}
1424 	}
1425 
1426 	/*
1427 	 * Currently we're only doing this for fragmented FFA_MEM_SHARE_*
1428 	 * requests.
1429 	 */
1430 
1431 	cpu_spin_lock(&rxtx->spinlock);
1432 
1433 	s = get_frag_state(global_handle);
1434 	if (!s) {
1435 		rc = FFA_INVALID_PARAMETERS;
1436 		goto out;
1437 	}
1438 
1439 	mm = s->mm;
1440 	if (mm) {
1441 		if (flen > tee_mm_get_bytes(mm)) {
1442 			rc = FFA_INVALID_PARAMETERS;
1443 			goto out;
1444 		}
1445 		page_count = s->share.page_count;
1446 		buf = (void *)tee_mm_get_smem(mm);
1447 	} else {
1448 		if (flen > rxtx->size) {
1449 			rc = FFA_INVALID_PARAMETERS;
1450 			goto out;
1451 		}
1452 		buf = rxtx->rx;
1453 	}
1454 
1455 	rc = add_mem_share_frag(s, buf, flen);
1456 out:
1457 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1458 		virt_unset_guest();
1459 
1460 	cpu_spin_unlock(&rxtx->spinlock);
1461 
1462 	if (rc <= 0 && mm) {
1463 		core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count);
1464 		tee_mm_free(mm);
1465 	}
1466 
1467 out_set_rc:
1468 	if (rc < 0) {
1469 		ret_fid = FFA_ERROR;
1470 		ret_w2 = rc;
1471 	} else if (rc > 0) {
1472 		ret_fid = FFA_MEM_FRAG_RX;
1473 		ret_w3 = rc;
1474 		reg_pair_from_64(global_handle, &ret_w2, &ret_w1);
1475 	} else {
1476 		ret_fid = FFA_SUCCESS_32;
1477 		reg_pair_from_64(global_handle, &ret_w3, &ret_w2);
1478 	}
1479 
1480 	spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0);
1481 }
1482 
1483 static void handle_mem_reclaim(struct thread_smc_1_2_regs *args)
1484 {
1485 	int rc = FFA_INVALID_PARAMETERS;
1486 	uint64_t cookie = 0;
1487 
1488 	if (args->a3 || args->a4 || args->a5 || args->a6 || args->a7)
1489 		goto out;
1490 
1491 	cookie = reg_pair_to_64(args->a2, args->a1);
1492 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1493 		uint16_t guest_id = 0;
1494 
1495 		if (cookie & FFA_MEMORY_HANDLE_HYPERVISOR_BIT) {
1496 			guest_id = virt_find_guest_by_cookie(cookie);
1497 		} else {
1498 			guest_id = (cookie >> FFA_MEMORY_HANDLE_PRTN_SHIFT) &
1499 				   FFA_MEMORY_HANDLE_PRTN_MASK;
1500 		}
1501 		if (!guest_id)
1502 			goto out;
1503 		if (virt_set_guest(guest_id)) {
1504 			if (!virt_reclaim_cookie_from_destroyed_guest(guest_id,
1505 								      cookie))
1506 				rc = FFA_OK;
1507 			goto out;
1508 		}
1509 	}
1510 
1511 	switch (mobj_ffa_sel1_spmc_reclaim(cookie)) {
1512 	case TEE_SUCCESS:
1513 		rc = FFA_OK;
1514 		break;
1515 	case TEE_ERROR_ITEM_NOT_FOUND:
1516 		DMSG("cookie %#"PRIx64" not found", cookie);
1517 		rc = FFA_INVALID_PARAMETERS;
1518 		break;
1519 	default:
1520 		DMSG("cookie %#"PRIx64" busy", cookie);
1521 		rc = FFA_DENIED;
1522 		break;
1523 	}
1524 
1525 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1526 		virt_unset_guest();
1527 
1528 out:
1529 	set_simple_ret_val(args, rc);
1530 }
1531 
1532 static void handle_notification_bitmap_create(struct thread_smc_1_2_regs *args)
1533 {
1534 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1535 	uint32_t ret_fid = FFA_ERROR;
1536 	uint32_t old_itr_status = 0;
1537 
1538 	if (!FFA_TARGET_INFO_GET_SP_ID(args->a1) && !args->a3 && !args->a4 &&
1539 	    !args->a5 && !args->a6 && !args->a7) {
1540 		struct guest_partition *prtn = NULL;
1541 		struct notif_vm_bitmap *nvb = NULL;
1542 		uint16_t vm_id = args->a1;
1543 
1544 		prtn = virt_get_guest(vm_id);
1545 		nvb = get_notif_vm_bitmap(prtn, vm_id);
1546 		if (!nvb) {
1547 			ret_val = FFA_INVALID_PARAMETERS;
1548 			goto out_virt_put;
1549 		}
1550 
1551 		old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1552 
1553 		if (nvb->initialized) {
1554 			ret_val = FFA_DENIED;
1555 			goto out_unlock;
1556 		}
1557 
1558 		nvb->initialized = true;
1559 		nvb->do_bottom_half_value = -1;
1560 		ret_val = FFA_OK;
1561 		ret_fid = FFA_SUCCESS_32;
1562 out_unlock:
1563 		cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1564 out_virt_put:
1565 		virt_put_guest(prtn);
1566 	}
1567 
1568 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1569 }
1570 
1571 static void handle_notification_bitmap_destroy(struct thread_smc_1_2_regs *args)
1572 {
1573 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1574 	uint32_t ret_fid = FFA_ERROR;
1575 	uint32_t old_itr_status = 0;
1576 
1577 	if (!FFA_TARGET_INFO_GET_SP_ID(args->a1) && !args->a3 && !args->a4 &&
1578 	    !args->a5 && !args->a6 && !args->a7) {
1579 		struct guest_partition *prtn = NULL;
1580 		struct notif_vm_bitmap *nvb = NULL;
1581 		uint16_t vm_id = args->a1;
1582 
1583 		prtn = virt_get_guest(vm_id);
1584 		nvb = get_notif_vm_bitmap(prtn, vm_id);
1585 		if (!nvb) {
1586 			ret_val = FFA_INVALID_PARAMETERS;
1587 			goto out_virt_put;
1588 		}
1589 
1590 		old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1591 
1592 		if (nvb->pending || nvb->bound) {
1593 			ret_val = FFA_DENIED;
1594 			goto out_unlock;
1595 		}
1596 
1597 		memset(nvb, 0, sizeof(*nvb));
1598 		ret_val = FFA_OK;
1599 		ret_fid = FFA_SUCCESS_32;
1600 out_unlock:
1601 		cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1602 out_virt_put:
1603 		virt_put_guest(prtn);
1604 	}
1605 
1606 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1607 }
1608 
1609 static void handle_notification_bind(struct thread_smc_1_2_regs *args)
1610 {
1611 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1612 	struct guest_partition *prtn = NULL;
1613 	struct notif_vm_bitmap *nvb = NULL;
1614 	uint32_t ret_fid = FFA_ERROR;
1615 	uint32_t old_itr_status = 0;
1616 	uint64_t bitmap = 0;
1617 	uint16_t vm_id = 0;
1618 
1619 	if (args->a5 || args->a6 || args->a7)
1620 		goto out;
1621 	if (args->a2) {
1622 		/* We only deal with global notifications */
1623 		ret_val = FFA_DENIED;
1624 		goto out;
1625 	}
1626 
1627 	/* The destination of the eventual notification */
1628 	vm_id = FFA_DST(args->a1);
1629 	bitmap = reg_pair_to_64(args->a4, args->a3);
1630 
1631 	prtn = virt_get_guest(vm_id);
1632 	nvb = get_notif_vm_bitmap(prtn, vm_id);
1633 	if (!nvb) {
1634 		ret_val = FFA_INVALID_PARAMETERS;
1635 		goto out_virt_put;
1636 	}
1637 
1638 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1639 
1640 	if ((bitmap & nvb->bound)) {
1641 		ret_val = FFA_DENIED;
1642 	} else {
1643 		nvb->bound |= bitmap;
1644 		ret_val = FFA_OK;
1645 		ret_fid = FFA_SUCCESS_32;
1646 	}
1647 
1648 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1649 out_virt_put:
1650 	virt_put_guest(prtn);
1651 out:
1652 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1653 }
1654 
1655 static void handle_notification_unbind(struct thread_smc_1_2_regs *args)
1656 {
1657 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1658 	struct guest_partition *prtn = NULL;
1659 	struct notif_vm_bitmap *nvb = NULL;
1660 	uint32_t ret_fid = FFA_ERROR;
1661 	uint32_t old_itr_status = 0;
1662 	uint64_t bitmap = 0;
1663 	uint16_t vm_id = 0;
1664 
1665 	if (args->a2 || args->a5 || args->a6 || args->a7)
1666 		goto out;
1667 
1668 	/* The destination of the eventual notification */
1669 	vm_id = FFA_DST(args->a1);
1670 	bitmap = reg_pair_to_64(args->a4, args->a3);
1671 
1672 	prtn = virt_get_guest(vm_id);
1673 	nvb = get_notif_vm_bitmap(prtn, vm_id);
1674 	if (!nvb) {
1675 		ret_val = FFA_INVALID_PARAMETERS;
1676 		goto out_virt_put;
1677 	}
1678 
1679 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1680 
1681 	if (bitmap & nvb->pending) {
1682 		ret_val = FFA_DENIED;
1683 	} else {
1684 		nvb->bound &= ~bitmap;
1685 		ret_val = FFA_OK;
1686 		ret_fid = FFA_SUCCESS_32;
1687 	}
1688 
1689 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1690 out_virt_put:
1691 	virt_put_guest(prtn);
1692 out:
1693 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1694 }
1695 
1696 static void handle_notification_get(struct thread_smc_1_2_regs *args)
1697 {
1698 	uint32_t w2 = FFA_INVALID_PARAMETERS;
1699 	struct guest_partition *prtn = NULL;
1700 	struct notif_vm_bitmap *nvb = NULL;
1701 	uint32_t ret_fid = FFA_ERROR;
1702 	uint32_t old_itr_status = 0;
1703 	uint16_t vm_id = 0;
1704 	uint32_t w3 = 0;
1705 
1706 	if (args->a5 || args->a6 || args->a7)
1707 		goto out;
1708 	if (!(args->a2 & 0x1)) {
1709 		ret_fid = FFA_SUCCESS_32;
1710 		w2 = 0;
1711 		goto out;
1712 	}
1713 	vm_id = FFA_DST(args->a1);
1714 
1715 	prtn = virt_get_guest(vm_id);
1716 	nvb = get_notif_vm_bitmap(prtn, vm_id);
1717 	if (!nvb)
1718 		goto out_virt_put;
1719 
1720 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1721 
1722 	reg_pair_from_64(nvb->pending, &w3, &w2);
1723 	nvb->pending = 0;
1724 	ret_fid = FFA_SUCCESS_32;
1725 
1726 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1727 out_virt_put:
1728 	virt_put_guest(prtn);
1729 out:
1730 	spmc_set_args(args, ret_fid, 0, w2, w3, 0, 0);
1731 }
1732 
1733 struct notif_info_get_state {
1734 	struct thread_smc_1_2_regs *args;
1735 	unsigned int ids_per_reg;
1736 	unsigned int ids_count;
1737 	unsigned int id_pos;
1738 	unsigned int count;
1739 	unsigned int max_list_count;
1740 	unsigned int list_count;
1741 };
1742 
1743 static bool add_id_in_regs(struct notif_info_get_state *state,
1744 			   uint16_t id)
1745 {
1746 	unsigned int reg_idx = state->id_pos / state->ids_per_reg + 3;
1747 	unsigned int reg_shift = (state->id_pos % state->ids_per_reg) * 16;
1748 
1749 	if (reg_idx > 7)
1750 		return false;
1751 
1752 	state->args->a[reg_idx] &= ~SHIFT_U64(0xffff, reg_shift);
1753 	state->args->a[reg_idx] |= (unsigned long)id << reg_shift;
1754 
1755 	state->id_pos++;
1756 	state->count++;
1757 	return true;
1758 }
1759 
1760 static bool add_id_count(struct notif_info_get_state *state)
1761 {
1762 	assert(state->list_count < state->max_list_count &&
1763 	       state->count >= 1 && state->count <= 4);
1764 
1765 	state->ids_count |= (state->count - 1) << (state->list_count * 2 + 12);
1766 	state->list_count++;
1767 	state->count = 0;
1768 
1769 	return state->list_count < state->max_list_count;
1770 }
1771 
1772 static bool add_nvb_to_state(struct notif_info_get_state *state,
1773 			     uint16_t guest_id, struct notif_vm_bitmap *nvb)
1774 {
1775 	if (!nvb->pending)
1776 		return true;
1777 	/*
1778 	 * Add only the guest_id, meaning a global notification for this
1779 	 * guest.
1780 	 *
1781 	 * If notifications for one or more specific vCPUs we'd add those
1782 	 * before calling add_id_count(), but that's not supported.
1783 	 */
1784 	return add_id_in_regs(state, guest_id) && add_id_count(state);
1785 }
1786 
1787 static void handle_notification_info_get(struct thread_smc_1_2_regs *args)
1788 {
1789 	struct notif_info_get_state state = { .args = args };
1790 	uint32_t ffa_res = FFA_INVALID_PARAMETERS;
1791 	struct guest_partition *prtn = NULL;
1792 	struct notif_vm_bitmap *nvb = NULL;
1793 	uint32_t more_pending_flag = 0;
1794 	uint32_t itr_state = 0;
1795 	uint16_t guest_id = 0;
1796 
1797 	if (args->a1 || args->a2 || args->a3 || args->a4 || args->a5 ||
1798 	    args->a6 || args->a7)
1799 		goto err;
1800 
1801 	if (OPTEE_SMC_IS_64(args->a0)) {
1802 		spmc_set_args(args, FFA_SUCCESS_64, 0, 0, 0, 0, 0);
1803 		state.ids_per_reg = 4;
1804 		state.max_list_count = 31;
1805 	} else {
1806 		spmc_set_args(args, FFA_SUCCESS_32, 0, 0, 0, 0, 0);
1807 		state.ids_per_reg = 2;
1808 		state.max_list_count = 15;
1809 	}
1810 
1811 	while (true) {
1812 		/*
1813 		 * With NS-Virtualization we need to go through all
1814 		 * partitions to collect the notification bitmaps, without
1815 		 * we just check the only notification bitmap we have.
1816 		 */
1817 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1818 			prtn = virt_next_guest(prtn);
1819 			if (!prtn)
1820 				break;
1821 			guest_id = virt_get_guest_id(prtn);
1822 		}
1823 		nvb = get_notif_vm_bitmap(prtn, guest_id);
1824 
1825 		itr_state = cpu_spin_lock_xsave(&spmc_notif_lock);
1826 		if (!add_nvb_to_state(&state, guest_id, nvb))
1827 			more_pending_flag = BIT(0);
1828 		cpu_spin_unlock_xrestore(&spmc_notif_lock, itr_state);
1829 
1830 		if (!IS_ENABLED(CFG_NS_VIRTUALIZATION) || more_pending_flag)
1831 			break;
1832 	}
1833 	virt_put_guest(prtn);
1834 
1835 	if (!state.id_pos) {
1836 		ffa_res = FFA_NO_DATA;
1837 		goto err;
1838 	}
1839 	args->a2 = (state.list_count << FFA_NOTIF_INFO_GET_ID_COUNT_SHIFT) |
1840 		   (state.ids_count << FFA_NOTIF_INFO_GET_ID_LIST_SHIFT) |
1841 		   more_pending_flag;
1842 	return;
1843 err:
1844 	spmc_set_args(args, FFA_ERROR, 0, ffa_res, 0, 0, 0);
1845 }
1846 
1847 void thread_spmc_set_async_notif_intid(int intid)
1848 {
1849 	assert(interrupt_can_raise_sgi(interrupt_get_main_chip()));
1850 	notif_intid = intid;
1851 	spmc_notif_is_ready = true;
1852 	DMSG("Asynchronous notifications are ready");
1853 }
1854 
1855 void notif_send_async(uint32_t value, uint16_t guest_id)
1856 {
1857 	struct guest_partition *prtn = NULL;
1858 	struct notif_vm_bitmap *nvb = NULL;
1859 	uint32_t old_itr_status = 0;
1860 
1861 	prtn = virt_get_guest(guest_id);
1862 	nvb = get_notif_vm_bitmap(prtn, guest_id);
1863 
1864 	if (nvb) {
1865 		old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1866 		assert(value == NOTIF_VALUE_DO_BOTTOM_HALF &&
1867 		       spmc_notif_is_ready && nvb->do_bottom_half_value >= 0 &&
1868 		       notif_intid >= 0);
1869 		nvb->pending |= BIT64(nvb->do_bottom_half_value);
1870 		interrupt_raise_sgi(interrupt_get_main_chip(), notif_intid,
1871 				    ITR_CPU_MASK_TO_THIS_CPU);
1872 		cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1873 	}
1874 
1875 	virt_put_guest(prtn);
1876 }
1877 #else
1878 void notif_send_async(uint32_t value, uint16_t guest_id)
1879 {
1880 	struct guest_partition *prtn = NULL;
1881 	struct notif_vm_bitmap *nvb = NULL;
1882 	/* global notification, delay notification interrupt */
1883 	uint32_t flags = BIT32(1);
1884 	int res = 0;
1885 
1886 	prtn = virt_get_guest(guest_id);
1887 	nvb = get_notif_vm_bitmap(prtn, guest_id);
1888 
1889 	if (nvb) {
1890 		assert(value == NOTIF_VALUE_DO_BOTTOM_HALF &&
1891 		       spmc_notif_is_ready && nvb->do_bottom_half_value >= 0);
1892 		res = ffa_set_notification(guest_id, optee_endpoint_id, flags,
1893 					   BIT64(nvb->do_bottom_half_value));
1894 		if (res) {
1895 			EMSG("notification set failed with error %d", res);
1896 			panic();
1897 		}
1898 	}
1899 
1900 	virt_put_guest(prtn);
1901 }
1902 #endif
1903 
1904 /* Only called from assembly */
1905 void thread_spmc_msg_recv(struct thread_smc_1_2_regs *args);
1906 void thread_spmc_msg_recv(struct thread_smc_1_2_regs *args)
1907 {
1908 	assert((thread_get_exceptions() & THREAD_EXCP_ALL) == THREAD_EXCP_ALL);
1909 	switch (args->a0) {
1910 #if defined(CFG_CORE_SEL1_SPMC)
1911 	case FFA_FEATURES:
1912 		handle_features(args);
1913 		break;
1914 	case FFA_SPM_ID_GET:
1915 		spmc_handle_spm_id_get(args);
1916 		break;
1917 #ifdef ARM64
1918 	case FFA_RXTX_MAP_64:
1919 #endif
1920 	case FFA_RXTX_MAP_32:
1921 		spmc_handle_rxtx_map(args, &my_rxtx);
1922 		break;
1923 	case FFA_RXTX_UNMAP:
1924 		spmc_handle_rxtx_unmap(args, &my_rxtx);
1925 		break;
1926 	case FFA_RX_RELEASE:
1927 		spmc_handle_rx_release(args, &my_rxtx);
1928 		break;
1929 	case FFA_PARTITION_INFO_GET:
1930 		spmc_handle_partition_info_get(args, &my_rxtx);
1931 		break;
1932 	case FFA_RUN:
1933 		spmc_handle_run(args);
1934 		break;
1935 #endif /*CFG_CORE_SEL1_SPMC*/
1936 	case FFA_INTERRUPT:
1937 		if (IS_ENABLED(CFG_CORE_SEL1_SPMC))
1938 			spmc_set_args(args, FFA_NORMAL_WORLD_RESUME, 0, 0, 0,
1939 				      0, 0);
1940 		else
1941 			spmc_set_args(args, FFA_MSG_WAIT, 0, 0, 0, 0, 0);
1942 		break;
1943 #ifdef ARM64
1944 	case FFA_MSG_SEND_DIRECT_REQ_64:
1945 #endif
1946 	case FFA_MSG_SEND_DIRECT_REQ_32:
1947 		handle_direct_request(args, &my_rxtx);
1948 		break;
1949 #if defined(CFG_CORE_SEL1_SPMC)
1950 #ifdef ARM64
1951 	case FFA_MEM_SHARE_64:
1952 #endif
1953 	case FFA_MEM_SHARE_32:
1954 		handle_mem_share(args, &my_rxtx);
1955 		break;
1956 	case FFA_MEM_RECLAIM:
1957 		if (!IS_ENABLED(CFG_SECURE_PARTITION) ||
1958 		    !ffa_mem_reclaim(args, NULL))
1959 			handle_mem_reclaim(args);
1960 		break;
1961 	case FFA_MEM_FRAG_TX:
1962 		handle_mem_frag_tx(args, &my_rxtx);
1963 		break;
1964 	case FFA_NOTIFICATION_BITMAP_CREATE:
1965 		handle_notification_bitmap_create(args);
1966 		break;
1967 	case FFA_NOTIFICATION_BITMAP_DESTROY:
1968 		handle_notification_bitmap_destroy(args);
1969 		break;
1970 	case FFA_NOTIFICATION_BIND:
1971 		handle_notification_bind(args);
1972 		break;
1973 	case FFA_NOTIFICATION_UNBIND:
1974 		handle_notification_unbind(args);
1975 		break;
1976 	case FFA_NOTIFICATION_GET:
1977 		handle_notification_get(args);
1978 		break;
1979 #ifdef ARM64
1980 	case FFA_NOTIFICATION_INFO_GET_64:
1981 #endif
1982 	case FFA_NOTIFICATION_INFO_GET_32:
1983 		handle_notification_info_get(args);
1984 		break;
1985 #endif /*CFG_CORE_SEL1_SPMC*/
1986 	case FFA_ERROR:
1987 		EMSG("Cannot handle FFA_ERROR(%d)", (int)args->a2);
1988 		if (!IS_ENABLED(CFG_CORE_SEL1_SPMC)) {
1989 			/*
1990 			 * The SPMC will return an FFA_ERROR back so better
1991 			 * panic() now than flooding the log.
1992 			 */
1993 			panic("FFA_ERROR from SPMC is fatal");
1994 		}
1995 		spmc_set_args(args, FFA_ERROR, FFA_PARAM_MBZ, FFA_NOT_SUPPORTED,
1996 			      FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
1997 		break;
1998 	default:
1999 		EMSG("Unhandled FFA function ID %#"PRIx32, (uint32_t)args->a0);
2000 		set_simple_ret_val(args, FFA_NOT_SUPPORTED);
2001 	}
2002 }
2003 
2004 static TEE_Result yielding_call_with_arg(uint64_t cookie, uint32_t offset)
2005 {
2006 	size_t sz_rpc = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS);
2007 	struct thread_ctx *thr = threads + thread_get_id();
2008 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
2009 	struct optee_msg_arg *arg = NULL;
2010 	struct mobj *mobj = NULL;
2011 	uint32_t num_params = 0;
2012 	size_t sz = 0;
2013 
2014 	mobj = mobj_ffa_get_by_cookie(cookie, 0);
2015 	if (!mobj) {
2016 		EMSG("Can't find cookie %#"PRIx64, cookie);
2017 		return TEE_ERROR_BAD_PARAMETERS;
2018 	}
2019 
2020 	res = mobj_inc_map(mobj);
2021 	if (res)
2022 		goto out_put_mobj;
2023 
2024 	res = TEE_ERROR_BAD_PARAMETERS;
2025 	arg = mobj_get_va(mobj, offset, sizeof(*arg));
2026 	if (!arg)
2027 		goto out_dec_map;
2028 
2029 	num_params = READ_ONCE(arg->num_params);
2030 	if (num_params > OPTEE_MSG_MAX_NUM_PARAMS)
2031 		goto out_dec_map;
2032 
2033 	sz = OPTEE_MSG_GET_ARG_SIZE(num_params);
2034 
2035 	thr->rpc_arg = mobj_get_va(mobj, offset + sz, sz_rpc);
2036 	if (!thr->rpc_arg)
2037 		goto out_dec_map;
2038 
2039 	virt_on_stdcall();
2040 	res = tee_entry_std(arg, num_params);
2041 
2042 	thread_rpc_shm_cache_clear(&thr->shm_cache);
2043 	thr->rpc_arg = NULL;
2044 
2045 out_dec_map:
2046 	mobj_dec_map(mobj);
2047 out_put_mobj:
2048 	mobj_put(mobj);
2049 	return res;
2050 }
2051 
2052 /*
2053  * Helper routine for the assembly function thread_std_smc_entry()
2054  *
2055  * Note: this function is weak just to make link_dummies_paged.c happy.
2056  */
2057 uint32_t __weak __thread_std_smc_entry(uint32_t a0, uint32_t a1,
2058 				       uint32_t a2, uint32_t a3,
2059 				       uint32_t a4, uint32_t a5 __unused)
2060 {
2061 	/*
2062 	 * Arguments are supplied from handle_yielding_call() as:
2063 	 * a0 <- w1
2064 	 * a1 <- w3
2065 	 * a2 <- w4
2066 	 * a3 <- w5
2067 	 * a4 <- w6
2068 	 * a5 <- w7
2069 	 */
2070 	thread_get_tsd()->rpc_target_info = swap_src_dst(a0);
2071 	if (a1 == OPTEE_FFA_YIELDING_CALL_WITH_ARG)
2072 		return yielding_call_with_arg(reg_pair_to_64(a3, a2), a4);
2073 	return FFA_DENIED;
2074 }
2075 
2076 static bool set_fmem(struct optee_msg_param *param, struct thread_param *tpm)
2077 {
2078 	uint64_t offs = tpm->u.memref.offs;
2079 
2080 	param->attr = tpm->attr - THREAD_PARAM_ATTR_MEMREF_IN +
2081 		      OPTEE_MSG_ATTR_TYPE_FMEM_INPUT;
2082 
2083 	param->u.fmem.offs_low = offs;
2084 	param->u.fmem.offs_high = offs >> 32;
2085 	if (param->u.fmem.offs_high != offs >> 32)
2086 		return false;
2087 
2088 	param->u.fmem.size = tpm->u.memref.size;
2089 	if (tpm->u.memref.mobj) {
2090 		uint64_t cookie = mobj_get_cookie(tpm->u.memref.mobj);
2091 
2092 		/* If a mobj is passed it better be one with a valid cookie. */
2093 		if (cookie == OPTEE_MSG_FMEM_INVALID_GLOBAL_ID)
2094 			return false;
2095 		param->u.fmem.global_id = cookie;
2096 	} else {
2097 		param->u.fmem.global_id = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID;
2098 	}
2099 
2100 	return true;
2101 }
2102 
2103 static uint32_t get_rpc_arg(uint32_t cmd, size_t num_params,
2104 			    struct thread_param *params,
2105 			    struct optee_msg_arg **arg_ret)
2106 {
2107 	size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS);
2108 	struct thread_ctx *thr = threads + thread_get_id();
2109 	struct optee_msg_arg *arg = thr->rpc_arg;
2110 
2111 	if (num_params > THREAD_RPC_MAX_NUM_PARAMS)
2112 		return TEE_ERROR_BAD_PARAMETERS;
2113 
2114 	if (!arg) {
2115 		EMSG("rpc_arg not set");
2116 		return TEE_ERROR_GENERIC;
2117 	}
2118 
2119 	memset(arg, 0, sz);
2120 	arg->cmd = cmd;
2121 	arg->num_params = num_params;
2122 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
2123 
2124 	for (size_t n = 0; n < num_params; n++) {
2125 		switch (params[n].attr) {
2126 		case THREAD_PARAM_ATTR_NONE:
2127 			arg->params[n].attr = OPTEE_MSG_ATTR_TYPE_NONE;
2128 			break;
2129 		case THREAD_PARAM_ATTR_VALUE_IN:
2130 		case THREAD_PARAM_ATTR_VALUE_OUT:
2131 		case THREAD_PARAM_ATTR_VALUE_INOUT:
2132 			arg->params[n].attr = params[n].attr -
2133 					      THREAD_PARAM_ATTR_VALUE_IN +
2134 					      OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
2135 			arg->params[n].u.value.a = params[n].u.value.a;
2136 			arg->params[n].u.value.b = params[n].u.value.b;
2137 			arg->params[n].u.value.c = params[n].u.value.c;
2138 			break;
2139 		case THREAD_PARAM_ATTR_MEMREF_IN:
2140 		case THREAD_PARAM_ATTR_MEMREF_OUT:
2141 		case THREAD_PARAM_ATTR_MEMREF_INOUT:
2142 			if (!set_fmem(arg->params + n, params + n))
2143 				return TEE_ERROR_BAD_PARAMETERS;
2144 			break;
2145 		default:
2146 			return TEE_ERROR_BAD_PARAMETERS;
2147 		}
2148 	}
2149 
2150 	if (arg_ret)
2151 		*arg_ret = arg;
2152 
2153 	return TEE_SUCCESS;
2154 }
2155 
2156 static uint32_t get_rpc_arg_res(struct optee_msg_arg *arg, size_t num_params,
2157 				struct thread_param *params)
2158 {
2159 	for (size_t n = 0; n < num_params; n++) {
2160 		switch (params[n].attr) {
2161 		case THREAD_PARAM_ATTR_VALUE_OUT:
2162 		case THREAD_PARAM_ATTR_VALUE_INOUT:
2163 			params[n].u.value.a = arg->params[n].u.value.a;
2164 			params[n].u.value.b = arg->params[n].u.value.b;
2165 			params[n].u.value.c = arg->params[n].u.value.c;
2166 			break;
2167 		case THREAD_PARAM_ATTR_MEMREF_OUT:
2168 		case THREAD_PARAM_ATTR_MEMREF_INOUT:
2169 			params[n].u.memref.size = arg->params[n].u.fmem.size;
2170 			break;
2171 		default:
2172 			break;
2173 		}
2174 	}
2175 
2176 	return arg->ret;
2177 }
2178 
2179 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params,
2180 			struct thread_param *params)
2181 {
2182 	struct thread_rpc_arg rpc_arg = { .call = {
2183 			.w1 = thread_get_tsd()->rpc_target_info,
2184 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
2185 		},
2186 	};
2187 	struct optee_msg_arg *arg = NULL;
2188 	uint32_t ret = 0;
2189 
2190 	ret = get_rpc_arg(cmd, num_params, params, &arg);
2191 	if (ret)
2192 		return ret;
2193 
2194 	thread_rpc(&rpc_arg);
2195 
2196 	return get_rpc_arg_res(arg, num_params, params);
2197 }
2198 
2199 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj)
2200 {
2201 	struct thread_rpc_arg rpc_arg = { .call = {
2202 			.w1 = thread_get_tsd()->rpc_target_info,
2203 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
2204 		},
2205 	};
2206 	struct thread_param param = THREAD_PARAM_VALUE(IN, bt, cookie, 0);
2207 	uint32_t res2 = 0;
2208 	uint32_t res = 0;
2209 
2210 	DMSG("freeing cookie %#"PRIx64, cookie);
2211 
2212 	res = get_rpc_arg(OPTEE_RPC_CMD_SHM_FREE, 1, &param, NULL);
2213 
2214 	mobj_put(mobj);
2215 	res2 = mobj_ffa_unregister_by_cookie(cookie);
2216 	if (res2)
2217 		DMSG("mobj_ffa_unregister_by_cookie(%#"PRIx64"): %#"PRIx32,
2218 		     cookie, res2);
2219 	if (!res)
2220 		thread_rpc(&rpc_arg);
2221 }
2222 
2223 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt)
2224 {
2225 	struct thread_rpc_arg rpc_arg = { .call = {
2226 			.w1 = thread_get_tsd()->rpc_target_info,
2227 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
2228 		},
2229 	};
2230 	struct thread_param param = THREAD_PARAM_VALUE(IN, bt, size, align);
2231 	struct optee_msg_arg *arg = NULL;
2232 	unsigned int internal_offset = 0;
2233 	struct mobj *mobj = NULL;
2234 	uint64_t cookie = 0;
2235 
2236 	if (get_rpc_arg(OPTEE_RPC_CMD_SHM_ALLOC, 1, &param, &arg))
2237 		return NULL;
2238 
2239 	thread_rpc(&rpc_arg);
2240 
2241 	if (arg->num_params != 1 ||
2242 	    arg->params->attr != OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT)
2243 		return NULL;
2244 
2245 	internal_offset = READ_ONCE(arg->params->u.fmem.internal_offs);
2246 	cookie = READ_ONCE(arg->params->u.fmem.global_id);
2247 	mobj = mobj_ffa_get_by_cookie(cookie, internal_offset);
2248 	if (!mobj) {
2249 		DMSG("mobj_ffa_get_by_cookie(%#"PRIx64", %#x): failed",
2250 		     cookie, internal_offset);
2251 		return NULL;
2252 	}
2253 
2254 	assert(mobj_is_nonsec(mobj));
2255 
2256 	if (mobj->size < size) {
2257 		DMSG("Mobj %#"PRIx64": wrong size", cookie);
2258 		mobj_put(mobj);
2259 		return NULL;
2260 	}
2261 
2262 	if (mobj_inc_map(mobj)) {
2263 		DMSG("mobj_inc_map(%#"PRIx64"): failed", cookie);
2264 		mobj_put(mobj);
2265 		return NULL;
2266 	}
2267 
2268 	return mobj;
2269 }
2270 
2271 struct mobj *thread_rpc_alloc_payload(size_t size)
2272 {
2273 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_APPL);
2274 }
2275 
2276 struct mobj *thread_rpc_alloc_kernel_payload(size_t size)
2277 {
2278 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_KERNEL);
2279 }
2280 
2281 void thread_rpc_free_kernel_payload(struct mobj *mobj)
2282 {
2283 	if (mobj)
2284 		thread_rpc_free(OPTEE_RPC_SHM_TYPE_KERNEL,
2285 				mobj_get_cookie(mobj), mobj);
2286 }
2287 
2288 void thread_rpc_free_payload(struct mobj *mobj)
2289 {
2290 	if (mobj)
2291 		thread_rpc_free(OPTEE_RPC_SHM_TYPE_APPL, mobj_get_cookie(mobj),
2292 				mobj);
2293 }
2294 
2295 struct mobj *thread_rpc_alloc_global_payload(size_t size)
2296 {
2297 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_GLOBAL);
2298 }
2299 
2300 void thread_rpc_free_global_payload(struct mobj *mobj)
2301 {
2302 	if (mobj)
2303 		thread_rpc_free(OPTEE_RPC_SHM_TYPE_GLOBAL,
2304 				mobj_get_cookie(mobj), mobj);
2305 }
2306 
2307 void thread_spmc_register_secondary_ep(vaddr_t ep)
2308 {
2309 	unsigned long ret = 0;
2310 
2311 	/* Let the SPM know the entry point for secondary CPUs */
2312 	ret = thread_smc(FFA_SECONDARY_EP_REGISTER_64, ep, 0, 0);
2313 
2314 	if (ret != FFA_SUCCESS_32 && ret != FFA_SUCCESS_64)
2315 		EMSG("FFA_SECONDARY_EP_REGISTER_64 ret %#lx", ret);
2316 }
2317 
2318 static uint16_t ffa_id_get(void)
2319 {
2320 	/*
2321 	 * Ask the SPM component running at a higher EL to return our FF-A ID.
2322 	 * This can either be the SPMC ID (if the SPMC is enabled in OP-TEE) or
2323 	 * the partition ID (if not).
2324 	 */
2325 	struct thread_smc_args args = {
2326 		.a0 = FFA_ID_GET,
2327 	};
2328 
2329 	thread_smccc(&args);
2330 	if (!is_ffa_success(args.a0)) {
2331 		if (args.a0 == FFA_ERROR)
2332 			EMSG("Get id failed with error %ld", args.a2);
2333 		else
2334 			EMSG("Get id failed");
2335 		panic();
2336 	}
2337 
2338 	return args.a2;
2339 }
2340 
2341 static uint16_t ffa_spm_id_get(void)
2342 {
2343 	/*
2344 	 * Ask the SPM component running at a higher EL to return its ID.
2345 	 * If OP-TEE implements the S-EL1 SPMC, this will get the SPMD ID.
2346 	 * If not, the ID of the SPMC will be returned.
2347 	 */
2348 	struct thread_smc_args args = {
2349 		.a0 = FFA_SPM_ID_GET,
2350 	};
2351 
2352 	thread_smccc(&args);
2353 	if (!is_ffa_success(args.a0)) {
2354 		if (args.a0 == FFA_ERROR)
2355 			EMSG("Get spm id failed with error %ld", args.a2);
2356 		else
2357 			EMSG("Get spm id failed");
2358 		panic();
2359 	}
2360 
2361 	return args.a2;
2362 }
2363 
2364 #if defined(CFG_CORE_SEL1_SPMC)
2365 static TEE_Result spmc_init(void)
2366 {
2367 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
2368 	    virt_add_guest_spec_data(&notif_vm_bitmap_id,
2369 				     sizeof(struct notif_vm_bitmap), NULL))
2370 		panic("virt_add_guest_spec_data");
2371 	spmd_id = ffa_spm_id_get();
2372 	DMSG("SPMD ID %#"PRIx16, spmd_id);
2373 
2374 	spmc_id = ffa_id_get();
2375 	DMSG("SPMC ID %#"PRIx16, spmc_id);
2376 
2377 	optee_endpoint_id = FFA_SWD_ID_MIN;
2378 	while (spmc_is_reserved_id(optee_endpoint_id))
2379 		optee_endpoint_id++;
2380 
2381 	DMSG("OP-TEE endpoint ID %#"PRIx16, optee_endpoint_id);
2382 
2383 	/*
2384 	 * If SPMD think we are version 1.0 it will report version 1.0 to
2385 	 * normal world regardless of what version we query the SPM with.
2386 	 * However, if SPMD think we are version 1.1 it will forward
2387 	 * queries from normal world to let us negotiate version. So by
2388 	 * setting version 1.0 here we should be compatible.
2389 	 *
2390 	 * Note that disagreement on negotiated version means that we'll
2391 	 * have communication problems with normal world.
2392 	 */
2393 	my_rxtx.ffa_vers = FFA_VERSION_1_0;
2394 
2395 	return TEE_SUCCESS;
2396 }
2397 #else /* !defined(CFG_CORE_SEL1_SPMC) */
2398 static void spmc_rxtx_map(struct ffa_rxtx *rxtx)
2399 {
2400 	struct thread_smc_args args = {
2401 #ifdef ARM64
2402 		.a0 = FFA_RXTX_MAP_64,
2403 #else
2404 		.a0 = FFA_RXTX_MAP_32,
2405 #endif
2406 		.a1 = virt_to_phys(rxtx->tx),
2407 		.a2 = virt_to_phys(rxtx->rx),
2408 		.a3 = 1,
2409 	};
2410 
2411 	thread_smccc(&args);
2412 	if (!is_ffa_success(args.a0)) {
2413 		if (args.a0 == FFA_ERROR)
2414 			EMSG("rxtx map failed with error %ld", args.a2);
2415 		else
2416 			EMSG("rxtx map failed");
2417 		panic();
2418 	}
2419 }
2420 
2421 static uint32_t get_ffa_version(uint32_t my_version)
2422 {
2423 	struct thread_smc_args args = {
2424 		.a0 = FFA_VERSION,
2425 		.a1 = my_version,
2426 	};
2427 
2428 	thread_smccc(&args);
2429 	if (args.a0 & BIT(31)) {
2430 		EMSG("FF-A version failed with error %ld", args.a0);
2431 		panic();
2432 	}
2433 
2434 	return args.a0;
2435 }
2436 
2437 static void *spmc_retrieve_req(uint64_t cookie,
2438 			       struct ffa_mem_transaction_x *trans)
2439 {
2440 	struct ffa_mem_access *acc_descr_array = NULL;
2441 	struct ffa_mem_access_perm *perm_descr = NULL;
2442 	struct thread_smc_args args = {
2443 		.a0 = FFA_MEM_RETRIEVE_REQ_32,
2444 		.a3 =	0,	/* Address, Using TX -> MBZ */
2445 		.a4 =   0,	/* Using TX -> MBZ */
2446 	};
2447 	size_t size = 0;
2448 	int rc = 0;
2449 
2450 	if (my_rxtx.ffa_vers == FFA_VERSION_1_0) {
2451 		struct ffa_mem_transaction_1_0 *trans_descr = my_rxtx.tx;
2452 
2453 		size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access);
2454 		memset(trans_descr, 0, size);
2455 		trans_descr->sender_id = thread_get_tsd()->rpc_target_info;
2456 		trans_descr->mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
2457 		trans_descr->global_handle = cookie;
2458 		trans_descr->flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE |
2459 				     FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT;
2460 		trans_descr->mem_access_count = 1;
2461 		acc_descr_array = trans_descr->mem_access_array;
2462 	} else {
2463 		struct ffa_mem_transaction_1_1 *trans_descr = my_rxtx.tx;
2464 
2465 		size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access);
2466 		memset(trans_descr, 0, size);
2467 		trans_descr->sender_id = thread_get_tsd()->rpc_target_info;
2468 		trans_descr->mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
2469 		trans_descr->global_handle = cookie;
2470 		trans_descr->flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE |
2471 				     FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT;
2472 		trans_descr->mem_access_count = 1;
2473 		trans_descr->mem_access_offs = sizeof(*trans_descr);
2474 		trans_descr->mem_access_size = sizeof(struct ffa_mem_access);
2475 		acc_descr_array = (void *)((vaddr_t)my_rxtx.tx +
2476 					   sizeof(*trans_descr));
2477 	}
2478 	acc_descr_array->region_offs = 0;
2479 	acc_descr_array->reserved = 0;
2480 	perm_descr = &acc_descr_array->access_perm;
2481 	perm_descr->endpoint_id = optee_endpoint_id;
2482 	perm_descr->perm = FFA_MEM_ACC_RW;
2483 	perm_descr->flags = 0;
2484 
2485 	args.a1 = size; /* Total Length */
2486 	args.a2 = size; /* Frag Length == Total length */
2487 	thread_smccc(&args);
2488 	if (args.a0 != FFA_MEM_RETRIEVE_RESP) {
2489 		if (args.a0 == FFA_ERROR)
2490 			EMSG("Failed to fetch cookie %#"PRIx64" error code %d",
2491 			     cookie, (int)args.a2);
2492 		else
2493 			EMSG("Failed to fetch cookie %#"PRIx64" a0 %#"PRIx64,
2494 			     cookie, args.a0);
2495 		return NULL;
2496 	}
2497 	rc = spmc_read_mem_transaction(my_rxtx.ffa_vers, my_rxtx.rx,
2498 				       my_rxtx.size, trans);
2499 	if (rc) {
2500 		EMSG("Memory transaction failure for cookie %#"PRIx64" rc %d",
2501 		     cookie, rc);
2502 		return NULL;
2503 	}
2504 
2505 	return my_rxtx.rx;
2506 }
2507 
2508 void thread_spmc_relinquish(uint64_t cookie)
2509 {
2510 	struct ffa_mem_relinquish *relinquish_desc = my_rxtx.tx;
2511 	struct thread_smc_args args = {
2512 		.a0 = FFA_MEM_RELINQUISH,
2513 	};
2514 
2515 	memset(relinquish_desc, 0, sizeof(*relinquish_desc));
2516 	relinquish_desc->handle = cookie;
2517 	relinquish_desc->flags = 0;
2518 	relinquish_desc->endpoint_count = 1;
2519 	relinquish_desc->endpoint_id_array[0] = optee_endpoint_id;
2520 	thread_smccc(&args);
2521 	if (!is_ffa_success(args.a0))
2522 		EMSG("Failed to relinquish cookie %#"PRIx64, cookie);
2523 }
2524 
2525 static int set_pages(struct ffa_address_range *regions,
2526 		     unsigned int num_regions, unsigned int num_pages,
2527 		     struct mobj_ffa *mf)
2528 {
2529 	unsigned int n = 0;
2530 	unsigned int idx = 0;
2531 
2532 	for (n = 0; n < num_regions; n++) {
2533 		unsigned int page_count = READ_ONCE(regions[n].page_count);
2534 		uint64_t addr = READ_ONCE(regions[n].address);
2535 
2536 		if (mobj_ffa_add_pages_at(mf, &idx, addr, page_count))
2537 			return FFA_INVALID_PARAMETERS;
2538 	}
2539 
2540 	if (idx != num_pages)
2541 		return FFA_INVALID_PARAMETERS;
2542 
2543 	return 0;
2544 }
2545 
2546 struct mobj_ffa *thread_spmc_populate_mobj_from_rx(uint64_t cookie)
2547 {
2548 	struct mobj_ffa *ret = NULL;
2549 	struct ffa_mem_transaction_x retrieve_desc = { };
2550 	struct ffa_mem_access *descr_array = NULL;
2551 	struct ffa_mem_region *descr = NULL;
2552 	struct mobj_ffa *mf = NULL;
2553 	unsigned int num_pages = 0;
2554 	unsigned int offs = 0;
2555 	void *buf = NULL;
2556 	struct thread_smc_args ffa_rx_release_args = {
2557 		.a0 = FFA_RX_RELEASE
2558 	};
2559 
2560 	/*
2561 	 * OP-TEE is only supporting a single mem_region while the
2562 	 * specification allows for more than one.
2563 	 */
2564 	buf = spmc_retrieve_req(cookie, &retrieve_desc);
2565 	if (!buf) {
2566 		EMSG("Failed to retrieve cookie from rx buffer %#"PRIx64,
2567 		     cookie);
2568 		return NULL;
2569 	}
2570 
2571 	descr_array = (void *)((vaddr_t)buf + retrieve_desc.mem_access_offs);
2572 	offs = READ_ONCE(descr_array->region_offs);
2573 	descr = (struct ffa_mem_region *)((vaddr_t)buf + offs);
2574 
2575 	num_pages = READ_ONCE(descr->total_page_count);
2576 	mf = mobj_ffa_spmc_new(cookie, num_pages);
2577 	if (!mf)
2578 		goto out;
2579 
2580 	if (set_pages(descr->address_range_array,
2581 		      READ_ONCE(descr->address_range_count), num_pages, mf)) {
2582 		mobj_ffa_spmc_delete(mf);
2583 		goto out;
2584 	}
2585 
2586 	ret = mf;
2587 
2588 out:
2589 	/* Release RX buffer after the mem retrieve request. */
2590 	thread_smccc(&ffa_rx_release_args);
2591 
2592 	return ret;
2593 }
2594 
2595 static uint32_t get_ffa_version_from_manifest(void *fdt)
2596 {
2597 	int ret = 0;
2598 	uint32_t vers = 0;
2599 
2600 	ret = fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0");
2601 	if (ret < 0) {
2602 		EMSG("Invalid FF-A manifest at %p: error %d", fdt, ret);
2603 		panic();
2604 	}
2605 
2606 	ret = fdt_read_uint32(fdt, 0, "ffa-version", &vers);
2607 	if (ret < 0) {
2608 		EMSG("Can't read \"ffa-version\" from FF-A manifest at %p: error %d",
2609 		     fdt, ret);
2610 		panic();
2611 	}
2612 
2613 	return vers;
2614 }
2615 
2616 static TEE_Result spmc_init(void)
2617 {
2618 	uint32_t my_vers = 0;
2619 	uint32_t vers = 0;
2620 
2621 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
2622 	    virt_add_guest_spec_data(&notif_vm_bitmap_id,
2623 				     sizeof(struct notif_vm_bitmap), NULL))
2624 		panic("virt_add_guest_spec_data");
2625 
2626 	my_vers = get_ffa_version_from_manifest(get_manifest_dt());
2627 	if (my_vers < FFA_VERSION_1_0 || my_vers > FFA_VERSION_1_2) {
2628 		EMSG("Unsupported version %"PRIu32".%"PRIu32" from manifest",
2629 		     FFA_GET_MAJOR_VERSION(my_vers),
2630 		     FFA_GET_MINOR_VERSION(my_vers));
2631 		panic();
2632 	}
2633 	vers = get_ffa_version(my_vers);
2634 	DMSG("SPMC reported version %"PRIu32".%"PRIu32,
2635 	     FFA_GET_MAJOR_VERSION(vers), FFA_GET_MINOR_VERSION(vers));
2636 	if (FFA_GET_MAJOR_VERSION(vers) != FFA_GET_MAJOR_VERSION(my_vers)) {
2637 		EMSG("Incompatible major version %"PRIu32", expected %"PRIu32"",
2638 		     FFA_GET_MAJOR_VERSION(vers),
2639 		     FFA_GET_MAJOR_VERSION(my_vers));
2640 		panic();
2641 	}
2642 	if (vers < my_vers)
2643 		my_vers = vers;
2644 	DMSG("Using version %"PRIu32".%"PRIu32"",
2645 	     FFA_GET_MAJOR_VERSION(my_vers), FFA_GET_MINOR_VERSION(my_vers));
2646 	my_rxtx.ffa_vers = my_vers;
2647 
2648 	spmc_rxtx_map(&my_rxtx);
2649 
2650 	spmc_id = ffa_spm_id_get();
2651 	DMSG("SPMC ID %#"PRIx16, spmc_id);
2652 
2653 	optee_endpoint_id = ffa_id_get();
2654 	DMSG("OP-TEE endpoint ID %#"PRIx16, optee_endpoint_id);
2655 
2656 	if (!ffa_features(FFA_NOTIFICATION_SET)) {
2657 		spmc_notif_is_ready = true;
2658 		DMSG("Asynchronous notifications are ready");
2659 	}
2660 
2661 	return TEE_SUCCESS;
2662 }
2663 #endif /* !defined(CFG_CORE_SEL1_SPMC) */
2664 
2665 nex_service_init(spmc_init);
2666