1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2020-2023, Linaro Limited. 4 * Copyright (c) 2019-2024, Arm Limited. All rights reserved. 5 */ 6 7 #include <assert.h> 8 #include <ffa.h> 9 #include <initcall.h> 10 #include <io.h> 11 #include <kernel/interrupt.h> 12 #include <kernel/notif.h> 13 #include <kernel/panic.h> 14 #include <kernel/secure_partition.h> 15 #include <kernel/spinlock.h> 16 #include <kernel/spmc_sp_handler.h> 17 #include <kernel/tee_misc.h> 18 #include <kernel/thread.h> 19 #include <kernel/thread_private.h> 20 #include <kernel/thread_spmc.h> 21 #include <kernel/virtualization.h> 22 #include <mm/core_mmu.h> 23 #include <mm/mobj.h> 24 #include <optee_ffa.h> 25 #include <optee_msg.h> 26 #include <optee_rpc_cmd.h> 27 #include <sm/optee_smc.h> 28 #include <string.h> 29 #include <sys/queue.h> 30 #include <tee/entry_std.h> 31 #include <tee/uuid.h> 32 #include <util.h> 33 34 #if defined(CFG_CORE_SEL1_SPMC) 35 struct mem_share_state { 36 struct mobj_ffa *mf; 37 unsigned int page_count; 38 unsigned int region_count; 39 unsigned int current_page_idx; 40 }; 41 42 struct mem_frag_state { 43 struct mem_share_state share; 44 tee_mm_entry_t *mm; 45 unsigned int frag_offset; 46 SLIST_ENTRY(mem_frag_state) link; 47 }; 48 #endif 49 50 static unsigned int spmc_notif_lock = SPINLOCK_UNLOCK; 51 static int do_bottom_half_value = -1; 52 static uint16_t notif_vm_id; 53 static bool spmc_notif_is_ready; 54 55 /* Initialized in spmc_init() below */ 56 uint16_t optee_endpoint_id __nex_bss; 57 uint16_t spmc_id __nex_bss; 58 #ifdef CFG_CORE_SEL1_SPMC 59 uint16_t spmd_id __nex_bss; 60 static const uint32_t my_part_props = FFA_PART_PROP_DIRECT_REQ_RECV | 61 FFA_PART_PROP_DIRECT_REQ_SEND | 62 #ifdef CFG_NS_VIRTUALIZATION 63 FFA_PART_PROP_NOTIF_CREATED | 64 FFA_PART_PROP_NOTIF_DESTROYED | 65 #endif 66 #ifdef ARM64 67 FFA_PART_PROP_AARCH64_STATE | 68 #endif 69 FFA_PART_PROP_IS_PE_ID; 70 71 static uint32_t my_uuid_words[] = { 72 /* 73 * - if the SPMC is in S-EL2 this UUID describes OP-TEE as a S-EL1 74 * SP, or 75 * - if the SPMC is in S-EL1 then this UUID is for OP-TEE as a 76 * logical partition, residing in the same exception level as the 77 * SPMC 78 * UUID 486178e0-e7f8-11e3-bc5e-0002a5d5c51b 79 */ 80 0xe0786148, 0xe311f8e7, 0x02005ebc, 0x1bc5d5a5, 81 }; 82 83 /* 84 * If struct ffa_rxtx::size is 0 RX/TX buffers are not mapped or initialized. 85 * 86 * struct ffa_rxtx::spin_lock protects the variables below from concurrent 87 * access this includes the use of content of struct ffa_rxtx::rx and 88 * @frag_state_head. 89 * 90 * struct ffa_rxtx::tx_buf_is_mine is true when we may write to struct 91 * ffa_rxtx::tx and false when it is owned by normal world. 92 * 93 * Note that we can't prevent normal world from updating the content of 94 * these buffers so we must always be careful when reading. while we hold 95 * the lock. 96 */ 97 98 static struct ffa_rxtx my_rxtx __nex_bss; 99 100 static bool is_nw_buf(struct ffa_rxtx *rxtx) 101 { 102 return rxtx == &my_rxtx; 103 } 104 105 static SLIST_HEAD(mem_frag_state_head, mem_frag_state) frag_state_head = 106 SLIST_HEAD_INITIALIZER(&frag_state_head); 107 108 static uint64_t notif_pending_bitmap; 109 static uint64_t notif_bound_bitmap; 110 static bool notif_vm_id_valid; 111 static int notif_intid = -1; 112 #else 113 static uint8_t __rx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE); 114 static uint8_t __tx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE); 115 static struct ffa_rxtx my_rxtx = { 116 .rx = __rx_buf, 117 .tx = __tx_buf, 118 .size = sizeof(__rx_buf), 119 }; 120 #endif 121 122 static uint32_t swap_src_dst(uint32_t src_dst) 123 { 124 return (src_dst >> 16) | (src_dst << 16); 125 } 126 127 static uint16_t get_sender_id(uint32_t src_dst) 128 { 129 return src_dst >> 16; 130 } 131 132 void spmc_set_args(struct thread_smc_args *args, uint32_t fid, uint32_t src_dst, 133 uint32_t w2, uint32_t w3, uint32_t w4, uint32_t w5) 134 { 135 *args = (struct thread_smc_args){ .a0 = fid, 136 .a1 = src_dst, 137 .a2 = w2, 138 .a3 = w3, 139 .a4 = w4, 140 .a5 = w5, }; 141 } 142 143 static void set_simple_ret_val(struct thread_smc_args *args, int ffa_ret) 144 { 145 if (ffa_ret) 146 spmc_set_args(args, FFA_ERROR, 0, ffa_ret, 0, 0, 0); 147 else 148 spmc_set_args(args, FFA_SUCCESS_32, 0, 0, 0, 0, 0); 149 } 150 151 uint32_t spmc_exchange_version(uint32_t vers, struct ffa_rxtx *rxtx) 152 { 153 /* 154 * No locking, if the caller does concurrent calls to this it's 155 * only making a mess for itself. We must be able to renegotiate 156 * the FF-A version in order to support differing versions between 157 * the loader and the driver. 158 */ 159 if (vers < FFA_VERSION_1_1) 160 rxtx->ffa_vers = FFA_VERSION_1_0; 161 else 162 rxtx->ffa_vers = FFA_VERSION_1_1; 163 164 return rxtx->ffa_vers; 165 } 166 167 static bool is_ffa_success(uint32_t fid) 168 { 169 #ifdef ARM64 170 if (fid == FFA_SUCCESS_64) 171 return true; 172 #endif 173 return fid == FFA_SUCCESS_32; 174 } 175 176 static int32_t get_ffa_ret_code(const struct thread_smc_args *args) 177 { 178 if (is_ffa_success(args->a0)) 179 return FFA_OK; 180 if (args->a0 == FFA_ERROR && args->a2) 181 return args->a2; 182 return FFA_NOT_SUPPORTED; 183 } 184 185 static int ffa_simple_call(uint32_t fid, unsigned long a1, unsigned long a2, 186 unsigned long a3, unsigned long a4) 187 { 188 struct thread_smc_args args = { 189 .a0 = fid, 190 .a1 = a1, 191 .a2 = a2, 192 .a3 = a3, 193 .a4 = a4, 194 }; 195 196 thread_smccc(&args); 197 198 return get_ffa_ret_code(&args); 199 } 200 201 static int __maybe_unused ffa_features(uint32_t id) 202 { 203 return ffa_simple_call(FFA_FEATURES, id, 0, 0, 0); 204 } 205 206 static int __maybe_unused ffa_set_notification(uint16_t dst, uint16_t src, 207 uint32_t flags, uint64_t bitmap) 208 { 209 return ffa_simple_call(FFA_NOTIFICATION_SET, 210 SHIFT_U32(src, 16) | dst, flags, 211 low32_from_64(bitmap), high32_from_64(bitmap)); 212 } 213 214 #if defined(CFG_CORE_SEL1_SPMC) 215 static void handle_features(struct thread_smc_args *args) 216 { 217 uint32_t ret_fid = FFA_ERROR; 218 uint32_t ret_w2 = FFA_NOT_SUPPORTED; 219 220 switch (args->a1) { 221 case FFA_FEATURE_SCHEDULE_RECV_INTR: 222 if (spmc_notif_is_ready) { 223 ret_fid = FFA_SUCCESS_32; 224 ret_w2 = notif_intid; 225 } 226 break; 227 228 #ifdef ARM64 229 case FFA_RXTX_MAP_64: 230 #endif 231 case FFA_RXTX_MAP_32: 232 ret_fid = FFA_SUCCESS_32; 233 ret_w2 = 0; /* 4kB Minimum buffer size and alignment boundary */ 234 break; 235 #ifdef ARM64 236 case FFA_MEM_SHARE_64: 237 #endif 238 case FFA_MEM_SHARE_32: 239 ret_fid = FFA_SUCCESS_32; 240 /* 241 * Partition manager supports transmission of a memory 242 * transaction descriptor in a buffer dynamically allocated 243 * by the endpoint. 244 */ 245 ret_w2 = BIT(0); 246 break; 247 248 case FFA_ERROR: 249 case FFA_VERSION: 250 case FFA_SUCCESS_32: 251 #ifdef ARM64 252 case FFA_SUCCESS_64: 253 #endif 254 case FFA_FEATURES: 255 case FFA_SPM_ID_GET: 256 case FFA_MEM_FRAG_TX: 257 case FFA_MEM_RECLAIM: 258 case FFA_MSG_SEND_DIRECT_REQ_64: 259 case FFA_MSG_SEND_DIRECT_REQ_32: 260 case FFA_INTERRUPT: 261 case FFA_PARTITION_INFO_GET: 262 case FFA_RXTX_UNMAP: 263 case FFA_RX_RELEASE: 264 case FFA_FEATURE_MANAGED_EXIT_INTR: 265 case FFA_NOTIFICATION_BITMAP_CREATE: 266 case FFA_NOTIFICATION_BITMAP_DESTROY: 267 case FFA_NOTIFICATION_BIND: 268 case FFA_NOTIFICATION_UNBIND: 269 case FFA_NOTIFICATION_SET: 270 case FFA_NOTIFICATION_GET: 271 case FFA_NOTIFICATION_INFO_GET_32: 272 #ifdef ARM64 273 case FFA_NOTIFICATION_INFO_GET_64: 274 #endif 275 ret_fid = FFA_SUCCESS_32; 276 ret_w2 = FFA_PARAM_MBZ; 277 break; 278 default: 279 break; 280 } 281 282 spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, ret_w2, FFA_PARAM_MBZ, 283 FFA_PARAM_MBZ, FFA_PARAM_MBZ); 284 } 285 286 static int map_buf(paddr_t pa, unsigned int sz, void **va_ret) 287 { 288 tee_mm_entry_t *mm = NULL; 289 290 if (!core_pbuf_is(CORE_MEM_NON_SEC, pa, sz)) 291 return FFA_INVALID_PARAMETERS; 292 293 mm = tee_mm_alloc(&tee_mm_shm, sz); 294 if (!mm) 295 return FFA_NO_MEMORY; 296 297 if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pa, 298 sz / SMALL_PAGE_SIZE, 299 MEM_AREA_NSEC_SHM)) { 300 tee_mm_free(mm); 301 return FFA_INVALID_PARAMETERS; 302 } 303 304 *va_ret = (void *)tee_mm_get_smem(mm); 305 return 0; 306 } 307 308 void spmc_handle_spm_id_get(struct thread_smc_args *args) 309 { 310 spmc_set_args(args, FFA_SUCCESS_32, FFA_PARAM_MBZ, spmc_id, 311 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); 312 } 313 314 static void unmap_buf(void *va, size_t sz) 315 { 316 tee_mm_entry_t *mm = tee_mm_find(&tee_mm_shm, (vaddr_t)va); 317 318 assert(mm); 319 core_mmu_unmap_pages(tee_mm_get_smem(mm), sz / SMALL_PAGE_SIZE); 320 tee_mm_free(mm); 321 } 322 323 void spmc_handle_rxtx_map(struct thread_smc_args *args, struct ffa_rxtx *rxtx) 324 { 325 int rc = 0; 326 unsigned int sz = 0; 327 paddr_t rx_pa = 0; 328 paddr_t tx_pa = 0; 329 void *rx = NULL; 330 void *tx = NULL; 331 332 cpu_spin_lock(&rxtx->spinlock); 333 334 if (args->a3 & GENMASK_64(63, 6)) { 335 rc = FFA_INVALID_PARAMETERS; 336 goto out; 337 } 338 339 sz = args->a3 * SMALL_PAGE_SIZE; 340 if (!sz) { 341 rc = FFA_INVALID_PARAMETERS; 342 goto out; 343 } 344 /* TX/RX are swapped compared to the caller */ 345 tx_pa = args->a2; 346 rx_pa = args->a1; 347 348 if (rxtx->size) { 349 rc = FFA_DENIED; 350 goto out; 351 } 352 353 /* 354 * If the buffer comes from a SP the address is virtual and already 355 * mapped. 356 */ 357 if (is_nw_buf(rxtx)) { 358 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 359 enum teecore_memtypes mt = MEM_AREA_NEX_NSEC_SHM; 360 bool tx_alloced = false; 361 362 /* 363 * With virtualization we establish this mapping in 364 * the nexus mapping which then is replicated to 365 * each partition. 366 * 367 * This means that this mapping must be done before 368 * any partition is created and then must not be 369 * changed. 370 */ 371 372 /* 373 * core_mmu_add_mapping() may reuse previous 374 * mappings. First check if there's any mappings to 375 * reuse so we know how to clean up in case of 376 * failure. 377 */ 378 tx = phys_to_virt(tx_pa, mt, sz); 379 rx = phys_to_virt(rx_pa, mt, sz); 380 if (!tx) { 381 tx = core_mmu_add_mapping(mt, tx_pa, sz); 382 if (!tx) { 383 rc = FFA_NO_MEMORY; 384 goto out; 385 } 386 tx_alloced = true; 387 } 388 if (!rx) 389 rx = core_mmu_add_mapping(mt, rx_pa, sz); 390 391 if (!rx) { 392 if (tx_alloced && tx) 393 core_mmu_remove_mapping(mt, tx, sz); 394 rc = FFA_NO_MEMORY; 395 goto out; 396 } 397 } else { 398 rc = map_buf(tx_pa, sz, &tx); 399 if (rc) 400 goto out; 401 rc = map_buf(rx_pa, sz, &rx); 402 if (rc) { 403 unmap_buf(tx, sz); 404 goto out; 405 } 406 } 407 rxtx->tx = tx; 408 rxtx->rx = rx; 409 } else { 410 if ((tx_pa & SMALL_PAGE_MASK) || (rx_pa & SMALL_PAGE_MASK)) { 411 rc = FFA_INVALID_PARAMETERS; 412 goto out; 413 } 414 415 if (!virt_to_phys((void *)tx_pa) || 416 !virt_to_phys((void *)rx_pa)) { 417 rc = FFA_INVALID_PARAMETERS; 418 goto out; 419 } 420 421 rxtx->tx = (void *)tx_pa; 422 rxtx->rx = (void *)rx_pa; 423 } 424 425 rxtx->size = sz; 426 rxtx->tx_is_mine = true; 427 DMSG("Mapped tx %#"PRIxPA" size %#x @ %p", tx_pa, sz, tx); 428 DMSG("Mapped rx %#"PRIxPA" size %#x @ %p", rx_pa, sz, rx); 429 out: 430 cpu_spin_unlock(&rxtx->spinlock); 431 set_simple_ret_val(args, rc); 432 } 433 434 void spmc_handle_rxtx_unmap(struct thread_smc_args *args, struct ffa_rxtx *rxtx) 435 { 436 int rc = FFA_INVALID_PARAMETERS; 437 438 cpu_spin_lock(&rxtx->spinlock); 439 440 if (!rxtx->size) 441 goto out; 442 443 /* We don't unmap the SP memory as the SP might still use it */ 444 if (is_nw_buf(rxtx)) { 445 unmap_buf(rxtx->rx, rxtx->size); 446 unmap_buf(rxtx->tx, rxtx->size); 447 } 448 rxtx->size = 0; 449 rxtx->rx = NULL; 450 rxtx->tx = NULL; 451 rc = 0; 452 out: 453 cpu_spin_unlock(&rxtx->spinlock); 454 set_simple_ret_val(args, rc); 455 } 456 457 void spmc_handle_rx_release(struct thread_smc_args *args, struct ffa_rxtx *rxtx) 458 { 459 int rc = 0; 460 461 cpu_spin_lock(&rxtx->spinlock); 462 /* The senders RX is our TX */ 463 if (!rxtx->size || rxtx->tx_is_mine) { 464 rc = FFA_DENIED; 465 } else { 466 rc = 0; 467 rxtx->tx_is_mine = true; 468 } 469 cpu_spin_unlock(&rxtx->spinlock); 470 471 set_simple_ret_val(args, rc); 472 } 473 474 static bool is_nil_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3) 475 { 476 return !w0 && !w1 && !w2 && !w3; 477 } 478 479 static bool is_my_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3) 480 { 481 /* 482 * This depends on which UUID we have been assigned. 483 * TODO add a generic mechanism to obtain our UUID. 484 * 485 * The test below is for the hard coded UUID 486 * 486178e0-e7f8-11e3-bc5e-0002a5d5c51b 487 */ 488 return w0 == my_uuid_words[0] && w1 == my_uuid_words[1] && 489 w2 == my_uuid_words[2] && w3 == my_uuid_words[3]; 490 } 491 492 TEE_Result spmc_fill_partition_entry(uint32_t ffa_vers, void *buf, size_t blen, 493 size_t idx, uint16_t endpoint_id, 494 uint16_t execution_context, 495 uint32_t part_props, 496 const uint32_t uuid_words[4]) 497 { 498 struct ffa_partition_info_x *fpi = NULL; 499 size_t fpi_size = sizeof(*fpi); 500 501 if (ffa_vers >= FFA_VERSION_1_1) 502 fpi_size += FFA_UUID_SIZE; 503 504 if ((idx + 1) * fpi_size > blen) 505 return TEE_ERROR_OUT_OF_MEMORY; 506 507 fpi = (void *)((vaddr_t)buf + idx * fpi_size); 508 fpi->id = endpoint_id; 509 /* Number of execution contexts implemented by this partition */ 510 fpi->execution_context = execution_context; 511 512 fpi->partition_properties = part_props; 513 514 if (ffa_vers >= FFA_VERSION_1_1) { 515 if (uuid_words) 516 memcpy(fpi->uuid, uuid_words, FFA_UUID_SIZE); 517 else 518 memset(fpi->uuid, 0, FFA_UUID_SIZE); 519 } 520 521 return TEE_SUCCESS; 522 } 523 524 static int handle_partition_info_get_all(size_t *elem_count, 525 struct ffa_rxtx *rxtx, bool count_only) 526 { 527 if (!count_only) { 528 /* Add OP-TEE SP */ 529 if (spmc_fill_partition_entry(rxtx->ffa_vers, rxtx->tx, 530 rxtx->size, 0, optee_endpoint_id, 531 CFG_TEE_CORE_NB_CORE, 532 my_part_props, my_uuid_words)) 533 return FFA_NO_MEMORY; 534 } 535 *elem_count = 1; 536 537 if (IS_ENABLED(CFG_SECURE_PARTITION)) { 538 if (sp_partition_info_get(rxtx->ffa_vers, rxtx->tx, rxtx->size, 539 NULL, elem_count, count_only)) 540 return FFA_NO_MEMORY; 541 } 542 543 return FFA_OK; 544 } 545 546 void spmc_handle_partition_info_get(struct thread_smc_args *args, 547 struct ffa_rxtx *rxtx) 548 { 549 TEE_Result res = TEE_SUCCESS; 550 uint32_t ret_fid = FFA_ERROR; 551 uint32_t fpi_size = 0; 552 uint32_t rc = 0; 553 bool count_only = args->a5 & FFA_PARTITION_INFO_GET_COUNT_FLAG; 554 555 if (!count_only) { 556 cpu_spin_lock(&rxtx->spinlock); 557 558 if (!rxtx->size || !rxtx->tx_is_mine) { 559 rc = FFA_BUSY; 560 goto out; 561 } 562 } 563 564 if (is_nil_uuid(args->a1, args->a2, args->a3, args->a4)) { 565 size_t elem_count = 0; 566 567 ret_fid = handle_partition_info_get_all(&elem_count, rxtx, 568 count_only); 569 570 if (ret_fid) { 571 rc = ret_fid; 572 ret_fid = FFA_ERROR; 573 } else { 574 ret_fid = FFA_SUCCESS_32; 575 rc = elem_count; 576 } 577 578 goto out; 579 } 580 581 if (is_my_uuid(args->a1, args->a2, args->a3, args->a4)) { 582 if (!count_only) { 583 res = spmc_fill_partition_entry(rxtx->ffa_vers, 584 rxtx->tx, rxtx->size, 0, 585 optee_endpoint_id, 586 CFG_TEE_CORE_NB_CORE, 587 my_part_props, 588 my_uuid_words); 589 if (res) { 590 ret_fid = FFA_ERROR; 591 rc = FFA_INVALID_PARAMETERS; 592 goto out; 593 } 594 } 595 rc = 1; 596 } else if (IS_ENABLED(CFG_SECURE_PARTITION)) { 597 uint32_t uuid_array[4] = { 0 }; 598 TEE_UUID uuid = { }; 599 size_t count = 0; 600 601 uuid_array[0] = args->a1; 602 uuid_array[1] = args->a2; 603 uuid_array[2] = args->a3; 604 uuid_array[3] = args->a4; 605 tee_uuid_from_octets(&uuid, (uint8_t *)uuid_array); 606 607 res = sp_partition_info_get(rxtx->ffa_vers, rxtx->tx, 608 rxtx->size, &uuid, &count, 609 count_only); 610 if (res != TEE_SUCCESS) { 611 ret_fid = FFA_ERROR; 612 rc = FFA_INVALID_PARAMETERS; 613 goto out; 614 } 615 rc = count; 616 } else { 617 ret_fid = FFA_ERROR; 618 rc = FFA_INVALID_PARAMETERS; 619 goto out; 620 } 621 622 ret_fid = FFA_SUCCESS_32; 623 624 out: 625 if (ret_fid == FFA_SUCCESS_32 && !count_only && 626 rxtx->ffa_vers >= FFA_VERSION_1_1) 627 fpi_size = sizeof(struct ffa_partition_info_x) + FFA_UUID_SIZE; 628 629 spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, fpi_size, 630 FFA_PARAM_MBZ, FFA_PARAM_MBZ); 631 if (!count_only) { 632 rxtx->tx_is_mine = false; 633 cpu_spin_unlock(&rxtx->spinlock); 634 } 635 } 636 637 static void spmc_handle_run(struct thread_smc_args *args) 638 { 639 uint16_t endpoint = FFA_TARGET_INFO_GET_SP_ID(args->a1); 640 uint16_t thread_id = FFA_TARGET_INFO_GET_VCPU_ID(args->a1); 641 uint32_t rc = FFA_OK; 642 643 if (endpoint != optee_endpoint_id) { 644 /* 645 * The endpoint should be an SP, try to resume the SP from 646 * preempted into busy state. 647 */ 648 rc = spmc_sp_resume_from_preempted(endpoint); 649 if (rc) 650 goto out; 651 } 652 653 thread_resume_from_rpc(thread_id, 0, 0, 0, 0); 654 655 /* thread_resume_from_rpc return only of the thread_id is invalid */ 656 rc = FFA_INVALID_PARAMETERS; 657 658 out: 659 set_simple_ret_val(args, rc); 660 } 661 #endif /*CFG_CORE_SEL1_SPMC*/ 662 663 static uint32_t spmc_enable_async_notif(uint32_t bottom_half_value, 664 uint16_t vm_id) 665 { 666 uint32_t old_itr_status = 0; 667 668 if (!spmc_notif_is_ready) { 669 /* 670 * This should never happen, not if normal world respects the 671 * exchanged capabilities. 672 */ 673 EMSG("Asynchronous notifications are not ready"); 674 return TEE_ERROR_NOT_IMPLEMENTED; 675 } 676 677 if (bottom_half_value >= OPTEE_FFA_MAX_ASYNC_NOTIF_VALUE) { 678 EMSG("Invalid bottom half value %"PRIu32, bottom_half_value); 679 return TEE_ERROR_BAD_PARAMETERS; 680 } 681 682 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 683 do_bottom_half_value = bottom_half_value; 684 if (!IS_ENABLED(CFG_CORE_SEL1_SPMC)) 685 notif_vm_id = vm_id; 686 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 687 688 notif_deliver_atomic_event(NOTIF_EVENT_STARTED); 689 return TEE_SUCCESS; 690 } 691 692 static void handle_yielding_call(struct thread_smc_args *args, 693 uint32_t direct_resp_fid) 694 { 695 TEE_Result res = 0; 696 697 thread_check_canaries(); 698 699 #ifdef ARM64 700 /* Saving this for an eventual RPC */ 701 thread_get_core_local()->direct_resp_fid = direct_resp_fid; 702 #endif 703 704 if (args->a3 == OPTEE_FFA_YIELDING_CALL_RESUME) { 705 /* Note connection to struct thread_rpc_arg::ret */ 706 thread_resume_from_rpc(args->a7, args->a4, args->a5, args->a6, 707 0); 708 res = TEE_ERROR_BAD_PARAMETERS; 709 } else { 710 thread_alloc_and_run(args->a1, args->a3, args->a4, args->a5, 711 args->a6, args->a7); 712 res = TEE_ERROR_BUSY; 713 } 714 spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 715 0, res, 0, 0); 716 } 717 718 static uint32_t handle_unregister_shm(uint32_t a4, uint32_t a5) 719 { 720 uint64_t cookie = reg_pair_to_64(a5, a4); 721 uint32_t res = 0; 722 723 res = mobj_ffa_unregister_by_cookie(cookie); 724 switch (res) { 725 case TEE_SUCCESS: 726 case TEE_ERROR_ITEM_NOT_FOUND: 727 return 0; 728 case TEE_ERROR_BUSY: 729 EMSG("res %#"PRIx32, res); 730 return FFA_BUSY; 731 default: 732 EMSG("res %#"PRIx32, res); 733 return FFA_INVALID_PARAMETERS; 734 } 735 } 736 737 static void handle_blocking_call(struct thread_smc_args *args, 738 uint32_t direct_resp_fid) 739 { 740 uint32_t sec_caps = 0; 741 742 switch (args->a3) { 743 case OPTEE_FFA_GET_API_VERSION: 744 spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0, 745 OPTEE_FFA_VERSION_MAJOR, OPTEE_FFA_VERSION_MINOR, 746 0); 747 break; 748 case OPTEE_FFA_GET_OS_VERSION: 749 spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0, 750 CFG_OPTEE_REVISION_MAJOR, 751 CFG_OPTEE_REVISION_MINOR, 752 TEE_IMPL_GIT_SHA1 >> 32); 753 break; 754 case OPTEE_FFA_EXCHANGE_CAPABILITIES: 755 sec_caps = OPTEE_FFA_SEC_CAP_ARG_OFFSET; 756 if (spmc_notif_is_ready) 757 sec_caps |= OPTEE_FFA_SEC_CAP_ASYNC_NOTIF; 758 spmc_set_args(args, direct_resp_fid, 759 swap_src_dst(args->a1), 0, 0, 760 THREAD_RPC_MAX_NUM_PARAMS, sec_caps); 761 break; 762 case OPTEE_FFA_UNREGISTER_SHM: 763 spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0, 764 handle_unregister_shm(args->a4, args->a5), 0, 0); 765 break; 766 case OPTEE_FFA_ENABLE_ASYNC_NOTIF: 767 spmc_set_args(args, direct_resp_fid, 768 swap_src_dst(args->a1), 0, 769 spmc_enable_async_notif(args->a4, 770 FFA_SRC(args->a1)), 771 0, 0); 772 break; 773 default: 774 EMSG("Unhandled blocking service ID %#"PRIx32, 775 (uint32_t)args->a3); 776 spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0, 777 TEE_ERROR_BAD_PARAMETERS, 0, 0); 778 } 779 } 780 781 static void handle_framework_direct_request(struct thread_smc_args *args, 782 struct ffa_rxtx *rxtx, 783 uint32_t direct_resp_fid) 784 { 785 uint32_t w0 = FFA_ERROR; 786 uint32_t w1 = FFA_PARAM_MBZ; 787 uint32_t w2 = FFA_NOT_SUPPORTED; 788 uint32_t w3 = FFA_PARAM_MBZ; 789 790 switch (args->a2 & FFA_MSG_TYPE_MASK) { 791 case FFA_MSG_SEND_VM_CREATED: 792 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 793 uint16_t guest_id = args->a5; 794 TEE_Result res = virt_guest_created(guest_id); 795 796 w0 = direct_resp_fid; 797 w1 = swap_src_dst(args->a1); 798 w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_CREATED; 799 if (res == TEE_SUCCESS) 800 w3 = FFA_OK; 801 else if (res == TEE_ERROR_OUT_OF_MEMORY) 802 w3 = FFA_DENIED; 803 else 804 w3 = FFA_INVALID_PARAMETERS; 805 } 806 break; 807 case FFA_MSG_SEND_VM_DESTROYED: 808 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 809 uint16_t guest_id = args->a5; 810 TEE_Result res = virt_guest_destroyed(guest_id); 811 812 w0 = direct_resp_fid; 813 w1 = swap_src_dst(args->a1); 814 w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_DESTROYED; 815 if (res == TEE_SUCCESS) 816 w3 = FFA_OK; 817 else 818 w3 = FFA_INVALID_PARAMETERS; 819 } 820 break; 821 case FFA_MSG_VERSION_REQ: 822 w0 = direct_resp_fid; 823 w1 = swap_src_dst(args->a1); 824 w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_VERSION_RESP; 825 w3 = spmc_exchange_version(args->a3, rxtx); 826 break; 827 default: 828 break; 829 } 830 spmc_set_args(args, w0, w1, w2, w3, FFA_PARAM_MBZ, FFA_PARAM_MBZ); 831 } 832 833 static void handle_direct_request(struct thread_smc_args *args, 834 struct ffa_rxtx *rxtx) 835 { 836 uint32_t direct_resp_fid = 0; 837 838 if (IS_ENABLED(CFG_SECURE_PARTITION) && 839 FFA_DST(args->a1) != optee_endpoint_id) { 840 spmc_sp_start_thread(args); 841 return; 842 } 843 844 if (OPTEE_SMC_IS_64(args->a0)) 845 direct_resp_fid = FFA_MSG_SEND_DIRECT_RESP_64; 846 else 847 direct_resp_fid = FFA_MSG_SEND_DIRECT_RESP_32; 848 849 if (args->a2 & FFA_MSG_FLAG_FRAMEWORK) { 850 handle_framework_direct_request(args, rxtx, direct_resp_fid); 851 return; 852 } 853 854 if (IS_ENABLED(CFG_NS_VIRTUALIZATION) && 855 virt_set_guest(get_sender_id(args->a1))) { 856 spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0, 857 TEE_ERROR_ITEM_NOT_FOUND, 0, 0); 858 return; 859 } 860 861 if (args->a3 & BIT32(OPTEE_FFA_YIELDING_CALL_BIT)) 862 handle_yielding_call(args, direct_resp_fid); 863 else 864 handle_blocking_call(args, direct_resp_fid); 865 866 /* 867 * Note that handle_yielding_call() typically only returns if a 868 * thread cannot be allocated or found. virt_unset_guest() is also 869 * called from thread_state_suspend() and thread_state_free(). 870 */ 871 virt_unset_guest(); 872 } 873 874 int spmc_read_mem_transaction(uint32_t ffa_vers, void *buf, size_t blen, 875 struct ffa_mem_transaction_x *trans) 876 { 877 uint16_t mem_reg_attr = 0; 878 uint32_t flags = 0; 879 uint32_t count = 0; 880 uint32_t offs = 0; 881 uint32_t size = 0; 882 size_t n = 0; 883 884 if (!IS_ALIGNED_WITH_TYPE(buf, uint64_t)) 885 return FFA_INVALID_PARAMETERS; 886 887 if (ffa_vers >= FFA_VERSION_1_1) { 888 struct ffa_mem_transaction_1_1 *descr = NULL; 889 890 if (blen < sizeof(*descr)) 891 return FFA_INVALID_PARAMETERS; 892 893 descr = buf; 894 trans->sender_id = READ_ONCE(descr->sender_id); 895 mem_reg_attr = READ_ONCE(descr->mem_reg_attr); 896 flags = READ_ONCE(descr->flags); 897 trans->global_handle = READ_ONCE(descr->global_handle); 898 trans->tag = READ_ONCE(descr->tag); 899 900 count = READ_ONCE(descr->mem_access_count); 901 size = READ_ONCE(descr->mem_access_size); 902 offs = READ_ONCE(descr->mem_access_offs); 903 } else { 904 struct ffa_mem_transaction_1_0 *descr = NULL; 905 906 if (blen < sizeof(*descr)) 907 return FFA_INVALID_PARAMETERS; 908 909 descr = buf; 910 trans->sender_id = READ_ONCE(descr->sender_id); 911 mem_reg_attr = READ_ONCE(descr->mem_reg_attr); 912 flags = READ_ONCE(descr->flags); 913 trans->global_handle = READ_ONCE(descr->global_handle); 914 trans->tag = READ_ONCE(descr->tag); 915 916 count = READ_ONCE(descr->mem_access_count); 917 size = sizeof(struct ffa_mem_access); 918 offs = offsetof(struct ffa_mem_transaction_1_0, 919 mem_access_array); 920 } 921 922 if (mem_reg_attr > UINT8_MAX || flags > UINT8_MAX || 923 size > UINT8_MAX || count > UINT8_MAX || offs > UINT16_MAX) 924 return FFA_INVALID_PARAMETERS; 925 926 /* Check that the endpoint memory access descriptor array fits */ 927 if (MUL_OVERFLOW(size, count, &n) || ADD_OVERFLOW(offs, n, &n) || 928 n > blen) 929 return FFA_INVALID_PARAMETERS; 930 931 trans->mem_reg_attr = mem_reg_attr; 932 trans->flags = flags; 933 trans->mem_access_size = size; 934 trans->mem_access_count = count; 935 trans->mem_access_offs = offs; 936 return 0; 937 } 938 939 #if defined(CFG_CORE_SEL1_SPMC) 940 static int get_acc_perms(vaddr_t mem_acc_base, unsigned int mem_access_size, 941 unsigned int mem_access_count, uint8_t *acc_perms, 942 unsigned int *region_offs) 943 { 944 struct ffa_mem_access_perm *descr = NULL; 945 struct ffa_mem_access *mem_acc = NULL; 946 unsigned int n = 0; 947 948 for (n = 0; n < mem_access_count; n++) { 949 mem_acc = (void *)(mem_acc_base + mem_access_size * n); 950 descr = &mem_acc->access_perm; 951 if (READ_ONCE(descr->endpoint_id) == optee_endpoint_id) { 952 *acc_perms = READ_ONCE(descr->perm); 953 *region_offs = READ_ONCE(mem_acc[n].region_offs); 954 return 0; 955 } 956 } 957 958 return FFA_INVALID_PARAMETERS; 959 } 960 961 static int mem_share_init(struct ffa_mem_transaction_x *mem_trans, void *buf, 962 size_t blen, unsigned int *page_count, 963 unsigned int *region_count, size_t *addr_range_offs) 964 { 965 const uint16_t exp_mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR; 966 const uint8_t exp_mem_acc_perm = FFA_MEM_ACC_RW; 967 struct ffa_mem_region *region_descr = NULL; 968 unsigned int region_descr_offs = 0; 969 uint8_t mem_acc_perm = 0; 970 size_t n = 0; 971 972 if (mem_trans->mem_reg_attr != exp_mem_reg_attr) 973 return FFA_INVALID_PARAMETERS; 974 975 /* Check that the access permissions matches what's expected */ 976 if (get_acc_perms((vaddr_t)buf + mem_trans->mem_access_offs, 977 mem_trans->mem_access_size, 978 mem_trans->mem_access_count, 979 &mem_acc_perm, ®ion_descr_offs) || 980 mem_acc_perm != exp_mem_acc_perm) 981 return FFA_INVALID_PARAMETERS; 982 983 /* Check that the Composite memory region descriptor fits */ 984 if (ADD_OVERFLOW(region_descr_offs, sizeof(*region_descr), &n) || 985 n > blen) 986 return FFA_INVALID_PARAMETERS; 987 988 if (!IS_ALIGNED_WITH_TYPE((vaddr_t)buf + region_descr_offs, 989 struct ffa_mem_region)) 990 return FFA_INVALID_PARAMETERS; 991 992 region_descr = (struct ffa_mem_region *)((vaddr_t)buf + 993 region_descr_offs); 994 *page_count = READ_ONCE(region_descr->total_page_count); 995 *region_count = READ_ONCE(region_descr->address_range_count); 996 *addr_range_offs = n; 997 return 0; 998 } 999 1000 static int add_mem_share_helper(struct mem_share_state *s, void *buf, 1001 size_t flen) 1002 { 1003 unsigned int region_count = flen / sizeof(struct ffa_address_range); 1004 struct ffa_address_range *arange = NULL; 1005 unsigned int n = 0; 1006 1007 if (region_count > s->region_count) 1008 region_count = s->region_count; 1009 1010 if (!IS_ALIGNED_WITH_TYPE(buf, struct ffa_address_range)) 1011 return FFA_INVALID_PARAMETERS; 1012 arange = buf; 1013 1014 for (n = 0; n < region_count; n++) { 1015 unsigned int page_count = READ_ONCE(arange[n].page_count); 1016 uint64_t addr = READ_ONCE(arange[n].address); 1017 1018 if (mobj_ffa_add_pages_at(s->mf, &s->current_page_idx, 1019 addr, page_count)) 1020 return FFA_INVALID_PARAMETERS; 1021 } 1022 1023 s->region_count -= region_count; 1024 if (s->region_count) 1025 return region_count * sizeof(*arange); 1026 1027 if (s->current_page_idx != s->page_count) 1028 return FFA_INVALID_PARAMETERS; 1029 1030 return 0; 1031 } 1032 1033 static int add_mem_share_frag(struct mem_frag_state *s, void *buf, size_t flen) 1034 { 1035 int rc = 0; 1036 1037 rc = add_mem_share_helper(&s->share, buf, flen); 1038 if (rc >= 0) { 1039 if (!ADD_OVERFLOW(s->frag_offset, rc, &s->frag_offset)) { 1040 /* We're not at the end of the descriptor yet */ 1041 if (s->share.region_count) 1042 return s->frag_offset; 1043 1044 /* We're done */ 1045 rc = 0; 1046 } else { 1047 rc = FFA_INVALID_PARAMETERS; 1048 } 1049 } 1050 1051 SLIST_REMOVE(&frag_state_head, s, mem_frag_state, link); 1052 if (rc < 0) 1053 mobj_ffa_sel1_spmc_delete(s->share.mf); 1054 else 1055 mobj_ffa_push_to_inactive(s->share.mf); 1056 free(s); 1057 1058 return rc; 1059 } 1060 1061 static bool is_sp_share(struct ffa_mem_transaction_x *mem_trans, 1062 void *buf) 1063 { 1064 struct ffa_mem_access_perm *perm = NULL; 1065 struct ffa_mem_access *mem_acc = NULL; 1066 1067 if (!IS_ENABLED(CFG_SECURE_PARTITION)) 1068 return false; 1069 1070 if (mem_trans->mem_access_count < 1) 1071 return false; 1072 1073 mem_acc = (void *)((vaddr_t)buf + mem_trans->mem_access_offs); 1074 perm = &mem_acc->access_perm; 1075 1076 /* 1077 * perm->endpoint_id is read here only to check if the endpoint is 1078 * OP-TEE. We do read it later on again, but there are some additional 1079 * checks there to make sure that the data is correct. 1080 */ 1081 return READ_ONCE(perm->endpoint_id) != optee_endpoint_id; 1082 } 1083 1084 static int add_mem_share(struct ffa_mem_transaction_x *mem_trans, 1085 tee_mm_entry_t *mm, void *buf, size_t blen, 1086 size_t flen, uint64_t *global_handle) 1087 { 1088 int rc = 0; 1089 struct mem_share_state share = { }; 1090 size_t addr_range_offs = 0; 1091 uint64_t cookie = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID; 1092 size_t n = 0; 1093 1094 rc = mem_share_init(mem_trans, buf, flen, &share.page_count, 1095 &share.region_count, &addr_range_offs); 1096 if (rc) 1097 return rc; 1098 1099 if (MUL_OVERFLOW(share.region_count, 1100 sizeof(struct ffa_address_range), &n) || 1101 ADD_OVERFLOW(n, addr_range_offs, &n) || n > blen) 1102 return FFA_INVALID_PARAMETERS; 1103 1104 if (mem_trans->global_handle) 1105 cookie = mem_trans->global_handle; 1106 share.mf = mobj_ffa_sel1_spmc_new(cookie, share.page_count); 1107 if (!share.mf) 1108 return FFA_NO_MEMORY; 1109 1110 if (flen != blen) { 1111 struct mem_frag_state *s = calloc(sizeof(*s), 1); 1112 1113 if (!s) { 1114 rc = FFA_NO_MEMORY; 1115 goto err; 1116 } 1117 s->share = share; 1118 s->mm = mm; 1119 s->frag_offset = addr_range_offs; 1120 1121 SLIST_INSERT_HEAD(&frag_state_head, s, link); 1122 rc = add_mem_share_frag(s, (char *)buf + addr_range_offs, 1123 flen - addr_range_offs); 1124 1125 if (rc >= 0) 1126 *global_handle = mobj_ffa_get_cookie(share.mf); 1127 1128 return rc; 1129 } 1130 1131 rc = add_mem_share_helper(&share, (char *)buf + addr_range_offs, 1132 flen - addr_range_offs); 1133 if (rc) { 1134 /* 1135 * Number of consumed bytes may be returned instead of 0 for 1136 * done. 1137 */ 1138 rc = FFA_INVALID_PARAMETERS; 1139 goto err; 1140 } 1141 1142 *global_handle = mobj_ffa_push_to_inactive(share.mf); 1143 1144 return 0; 1145 err: 1146 mobj_ffa_sel1_spmc_delete(share.mf); 1147 return rc; 1148 } 1149 1150 static int handle_mem_share_tmem(paddr_t pbuf, size_t blen, size_t flen, 1151 unsigned int page_count, 1152 uint64_t *global_handle, struct ffa_rxtx *rxtx) 1153 { 1154 struct ffa_mem_transaction_x mem_trans = { }; 1155 int rc = 0; 1156 size_t len = 0; 1157 void *buf = NULL; 1158 tee_mm_entry_t *mm = NULL; 1159 vaddr_t offs = pbuf & SMALL_PAGE_MASK; 1160 1161 if (MUL_OVERFLOW(page_count, SMALL_PAGE_SIZE, &len)) 1162 return FFA_INVALID_PARAMETERS; 1163 if (!core_pbuf_is(CORE_MEM_NON_SEC, pbuf, len)) 1164 return FFA_INVALID_PARAMETERS; 1165 1166 /* 1167 * Check that the length reported in flen is covered by len even 1168 * if the offset is taken into account. 1169 */ 1170 if (len < flen || len - offs < flen) 1171 return FFA_INVALID_PARAMETERS; 1172 1173 mm = tee_mm_alloc(&tee_mm_shm, len); 1174 if (!mm) 1175 return FFA_NO_MEMORY; 1176 1177 if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pbuf, 1178 page_count, MEM_AREA_NSEC_SHM)) { 1179 rc = FFA_INVALID_PARAMETERS; 1180 goto out; 1181 } 1182 buf = (void *)(tee_mm_get_smem(mm) + offs); 1183 1184 cpu_spin_lock(&rxtx->spinlock); 1185 rc = spmc_read_mem_transaction(rxtx->ffa_vers, buf, flen, &mem_trans); 1186 if (!rc && IS_ENABLED(CFG_NS_VIRTUALIZATION) && 1187 virt_set_guest(mem_trans.sender_id)) 1188 rc = FFA_DENIED; 1189 if (!rc) 1190 rc = add_mem_share(&mem_trans, mm, buf, blen, flen, 1191 global_handle); 1192 virt_unset_guest(); 1193 cpu_spin_unlock(&rxtx->spinlock); 1194 if (rc > 0) 1195 return rc; 1196 1197 core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count); 1198 out: 1199 tee_mm_free(mm); 1200 return rc; 1201 } 1202 1203 static int handle_mem_share_rxbuf(size_t blen, size_t flen, 1204 uint64_t *global_handle, 1205 struct ffa_rxtx *rxtx) 1206 { 1207 struct ffa_mem_transaction_x mem_trans = { }; 1208 int rc = FFA_DENIED; 1209 1210 cpu_spin_lock(&rxtx->spinlock); 1211 1212 if (!rxtx->rx || flen > rxtx->size) 1213 goto out; 1214 1215 rc = spmc_read_mem_transaction(rxtx->ffa_vers, rxtx->rx, flen, 1216 &mem_trans); 1217 if (rc) 1218 goto out; 1219 if (is_sp_share(&mem_trans, rxtx->rx)) { 1220 rc = spmc_sp_add_share(&mem_trans, rxtx, blen, 1221 global_handle, NULL); 1222 goto out; 1223 } 1224 1225 if (IS_ENABLED(CFG_NS_VIRTUALIZATION) && 1226 virt_set_guest(mem_trans.sender_id)) 1227 goto out; 1228 1229 rc = add_mem_share(&mem_trans, NULL, rxtx->rx, blen, flen, 1230 global_handle); 1231 1232 virt_unset_guest(); 1233 1234 out: 1235 cpu_spin_unlock(&rxtx->spinlock); 1236 1237 return rc; 1238 } 1239 1240 static void handle_mem_share(struct thread_smc_args *args, 1241 struct ffa_rxtx *rxtx) 1242 { 1243 uint32_t tot_len = args->a1; 1244 uint32_t frag_len = args->a2; 1245 uint64_t addr = args->a3; 1246 uint32_t page_count = args->a4; 1247 uint32_t ret_w1 = 0; 1248 uint32_t ret_w2 = FFA_INVALID_PARAMETERS; 1249 uint32_t ret_w3 = 0; 1250 uint32_t ret_fid = FFA_ERROR; 1251 uint64_t global_handle = 0; 1252 int rc = 0; 1253 1254 /* Check that the MBZs are indeed 0 */ 1255 if (args->a5 || args->a6 || args->a7) 1256 goto out; 1257 1258 /* Check that fragment length doesn't exceed total length */ 1259 if (frag_len > tot_len) 1260 goto out; 1261 1262 /* Check for 32-bit calling convention */ 1263 if (args->a0 == FFA_MEM_SHARE_32) 1264 addr &= UINT32_MAX; 1265 1266 if (!addr) { 1267 /* 1268 * The memory transaction descriptor is passed via our rx 1269 * buffer. 1270 */ 1271 if (page_count) 1272 goto out; 1273 rc = handle_mem_share_rxbuf(tot_len, frag_len, &global_handle, 1274 rxtx); 1275 } else { 1276 rc = handle_mem_share_tmem(addr, tot_len, frag_len, page_count, 1277 &global_handle, rxtx); 1278 } 1279 if (rc < 0) { 1280 ret_w2 = rc; 1281 } else if (rc > 0) { 1282 ret_fid = FFA_MEM_FRAG_RX; 1283 ret_w3 = rc; 1284 reg_pair_from_64(global_handle, &ret_w2, &ret_w1); 1285 } else { 1286 ret_fid = FFA_SUCCESS_32; 1287 reg_pair_from_64(global_handle, &ret_w3, &ret_w2); 1288 } 1289 out: 1290 spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0); 1291 } 1292 1293 static struct mem_frag_state *get_frag_state(uint64_t global_handle) 1294 { 1295 struct mem_frag_state *s = NULL; 1296 1297 SLIST_FOREACH(s, &frag_state_head, link) 1298 if (mobj_ffa_get_cookie(s->share.mf) == global_handle) 1299 return s; 1300 1301 return NULL; 1302 } 1303 1304 static void handle_mem_frag_tx(struct thread_smc_args *args, 1305 struct ffa_rxtx *rxtx) 1306 { 1307 uint64_t global_handle = reg_pair_to_64(args->a2, args->a1); 1308 size_t flen = args->a3; 1309 uint32_t endpoint_id = args->a4; 1310 struct mem_frag_state *s = NULL; 1311 tee_mm_entry_t *mm = NULL; 1312 unsigned int page_count = 0; 1313 void *buf = NULL; 1314 uint32_t ret_w1 = 0; 1315 uint32_t ret_w2 = 0; 1316 uint32_t ret_w3 = 0; 1317 uint32_t ret_fid = 0; 1318 int rc = 0; 1319 1320 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1321 uint16_t guest_id = endpoint_id >> 16; 1322 1323 if (!guest_id || virt_set_guest(guest_id)) { 1324 rc = FFA_INVALID_PARAMETERS; 1325 goto out_set_rc; 1326 } 1327 } 1328 1329 /* 1330 * Currently we're only doing this for fragmented FFA_MEM_SHARE_* 1331 * requests. 1332 */ 1333 1334 cpu_spin_lock(&rxtx->spinlock); 1335 1336 s = get_frag_state(global_handle); 1337 if (!s) { 1338 rc = FFA_INVALID_PARAMETERS; 1339 goto out; 1340 } 1341 1342 mm = s->mm; 1343 if (mm) { 1344 if (flen > tee_mm_get_bytes(mm)) { 1345 rc = FFA_INVALID_PARAMETERS; 1346 goto out; 1347 } 1348 page_count = s->share.page_count; 1349 buf = (void *)tee_mm_get_smem(mm); 1350 } else { 1351 if (flen > rxtx->size) { 1352 rc = FFA_INVALID_PARAMETERS; 1353 goto out; 1354 } 1355 buf = rxtx->rx; 1356 } 1357 1358 rc = add_mem_share_frag(s, buf, flen); 1359 out: 1360 virt_unset_guest(); 1361 cpu_spin_unlock(&rxtx->spinlock); 1362 1363 if (rc <= 0 && mm) { 1364 core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count); 1365 tee_mm_free(mm); 1366 } 1367 1368 out_set_rc: 1369 if (rc < 0) { 1370 ret_fid = FFA_ERROR; 1371 ret_w2 = rc; 1372 } else if (rc > 0) { 1373 ret_fid = FFA_MEM_FRAG_RX; 1374 ret_w3 = rc; 1375 reg_pair_from_64(global_handle, &ret_w2, &ret_w1); 1376 } else { 1377 ret_fid = FFA_SUCCESS_32; 1378 reg_pair_from_64(global_handle, &ret_w3, &ret_w2); 1379 } 1380 1381 spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0); 1382 } 1383 1384 static void handle_mem_reclaim(struct thread_smc_args *args) 1385 { 1386 int rc = FFA_INVALID_PARAMETERS; 1387 uint64_t cookie = 0; 1388 1389 if (args->a3 || args->a4 || args->a5 || args->a6 || args->a7) 1390 goto out; 1391 1392 cookie = reg_pair_to_64(args->a2, args->a1); 1393 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1394 uint16_t guest_id = 0; 1395 1396 if (cookie & FFA_MEMORY_HANDLE_HYPERVISOR_BIT) { 1397 guest_id = virt_find_guest_by_cookie(cookie); 1398 } else { 1399 guest_id = (cookie >> FFA_MEMORY_HANDLE_PRTN_SHIFT) & 1400 FFA_MEMORY_HANDLE_PRTN_MASK; 1401 } 1402 if (!guest_id) 1403 goto out; 1404 if (virt_set_guest(guest_id)) { 1405 if (!virt_reclaim_cookie_from_destroyed_guest(guest_id, 1406 cookie)) 1407 rc = FFA_OK; 1408 goto out; 1409 } 1410 } 1411 1412 switch (mobj_ffa_sel1_spmc_reclaim(cookie)) { 1413 case TEE_SUCCESS: 1414 rc = FFA_OK; 1415 break; 1416 case TEE_ERROR_ITEM_NOT_FOUND: 1417 DMSG("cookie %#"PRIx64" not found", cookie); 1418 rc = FFA_INVALID_PARAMETERS; 1419 break; 1420 default: 1421 DMSG("cookie %#"PRIx64" busy", cookie); 1422 rc = FFA_DENIED; 1423 break; 1424 } 1425 1426 virt_unset_guest(); 1427 1428 out: 1429 set_simple_ret_val(args, rc); 1430 } 1431 1432 static void handle_notification_bitmap_create(struct thread_smc_args *args) 1433 { 1434 uint32_t ret_val = FFA_INVALID_PARAMETERS; 1435 uint32_t ret_fid = FFA_ERROR; 1436 uint32_t old_itr_status = 0; 1437 1438 if (!FFA_TARGET_INFO_GET_SP_ID(args->a1) && !args->a3 && !args->a4 && 1439 !args->a5 && !args->a6 && !args->a7) { 1440 uint16_t vm_id = args->a1; 1441 1442 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 1443 1444 if (notif_vm_id_valid) { 1445 if (vm_id == notif_vm_id) 1446 ret_val = FFA_DENIED; 1447 else 1448 ret_val = FFA_NO_MEMORY; 1449 } else { 1450 notif_vm_id = vm_id; 1451 notif_vm_id_valid = true; 1452 ret_val = FFA_OK; 1453 ret_fid = FFA_SUCCESS_32; 1454 } 1455 1456 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 1457 } 1458 1459 spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0); 1460 } 1461 1462 static void handle_notification_bitmap_destroy(struct thread_smc_args *args) 1463 { 1464 uint32_t ret_val = FFA_INVALID_PARAMETERS; 1465 uint32_t ret_fid = FFA_ERROR; 1466 uint32_t old_itr_status = 0; 1467 1468 if (!FFA_TARGET_INFO_GET_SP_ID(args->a1) && !args->a3 && !args->a4 && 1469 !args->a5 && !args->a6 && !args->a7) { 1470 uint16_t vm_id = args->a1; 1471 1472 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 1473 1474 if (notif_vm_id_valid && vm_id == notif_vm_id) { 1475 if (notif_pending_bitmap || notif_bound_bitmap) { 1476 ret_val = FFA_DENIED; 1477 } else { 1478 notif_vm_id_valid = false; 1479 ret_val = FFA_OK; 1480 ret_fid = FFA_SUCCESS_32; 1481 } 1482 } 1483 1484 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 1485 } 1486 1487 spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0); 1488 } 1489 1490 static void handle_notification_bind(struct thread_smc_args *args) 1491 { 1492 uint32_t ret_val = FFA_INVALID_PARAMETERS; 1493 uint32_t ret_fid = FFA_ERROR; 1494 uint32_t old_itr_status = 0; 1495 uint64_t bitmap = 0; 1496 uint16_t vm_id = 0; 1497 1498 if (args->a5 || args->a6 || args->a7) 1499 goto out; 1500 if (args->a2) { 1501 /* We only deal with global notifications for now */ 1502 ret_val = FFA_NOT_SUPPORTED; 1503 goto out; 1504 } 1505 1506 /* The destination of the eventual notification */ 1507 vm_id = FFA_DST(args->a1); 1508 bitmap = reg_pair_to_64(args->a4, args->a3); 1509 1510 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 1511 1512 if (notif_vm_id_valid && vm_id == notif_vm_id) { 1513 if (bitmap & notif_bound_bitmap) { 1514 ret_val = FFA_DENIED; 1515 } else { 1516 notif_bound_bitmap |= bitmap; 1517 ret_val = FFA_OK; 1518 ret_fid = FFA_SUCCESS_32; 1519 } 1520 } 1521 1522 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 1523 out: 1524 spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0); 1525 } 1526 1527 static void handle_notification_unbind(struct thread_smc_args *args) 1528 { 1529 uint32_t ret_val = FFA_INVALID_PARAMETERS; 1530 uint32_t ret_fid = FFA_ERROR; 1531 uint32_t old_itr_status = 0; 1532 uint64_t bitmap = 0; 1533 uint16_t vm_id = 0; 1534 1535 if (args->a2 || args->a5 || args->a6 || args->a7) 1536 goto out; 1537 1538 /* The destination of the eventual notification */ 1539 vm_id = FFA_DST(args->a1); 1540 bitmap = reg_pair_to_64(args->a4, args->a3); 1541 1542 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 1543 1544 if (notif_vm_id_valid && vm_id == notif_vm_id) { 1545 /* 1546 * Spec says: 1547 * At least one notification is bound to another Sender or 1548 * is currently pending. 1549 * 1550 * Not sure what the intention is. 1551 */ 1552 if (bitmap & notif_pending_bitmap) { 1553 ret_val = FFA_DENIED; 1554 } else { 1555 notif_bound_bitmap &= ~bitmap; 1556 ret_val = FFA_OK; 1557 ret_fid = FFA_SUCCESS_32; 1558 } 1559 } 1560 1561 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 1562 out: 1563 spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0); 1564 } 1565 1566 static void handle_notification_get(struct thread_smc_args *args) 1567 { 1568 uint32_t w2 = FFA_INVALID_PARAMETERS; 1569 uint32_t ret_fid = FFA_ERROR; 1570 uint32_t old_itr_status = 0; 1571 uint16_t vm_id = 0; 1572 uint32_t w3 = 0; 1573 1574 if (args->a5 || args->a6 || args->a7) 1575 goto out; 1576 if (!(args->a2 & 0x1)) { 1577 ret_fid = FFA_SUCCESS_32; 1578 w2 = 0; 1579 goto out; 1580 } 1581 vm_id = FFA_DST(args->a1); 1582 1583 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 1584 1585 if (notif_vm_id_valid && vm_id == notif_vm_id) { 1586 reg_pair_from_64(notif_pending_bitmap, &w3, &w2); 1587 notif_pending_bitmap = 0; 1588 ret_fid = FFA_SUCCESS_32; 1589 } 1590 1591 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 1592 out: 1593 spmc_set_args(args, ret_fid, 0, w2, w3, 0, 0); 1594 } 1595 1596 static void handle_notification_info_get(struct thread_smc_args *args) 1597 { 1598 uint32_t w2 = FFA_INVALID_PARAMETERS; 1599 uint32_t ret_fid = FFA_ERROR; 1600 1601 if (args->a1 || args->a2 || args->a3 || args->a4 || args->a5 || 1602 args->a6 || args->a7) 1603 goto out; 1604 1605 if (OPTEE_SMC_IS_64(args->a0)) 1606 ret_fid = FFA_SUCCESS_64; 1607 else 1608 ret_fid = FFA_SUCCESS_32; 1609 1610 /* 1611 * Note, we're only supporting physical OS kernel in normal world 1612 * with Global Notifications. 1613 * So one list of ID list registers (BIT[11:7]) 1614 * and one count of IDs (BIT[13:12] + 1) 1615 * and the VM is always 0. 1616 */ 1617 w2 = SHIFT_U32(1, 7); 1618 out: 1619 spmc_set_args(args, ret_fid, 0, w2, 0, 0, 0); 1620 } 1621 1622 void thread_spmc_set_async_notif_intid(int intid) 1623 { 1624 assert(interrupt_can_raise_sgi(interrupt_get_main_chip())); 1625 notif_intid = intid; 1626 spmc_notif_is_ready = true; 1627 DMSG("Asynchronous notifications are ready"); 1628 } 1629 1630 void notif_send_async(uint32_t value) 1631 { 1632 uint32_t old_itr_status = 0; 1633 1634 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 1635 assert(value == NOTIF_VALUE_DO_BOTTOM_HALF && spmc_notif_is_ready && 1636 do_bottom_half_value >= 0 && notif_intid >= 0); 1637 notif_pending_bitmap |= BIT64(do_bottom_half_value); 1638 interrupt_raise_sgi(interrupt_get_main_chip(), notif_intid, 1639 ITR_CPU_MASK_TO_THIS_CPU); 1640 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 1641 } 1642 #else 1643 void notif_send_async(uint32_t value) 1644 { 1645 /* global notification, delay notification interrupt */ 1646 uint32_t flags = BIT32(1); 1647 int res = 0; 1648 1649 assert(value == NOTIF_VALUE_DO_BOTTOM_HALF && spmc_notif_is_ready && 1650 do_bottom_half_value >= 0); 1651 res = ffa_set_notification(notif_vm_id, optee_endpoint_id, flags, 1652 BIT64(do_bottom_half_value)); 1653 if (res) { 1654 EMSG("notification set failed with error %d", res); 1655 panic(); 1656 } 1657 } 1658 #endif 1659 1660 /* Only called from assembly */ 1661 void thread_spmc_msg_recv(struct thread_smc_args *args); 1662 void thread_spmc_msg_recv(struct thread_smc_args *args) 1663 { 1664 assert((thread_get_exceptions() & THREAD_EXCP_ALL) == THREAD_EXCP_ALL); 1665 switch (args->a0) { 1666 #if defined(CFG_CORE_SEL1_SPMC) 1667 case FFA_FEATURES: 1668 handle_features(args); 1669 break; 1670 case FFA_SPM_ID_GET: 1671 spmc_handle_spm_id_get(args); 1672 break; 1673 #ifdef ARM64 1674 case FFA_RXTX_MAP_64: 1675 #endif 1676 case FFA_RXTX_MAP_32: 1677 spmc_handle_rxtx_map(args, &my_rxtx); 1678 break; 1679 case FFA_RXTX_UNMAP: 1680 spmc_handle_rxtx_unmap(args, &my_rxtx); 1681 break; 1682 case FFA_RX_RELEASE: 1683 spmc_handle_rx_release(args, &my_rxtx); 1684 break; 1685 case FFA_PARTITION_INFO_GET: 1686 spmc_handle_partition_info_get(args, &my_rxtx); 1687 break; 1688 case FFA_RUN: 1689 spmc_handle_run(args); 1690 break; 1691 #endif /*CFG_CORE_SEL1_SPMC*/ 1692 case FFA_INTERRUPT: 1693 if (IS_ENABLED(CFG_CORE_SEL1_SPMC)) 1694 spmc_set_args(args, FFA_NORMAL_WORLD_RESUME, 0, 0, 0, 1695 0, 0); 1696 else 1697 spmc_set_args(args, FFA_MSG_WAIT, 0, 0, 0, 0, 0); 1698 break; 1699 #ifdef ARM64 1700 case FFA_MSG_SEND_DIRECT_REQ_64: 1701 #endif 1702 case FFA_MSG_SEND_DIRECT_REQ_32: 1703 handle_direct_request(args, &my_rxtx); 1704 break; 1705 #if defined(CFG_CORE_SEL1_SPMC) 1706 #ifdef ARM64 1707 case FFA_MEM_SHARE_64: 1708 #endif 1709 case FFA_MEM_SHARE_32: 1710 handle_mem_share(args, &my_rxtx); 1711 break; 1712 case FFA_MEM_RECLAIM: 1713 if (!IS_ENABLED(CFG_SECURE_PARTITION) || 1714 !ffa_mem_reclaim(args, NULL)) 1715 handle_mem_reclaim(args); 1716 break; 1717 case FFA_MEM_FRAG_TX: 1718 handle_mem_frag_tx(args, &my_rxtx); 1719 break; 1720 case FFA_NOTIFICATION_BITMAP_CREATE: 1721 handle_notification_bitmap_create(args); 1722 break; 1723 case FFA_NOTIFICATION_BITMAP_DESTROY: 1724 handle_notification_bitmap_destroy(args); 1725 break; 1726 case FFA_NOTIFICATION_BIND: 1727 handle_notification_bind(args); 1728 break; 1729 case FFA_NOTIFICATION_UNBIND: 1730 handle_notification_unbind(args); 1731 break; 1732 case FFA_NOTIFICATION_GET: 1733 handle_notification_get(args); 1734 break; 1735 #ifdef ARM64 1736 case FFA_NOTIFICATION_INFO_GET_64: 1737 #endif 1738 case FFA_NOTIFICATION_INFO_GET_32: 1739 handle_notification_info_get(args); 1740 break; 1741 #endif /*CFG_CORE_SEL1_SPMC*/ 1742 case FFA_ERROR: 1743 EMSG("Cannot handle FFA_ERROR(%d)", (int)args->a2); 1744 if (!IS_ENABLED(CFG_CORE_SEL1_SPMC)) { 1745 /* 1746 * The SPMC will return an FFA_ERROR back so better 1747 * panic() now than flooding the log. 1748 */ 1749 panic("FFA_ERROR from SPMC is fatal"); 1750 } 1751 spmc_set_args(args, FFA_ERROR, FFA_PARAM_MBZ, FFA_NOT_SUPPORTED, 1752 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); 1753 break; 1754 default: 1755 EMSG("Unhandled FFA function ID %#"PRIx32, (uint32_t)args->a0); 1756 set_simple_ret_val(args, FFA_NOT_SUPPORTED); 1757 } 1758 } 1759 1760 static TEE_Result yielding_call_with_arg(uint64_t cookie, uint32_t offset) 1761 { 1762 size_t sz_rpc = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS); 1763 struct thread_ctx *thr = threads + thread_get_id(); 1764 TEE_Result res = TEE_ERROR_BAD_PARAMETERS; 1765 struct optee_msg_arg *arg = NULL; 1766 struct mobj *mobj = NULL; 1767 uint32_t num_params = 0; 1768 size_t sz = 0; 1769 1770 mobj = mobj_ffa_get_by_cookie(cookie, 0); 1771 if (!mobj) { 1772 EMSG("Can't find cookie %#"PRIx64, cookie); 1773 return TEE_ERROR_BAD_PARAMETERS; 1774 } 1775 1776 res = mobj_inc_map(mobj); 1777 if (res) 1778 goto out_put_mobj; 1779 1780 res = TEE_ERROR_BAD_PARAMETERS; 1781 arg = mobj_get_va(mobj, offset, sizeof(*arg)); 1782 if (!arg) 1783 goto out_dec_map; 1784 1785 num_params = READ_ONCE(arg->num_params); 1786 if (num_params > OPTEE_MSG_MAX_NUM_PARAMS) 1787 goto out_dec_map; 1788 1789 sz = OPTEE_MSG_GET_ARG_SIZE(num_params); 1790 1791 thr->rpc_arg = mobj_get_va(mobj, offset + sz, sz_rpc); 1792 if (!thr->rpc_arg) 1793 goto out_dec_map; 1794 1795 virt_on_stdcall(); 1796 res = tee_entry_std(arg, num_params); 1797 1798 thread_rpc_shm_cache_clear(&thr->shm_cache); 1799 thr->rpc_arg = NULL; 1800 1801 out_dec_map: 1802 mobj_dec_map(mobj); 1803 out_put_mobj: 1804 mobj_put(mobj); 1805 return res; 1806 } 1807 1808 /* 1809 * Helper routine for the assembly function thread_std_smc_entry() 1810 * 1811 * Note: this function is weak just to make link_dummies_paged.c happy. 1812 */ 1813 uint32_t __weak __thread_std_smc_entry(uint32_t a0, uint32_t a1, 1814 uint32_t a2, uint32_t a3, 1815 uint32_t a4, uint32_t a5 __unused) 1816 { 1817 /* 1818 * Arguments are supplied from handle_yielding_call() as: 1819 * a0 <- w1 1820 * a1 <- w3 1821 * a2 <- w4 1822 * a3 <- w5 1823 * a4 <- w6 1824 * a5 <- w7 1825 */ 1826 thread_get_tsd()->rpc_target_info = swap_src_dst(a0); 1827 if (a1 == OPTEE_FFA_YIELDING_CALL_WITH_ARG) 1828 return yielding_call_with_arg(reg_pair_to_64(a3, a2), a4); 1829 return FFA_DENIED; 1830 } 1831 1832 static bool set_fmem(struct optee_msg_param *param, struct thread_param *tpm) 1833 { 1834 uint64_t offs = tpm->u.memref.offs; 1835 1836 param->attr = tpm->attr - THREAD_PARAM_ATTR_MEMREF_IN + 1837 OPTEE_MSG_ATTR_TYPE_FMEM_INPUT; 1838 1839 param->u.fmem.offs_low = offs; 1840 param->u.fmem.offs_high = offs >> 32; 1841 if (param->u.fmem.offs_high != offs >> 32) 1842 return false; 1843 1844 param->u.fmem.size = tpm->u.memref.size; 1845 if (tpm->u.memref.mobj) { 1846 uint64_t cookie = mobj_get_cookie(tpm->u.memref.mobj); 1847 1848 /* If a mobj is passed it better be one with a valid cookie. */ 1849 if (cookie == OPTEE_MSG_FMEM_INVALID_GLOBAL_ID) 1850 return false; 1851 param->u.fmem.global_id = cookie; 1852 } else { 1853 param->u.fmem.global_id = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID; 1854 } 1855 1856 return true; 1857 } 1858 1859 static uint32_t get_rpc_arg(uint32_t cmd, size_t num_params, 1860 struct thread_param *params, 1861 struct optee_msg_arg **arg_ret) 1862 { 1863 size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS); 1864 struct thread_ctx *thr = threads + thread_get_id(); 1865 struct optee_msg_arg *arg = thr->rpc_arg; 1866 1867 if (num_params > THREAD_RPC_MAX_NUM_PARAMS) 1868 return TEE_ERROR_BAD_PARAMETERS; 1869 1870 if (!arg) { 1871 EMSG("rpc_arg not set"); 1872 return TEE_ERROR_GENERIC; 1873 } 1874 1875 memset(arg, 0, sz); 1876 arg->cmd = cmd; 1877 arg->num_params = num_params; 1878 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1879 1880 for (size_t n = 0; n < num_params; n++) { 1881 switch (params[n].attr) { 1882 case THREAD_PARAM_ATTR_NONE: 1883 arg->params[n].attr = OPTEE_MSG_ATTR_TYPE_NONE; 1884 break; 1885 case THREAD_PARAM_ATTR_VALUE_IN: 1886 case THREAD_PARAM_ATTR_VALUE_OUT: 1887 case THREAD_PARAM_ATTR_VALUE_INOUT: 1888 arg->params[n].attr = params[n].attr - 1889 THREAD_PARAM_ATTR_VALUE_IN + 1890 OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1891 arg->params[n].u.value.a = params[n].u.value.a; 1892 arg->params[n].u.value.b = params[n].u.value.b; 1893 arg->params[n].u.value.c = params[n].u.value.c; 1894 break; 1895 case THREAD_PARAM_ATTR_MEMREF_IN: 1896 case THREAD_PARAM_ATTR_MEMREF_OUT: 1897 case THREAD_PARAM_ATTR_MEMREF_INOUT: 1898 if (!set_fmem(arg->params + n, params + n)) 1899 return TEE_ERROR_BAD_PARAMETERS; 1900 break; 1901 default: 1902 return TEE_ERROR_BAD_PARAMETERS; 1903 } 1904 } 1905 1906 if (arg_ret) 1907 *arg_ret = arg; 1908 1909 return TEE_SUCCESS; 1910 } 1911 1912 static uint32_t get_rpc_arg_res(struct optee_msg_arg *arg, size_t num_params, 1913 struct thread_param *params) 1914 { 1915 for (size_t n = 0; n < num_params; n++) { 1916 switch (params[n].attr) { 1917 case THREAD_PARAM_ATTR_VALUE_OUT: 1918 case THREAD_PARAM_ATTR_VALUE_INOUT: 1919 params[n].u.value.a = arg->params[n].u.value.a; 1920 params[n].u.value.b = arg->params[n].u.value.b; 1921 params[n].u.value.c = arg->params[n].u.value.c; 1922 break; 1923 case THREAD_PARAM_ATTR_MEMREF_OUT: 1924 case THREAD_PARAM_ATTR_MEMREF_INOUT: 1925 params[n].u.memref.size = arg->params[n].u.fmem.size; 1926 break; 1927 default: 1928 break; 1929 } 1930 } 1931 1932 return arg->ret; 1933 } 1934 1935 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1936 struct thread_param *params) 1937 { 1938 struct thread_rpc_arg rpc_arg = { .call = { 1939 .w1 = thread_get_tsd()->rpc_target_info, 1940 .w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD, 1941 }, 1942 }; 1943 struct optee_msg_arg *arg = NULL; 1944 uint32_t ret = 0; 1945 1946 ret = get_rpc_arg(cmd, num_params, params, &arg); 1947 if (ret) 1948 return ret; 1949 1950 thread_rpc(&rpc_arg); 1951 1952 return get_rpc_arg_res(arg, num_params, params); 1953 } 1954 1955 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj) 1956 { 1957 struct thread_rpc_arg rpc_arg = { .call = { 1958 .w1 = thread_get_tsd()->rpc_target_info, 1959 .w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD, 1960 }, 1961 }; 1962 struct thread_param param = THREAD_PARAM_VALUE(IN, bt, cookie, 0); 1963 uint32_t res2 = 0; 1964 uint32_t res = 0; 1965 1966 DMSG("freeing cookie %#"PRIx64, cookie); 1967 1968 res = get_rpc_arg(OPTEE_RPC_CMD_SHM_FREE, 1, ¶m, NULL); 1969 1970 mobj_put(mobj); 1971 res2 = mobj_ffa_unregister_by_cookie(cookie); 1972 if (res2) 1973 DMSG("mobj_ffa_unregister_by_cookie(%#"PRIx64"): %#"PRIx32, 1974 cookie, res2); 1975 if (!res) 1976 thread_rpc(&rpc_arg); 1977 } 1978 1979 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt) 1980 { 1981 struct thread_rpc_arg rpc_arg = { .call = { 1982 .w1 = thread_get_tsd()->rpc_target_info, 1983 .w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD, 1984 }, 1985 }; 1986 struct thread_param param = THREAD_PARAM_VALUE(IN, bt, size, align); 1987 struct optee_msg_arg *arg = NULL; 1988 unsigned int internal_offset = 0; 1989 struct mobj *mobj = NULL; 1990 uint64_t cookie = 0; 1991 1992 if (get_rpc_arg(OPTEE_RPC_CMD_SHM_ALLOC, 1, ¶m, &arg)) 1993 return NULL; 1994 1995 thread_rpc(&rpc_arg); 1996 1997 if (arg->num_params != 1 || 1998 arg->params->attr != OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT) 1999 return NULL; 2000 2001 internal_offset = READ_ONCE(arg->params->u.fmem.internal_offs); 2002 cookie = READ_ONCE(arg->params->u.fmem.global_id); 2003 mobj = mobj_ffa_get_by_cookie(cookie, internal_offset); 2004 if (!mobj) { 2005 DMSG("mobj_ffa_get_by_cookie(%#"PRIx64", %#x): failed", 2006 cookie, internal_offset); 2007 return NULL; 2008 } 2009 2010 assert(mobj_is_nonsec(mobj)); 2011 2012 if (mobj->size < size) { 2013 DMSG("Mobj %#"PRIx64": wrong size", cookie); 2014 mobj_put(mobj); 2015 return NULL; 2016 } 2017 2018 if (mobj_inc_map(mobj)) { 2019 DMSG("mobj_inc_map(%#"PRIx64"): failed", cookie); 2020 mobj_put(mobj); 2021 return NULL; 2022 } 2023 2024 return mobj; 2025 } 2026 2027 struct mobj *thread_rpc_alloc_payload(size_t size) 2028 { 2029 return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_APPL); 2030 } 2031 2032 struct mobj *thread_rpc_alloc_kernel_payload(size_t size) 2033 { 2034 return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_KERNEL); 2035 } 2036 2037 void thread_rpc_free_kernel_payload(struct mobj *mobj) 2038 { 2039 if (mobj) 2040 thread_rpc_free(OPTEE_RPC_SHM_TYPE_KERNEL, 2041 mobj_get_cookie(mobj), mobj); 2042 } 2043 2044 void thread_rpc_free_payload(struct mobj *mobj) 2045 { 2046 if (mobj) 2047 thread_rpc_free(OPTEE_RPC_SHM_TYPE_APPL, mobj_get_cookie(mobj), 2048 mobj); 2049 } 2050 2051 struct mobj *thread_rpc_alloc_global_payload(size_t size) 2052 { 2053 return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_GLOBAL); 2054 } 2055 2056 void thread_rpc_free_global_payload(struct mobj *mobj) 2057 { 2058 if (mobj) 2059 thread_rpc_free(OPTEE_RPC_SHM_TYPE_GLOBAL, 2060 mobj_get_cookie(mobj), mobj); 2061 } 2062 2063 void thread_spmc_register_secondary_ep(vaddr_t ep) 2064 { 2065 unsigned long ret = 0; 2066 2067 /* Let the SPM know the entry point for secondary CPUs */ 2068 ret = thread_smc(FFA_SECONDARY_EP_REGISTER_64, ep, 0, 0); 2069 2070 if (ret != FFA_SUCCESS_32 && ret != FFA_SUCCESS_64) 2071 EMSG("FFA_SECONDARY_EP_REGISTER_64 ret %#lx", ret); 2072 } 2073 2074 static uint16_t ffa_id_get(void) 2075 { 2076 /* 2077 * Ask the SPM component running at a higher EL to return our FF-A ID. 2078 * This can either be the SPMC ID (if the SPMC is enabled in OP-TEE) or 2079 * the partition ID (if not). 2080 */ 2081 struct thread_smc_args args = { 2082 .a0 = FFA_ID_GET, 2083 }; 2084 2085 thread_smccc(&args); 2086 if (!is_ffa_success(args.a0)) { 2087 if (args.a0 == FFA_ERROR) 2088 EMSG("Get id failed with error %ld", args.a2); 2089 else 2090 EMSG("Get id failed"); 2091 panic(); 2092 } 2093 2094 return args.a2; 2095 } 2096 2097 static uint16_t ffa_spm_id_get(void) 2098 { 2099 /* 2100 * Ask the SPM component running at a higher EL to return its ID. 2101 * If OP-TEE implements the S-EL1 SPMC, this will get the SPMD ID. 2102 * If not, the ID of the SPMC will be returned. 2103 */ 2104 struct thread_smc_args args = { 2105 .a0 = FFA_SPM_ID_GET, 2106 }; 2107 2108 thread_smccc(&args); 2109 if (!is_ffa_success(args.a0)) { 2110 if (args.a0 == FFA_ERROR) 2111 EMSG("Get spm id failed with error %ld", args.a2); 2112 else 2113 EMSG("Get spm id failed"); 2114 panic(); 2115 } 2116 2117 return args.a2; 2118 } 2119 2120 #if defined(CFG_CORE_SEL1_SPMC) 2121 static TEE_Result spmc_init(void) 2122 { 2123 spmd_id = ffa_spm_id_get(); 2124 DMSG("SPMD ID %#"PRIx16, spmd_id); 2125 2126 spmc_id = ffa_id_get(); 2127 DMSG("SPMC ID %#"PRIx16, spmc_id); 2128 2129 optee_endpoint_id = FFA_SWD_ID_MIN; 2130 while (optee_endpoint_id == spmd_id || optee_endpoint_id == spmc_id) 2131 optee_endpoint_id++; 2132 2133 DMSG("OP-TEE endpoint ID %#"PRIx16, optee_endpoint_id); 2134 2135 /* 2136 * If SPMD think we are version 1.0 it will report version 1.0 to 2137 * normal world regardless of what version we query the SPM with. 2138 * However, if SPMD think we are version 1.1 it will forward 2139 * queries from normal world to let us negotiate version. So by 2140 * setting version 1.0 here we should be compatible. 2141 * 2142 * Note that disagreement on negotiated version means that we'll 2143 * have communication problems with normal world. 2144 */ 2145 my_rxtx.ffa_vers = FFA_VERSION_1_0; 2146 2147 return TEE_SUCCESS; 2148 } 2149 #else /* !defined(CFG_CORE_SEL1_SPMC) */ 2150 static void spmc_rxtx_map(struct ffa_rxtx *rxtx) 2151 { 2152 struct thread_smc_args args = { 2153 #ifdef ARM64 2154 .a0 = FFA_RXTX_MAP_64, 2155 #else 2156 .a0 = FFA_RXTX_MAP_32, 2157 #endif 2158 .a1 = virt_to_phys(rxtx->tx), 2159 .a2 = virt_to_phys(rxtx->rx), 2160 .a3 = 1, 2161 }; 2162 2163 thread_smccc(&args); 2164 if (!is_ffa_success(args.a0)) { 2165 if (args.a0 == FFA_ERROR) 2166 EMSG("rxtx map failed with error %ld", args.a2); 2167 else 2168 EMSG("rxtx map failed"); 2169 panic(); 2170 } 2171 } 2172 2173 static uint32_t get_ffa_version(uint32_t my_version) 2174 { 2175 struct thread_smc_args args = { 2176 .a0 = FFA_VERSION, 2177 .a1 = my_version, 2178 }; 2179 2180 thread_smccc(&args); 2181 if (args.a0 & BIT(31)) { 2182 EMSG("FF-A version failed with error %ld", args.a0); 2183 panic(); 2184 } 2185 2186 return args.a0; 2187 } 2188 2189 static void *spmc_retrieve_req(uint64_t cookie, 2190 struct ffa_mem_transaction_x *trans) 2191 { 2192 struct ffa_mem_access *acc_descr_array = NULL; 2193 struct ffa_mem_access_perm *perm_descr = NULL; 2194 struct thread_smc_args args = { 2195 .a0 = FFA_MEM_RETRIEVE_REQ_32, 2196 .a3 = 0, /* Address, Using TX -> MBZ */ 2197 .a4 = 0, /* Using TX -> MBZ */ 2198 }; 2199 size_t size = 0; 2200 int rc = 0; 2201 2202 if (my_rxtx.ffa_vers == FFA_VERSION_1_0) { 2203 struct ffa_mem_transaction_1_0 *trans_descr = my_rxtx.tx; 2204 2205 size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access); 2206 memset(trans_descr, 0, size); 2207 trans_descr->sender_id = thread_get_tsd()->rpc_target_info; 2208 trans_descr->mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR; 2209 trans_descr->global_handle = cookie; 2210 trans_descr->flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE | 2211 FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT; 2212 trans_descr->mem_access_count = 1; 2213 acc_descr_array = trans_descr->mem_access_array; 2214 } else { 2215 struct ffa_mem_transaction_1_1 *trans_descr = my_rxtx.tx; 2216 2217 size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access); 2218 memset(trans_descr, 0, size); 2219 trans_descr->sender_id = thread_get_tsd()->rpc_target_info; 2220 trans_descr->mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR; 2221 trans_descr->global_handle = cookie; 2222 trans_descr->flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE | 2223 FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT; 2224 trans_descr->mem_access_count = 1; 2225 trans_descr->mem_access_offs = sizeof(*trans_descr); 2226 trans_descr->mem_access_size = sizeof(struct ffa_mem_access); 2227 acc_descr_array = (void *)((vaddr_t)my_rxtx.tx + 2228 sizeof(*trans_descr)); 2229 } 2230 acc_descr_array->region_offs = 0; 2231 acc_descr_array->reserved = 0; 2232 perm_descr = &acc_descr_array->access_perm; 2233 perm_descr->endpoint_id = optee_endpoint_id; 2234 perm_descr->perm = FFA_MEM_ACC_RW; 2235 perm_descr->flags = 0; 2236 2237 args.a1 = size; /* Total Length */ 2238 args.a2 = size; /* Frag Length == Total length */ 2239 thread_smccc(&args); 2240 if (args.a0 != FFA_MEM_RETRIEVE_RESP) { 2241 if (args.a0 == FFA_ERROR) 2242 EMSG("Failed to fetch cookie %#"PRIx64" error code %d", 2243 cookie, (int)args.a2); 2244 else 2245 EMSG("Failed to fetch cookie %#"PRIx64" a0 %#"PRIx64, 2246 cookie, args.a0); 2247 return NULL; 2248 } 2249 rc = spmc_read_mem_transaction(my_rxtx.ffa_vers, my_rxtx.rx, 2250 my_rxtx.size, trans); 2251 if (rc) { 2252 EMSG("Memory transaction failure for cookie %#"PRIx64" rc %d", 2253 cookie, rc); 2254 return NULL; 2255 } 2256 2257 return my_rxtx.rx; 2258 } 2259 2260 void thread_spmc_relinquish(uint64_t cookie) 2261 { 2262 struct ffa_mem_relinquish *relinquish_desc = my_rxtx.tx; 2263 struct thread_smc_args args = { 2264 .a0 = FFA_MEM_RELINQUISH, 2265 }; 2266 2267 memset(relinquish_desc, 0, sizeof(*relinquish_desc)); 2268 relinquish_desc->handle = cookie; 2269 relinquish_desc->flags = 0; 2270 relinquish_desc->endpoint_count = 1; 2271 relinquish_desc->endpoint_id_array[0] = optee_endpoint_id; 2272 thread_smccc(&args); 2273 if (!is_ffa_success(args.a0)) 2274 EMSG("Failed to relinquish cookie %#"PRIx64, cookie); 2275 } 2276 2277 static int set_pages(struct ffa_address_range *regions, 2278 unsigned int num_regions, unsigned int num_pages, 2279 struct mobj_ffa *mf) 2280 { 2281 unsigned int n = 0; 2282 unsigned int idx = 0; 2283 2284 for (n = 0; n < num_regions; n++) { 2285 unsigned int page_count = READ_ONCE(regions[n].page_count); 2286 uint64_t addr = READ_ONCE(regions[n].address); 2287 2288 if (mobj_ffa_add_pages_at(mf, &idx, addr, page_count)) 2289 return FFA_INVALID_PARAMETERS; 2290 } 2291 2292 if (idx != num_pages) 2293 return FFA_INVALID_PARAMETERS; 2294 2295 return 0; 2296 } 2297 2298 struct mobj_ffa *thread_spmc_populate_mobj_from_rx(uint64_t cookie) 2299 { 2300 struct mobj_ffa *ret = NULL; 2301 struct ffa_mem_transaction_x retrieve_desc = { }; 2302 struct ffa_mem_access *descr_array = NULL; 2303 struct ffa_mem_region *descr = NULL; 2304 struct mobj_ffa *mf = NULL; 2305 unsigned int num_pages = 0; 2306 unsigned int offs = 0; 2307 void *buf = NULL; 2308 struct thread_smc_args ffa_rx_release_args = { 2309 .a0 = FFA_RX_RELEASE 2310 }; 2311 2312 /* 2313 * OP-TEE is only supporting a single mem_region while the 2314 * specification allows for more than one. 2315 */ 2316 buf = spmc_retrieve_req(cookie, &retrieve_desc); 2317 if (!buf) { 2318 EMSG("Failed to retrieve cookie from rx buffer %#"PRIx64, 2319 cookie); 2320 return NULL; 2321 } 2322 2323 descr_array = (void *)((vaddr_t)buf + retrieve_desc.mem_access_offs); 2324 offs = READ_ONCE(descr_array->region_offs); 2325 descr = (struct ffa_mem_region *)((vaddr_t)buf + offs); 2326 2327 num_pages = READ_ONCE(descr->total_page_count); 2328 mf = mobj_ffa_spmc_new(cookie, num_pages); 2329 if (!mf) 2330 goto out; 2331 2332 if (set_pages(descr->address_range_array, 2333 READ_ONCE(descr->address_range_count), num_pages, mf)) { 2334 mobj_ffa_spmc_delete(mf); 2335 goto out; 2336 } 2337 2338 ret = mf; 2339 2340 out: 2341 /* Release RX buffer after the mem retrieve request. */ 2342 thread_smccc(&ffa_rx_release_args); 2343 2344 return ret; 2345 } 2346 2347 static TEE_Result spmc_init(void) 2348 { 2349 unsigned int major = 0; 2350 unsigned int minor __maybe_unused = 0; 2351 uint32_t my_vers = 0; 2352 uint32_t vers = 0; 2353 2354 my_vers = MAKE_FFA_VERSION(FFA_VERSION_MAJOR, FFA_VERSION_MINOR); 2355 vers = get_ffa_version(my_vers); 2356 major = (vers >> FFA_VERSION_MAJOR_SHIFT) & FFA_VERSION_MAJOR_MASK; 2357 minor = (vers >> FFA_VERSION_MINOR_SHIFT) & FFA_VERSION_MINOR_MASK; 2358 DMSG("SPMC reported version %u.%u", major, minor); 2359 if (major != FFA_VERSION_MAJOR) { 2360 EMSG("Incompatible major version %u, expected %u", 2361 major, FFA_VERSION_MAJOR); 2362 panic(); 2363 } 2364 if (vers < my_vers) 2365 my_vers = vers; 2366 DMSG("Using version %u.%u", 2367 (my_vers >> FFA_VERSION_MAJOR_SHIFT) & FFA_VERSION_MAJOR_MASK, 2368 (my_vers >> FFA_VERSION_MINOR_SHIFT) & FFA_VERSION_MINOR_MASK); 2369 my_rxtx.ffa_vers = my_vers; 2370 2371 spmc_rxtx_map(&my_rxtx); 2372 2373 spmc_id = ffa_spm_id_get(); 2374 DMSG("SPMC ID %#"PRIx16, spmc_id); 2375 2376 optee_endpoint_id = ffa_id_get(); 2377 DMSG("OP-TEE endpoint ID %#"PRIx16, optee_endpoint_id); 2378 2379 if (!ffa_features(FFA_NOTIFICATION_SET)) { 2380 spmc_notif_is_ready = true; 2381 DMSG("Asynchronous notifications are ready"); 2382 } 2383 2384 return TEE_SUCCESS; 2385 } 2386 #endif /* !defined(CFG_CORE_SEL1_SPMC) */ 2387 2388 /* 2389 * boot_final() is always done before exiting at end of boot 2390 * initialization. In case of virtualization the init-calls are done only 2391 * once a OP-TEE partition has been created. So with virtualization we have 2392 * to initialize via boot_final() to make sure we have a value assigned 2393 * before it's used the first time. 2394 */ 2395 #ifdef CFG_NS_VIRTUALIZATION 2396 boot_final(spmc_init); 2397 #else 2398 service_init(spmc_init); 2399 #endif 2400