1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2020-2023, Linaro Limited. 4 * Copyright (c) 2019-2024, Arm Limited. All rights reserved. 5 */ 6 7 #include <assert.h> 8 #include <ffa.h> 9 #include <initcall.h> 10 #include <io.h> 11 #include <kernel/interrupt.h> 12 #include <kernel/notif.h> 13 #include <kernel/panic.h> 14 #include <kernel/secure_partition.h> 15 #include <kernel/spinlock.h> 16 #include <kernel/spmc_sp_handler.h> 17 #include <kernel/tee_misc.h> 18 #include <kernel/thread.h> 19 #include <kernel/thread_private.h> 20 #include <kernel/thread_spmc.h> 21 #include <kernel/virtualization.h> 22 #include <mm/core_mmu.h> 23 #include <mm/mobj.h> 24 #include <optee_ffa.h> 25 #include <optee_msg.h> 26 #include <optee_rpc_cmd.h> 27 #include <sm/optee_smc.h> 28 #include <string.h> 29 #include <sys/queue.h> 30 #include <tee/entry_std.h> 31 #include <tee/uuid.h> 32 #include <util.h> 33 34 #if defined(CFG_CORE_SEL1_SPMC) 35 struct mem_share_state { 36 struct mobj_ffa *mf; 37 unsigned int page_count; 38 unsigned int region_count; 39 unsigned int current_page_idx; 40 }; 41 42 struct mem_frag_state { 43 struct mem_share_state share; 44 tee_mm_entry_t *mm; 45 unsigned int frag_offset; 46 SLIST_ENTRY(mem_frag_state) link; 47 }; 48 #endif 49 50 static unsigned int spmc_notif_lock = SPINLOCK_UNLOCK; 51 static int do_bottom_half_value = -1; 52 static uint16_t notif_vm_id; 53 static bool spmc_notif_is_ready; 54 55 /* Initialized in spmc_init() below */ 56 uint16_t optee_endpoint_id __nex_bss; 57 uint16_t spmc_id __nex_bss; 58 #ifdef CFG_CORE_SEL1_SPMC 59 uint16_t spmd_id __nex_bss; 60 static const uint32_t my_part_props = FFA_PART_PROP_DIRECT_REQ_RECV | 61 FFA_PART_PROP_DIRECT_REQ_SEND | 62 #ifdef CFG_NS_VIRTUALIZATION 63 FFA_PART_PROP_NOTIF_CREATED | 64 FFA_PART_PROP_NOTIF_DESTROYED | 65 #endif 66 #ifdef ARM64 67 FFA_PART_PROP_AARCH64_STATE | 68 #endif 69 FFA_PART_PROP_IS_PE_ID; 70 71 static uint32_t my_uuid_words[] = { 72 /* 73 * - if the SPMC is in S-EL2 this UUID describes OP-TEE as a S-EL1 74 * SP, or 75 * - if the SPMC is in S-EL1 then this UUID is for OP-TEE as a 76 * logical partition, residing in the same exception level as the 77 * SPMC 78 * UUID 486178e0-e7f8-11e3-bc5e-0002a5d5c51b 79 */ 80 0xe0786148, 0xe311f8e7, 0x02005ebc, 0x1bc5d5a5, 81 }; 82 83 /* 84 * If struct ffa_rxtx::size is 0 RX/TX buffers are not mapped or initialized. 85 * 86 * struct ffa_rxtx::spin_lock protects the variables below from concurrent 87 * access this includes the use of content of struct ffa_rxtx::rx and 88 * @frag_state_head. 89 * 90 * struct ffa_rxtx::tx_buf_is_mine is true when we may write to struct 91 * ffa_rxtx::tx and false when it is owned by normal world. 92 * 93 * Note that we can't prevent normal world from updating the content of 94 * these buffers so we must always be careful when reading. while we hold 95 * the lock. 96 */ 97 98 static struct ffa_rxtx my_rxtx __nex_bss; 99 100 static bool is_nw_buf(struct ffa_rxtx *rxtx) 101 { 102 return rxtx == &my_rxtx; 103 } 104 105 static SLIST_HEAD(mem_frag_state_head, mem_frag_state) frag_state_head = 106 SLIST_HEAD_INITIALIZER(&frag_state_head); 107 108 static uint64_t notif_pending_bitmap; 109 static uint64_t notif_bound_bitmap; 110 static bool notif_vm_id_valid; 111 static int notif_intid = -1; 112 #else 113 static uint8_t __rx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE); 114 static uint8_t __tx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE); 115 static struct ffa_rxtx my_rxtx = { 116 .rx = __rx_buf, 117 .tx = __tx_buf, 118 .size = sizeof(__rx_buf), 119 }; 120 #endif 121 122 static uint32_t swap_src_dst(uint32_t src_dst) 123 { 124 return (src_dst >> 16) | (src_dst << 16); 125 } 126 127 static uint16_t get_sender_id(uint32_t src_dst) 128 { 129 return src_dst >> 16; 130 } 131 132 void spmc_set_args(struct thread_smc_args *args, uint32_t fid, uint32_t src_dst, 133 uint32_t w2, uint32_t w3, uint32_t w4, uint32_t w5) 134 { 135 *args = (struct thread_smc_args){ .a0 = fid, 136 .a1 = src_dst, 137 .a2 = w2, 138 .a3 = w3, 139 .a4 = w4, 140 .a5 = w5, }; 141 } 142 143 static void set_simple_ret_val(struct thread_smc_args *args, int ffa_ret) 144 { 145 if (ffa_ret) 146 spmc_set_args(args, FFA_ERROR, 0, ffa_ret, 0, 0, 0); 147 else 148 spmc_set_args(args, FFA_SUCCESS_32, 0, 0, 0, 0, 0); 149 } 150 151 uint32_t spmc_exchange_version(uint32_t vers, struct ffa_rxtx *rxtx) 152 { 153 /* 154 * No locking, if the caller does concurrent calls to this it's 155 * only making a mess for itself. We must be able to renegotiate 156 * the FF-A version in order to support differing versions between 157 * the loader and the driver. 158 */ 159 if (vers < FFA_VERSION_1_1) 160 rxtx->ffa_vers = FFA_VERSION_1_0; 161 else 162 rxtx->ffa_vers = FFA_VERSION_1_1; 163 164 return rxtx->ffa_vers; 165 } 166 167 static bool is_ffa_success(uint32_t fid) 168 { 169 #ifdef ARM64 170 if (fid == FFA_SUCCESS_64) 171 return true; 172 #endif 173 return fid == FFA_SUCCESS_32; 174 } 175 176 static int32_t get_ffa_ret_code(const struct thread_smc_args *args) 177 { 178 if (is_ffa_success(args->a0)) 179 return FFA_OK; 180 if (args->a0 == FFA_ERROR && args->a2) 181 return args->a2; 182 return FFA_NOT_SUPPORTED; 183 } 184 185 static int ffa_simple_call(uint32_t fid, unsigned long a1, unsigned long a2, 186 unsigned long a3, unsigned long a4) 187 { 188 struct thread_smc_args args = { 189 .a0 = fid, 190 .a1 = a1, 191 .a2 = a2, 192 .a3 = a3, 193 .a4 = a4, 194 }; 195 196 thread_smccc(&args); 197 198 return get_ffa_ret_code(&args); 199 } 200 201 static int __maybe_unused ffa_features(uint32_t id) 202 { 203 return ffa_simple_call(FFA_FEATURES, id, 0, 0, 0); 204 } 205 206 static int __maybe_unused ffa_set_notification(uint16_t dst, uint16_t src, 207 uint32_t flags, uint64_t bitmap) 208 { 209 return ffa_simple_call(FFA_NOTIFICATION_SET, 210 SHIFT_U32(src, 16) | dst, flags, 211 low32_from_64(bitmap), high32_from_64(bitmap)); 212 } 213 214 #if defined(CFG_CORE_SEL1_SPMC) 215 static void handle_features(struct thread_smc_args *args) 216 { 217 uint32_t ret_fid = FFA_ERROR; 218 uint32_t ret_w2 = FFA_NOT_SUPPORTED; 219 220 switch (args->a1) { 221 case FFA_FEATURE_SCHEDULE_RECV_INTR: 222 if (spmc_notif_is_ready) { 223 ret_fid = FFA_SUCCESS_32; 224 ret_w2 = notif_intid; 225 } 226 break; 227 228 #ifdef ARM64 229 case FFA_RXTX_MAP_64: 230 #endif 231 case FFA_RXTX_MAP_32: 232 ret_fid = FFA_SUCCESS_32; 233 ret_w2 = 0; /* 4kB Minimum buffer size and alignment boundary */ 234 break; 235 #ifdef ARM64 236 case FFA_MEM_SHARE_64: 237 #endif 238 case FFA_MEM_SHARE_32: 239 ret_fid = FFA_SUCCESS_32; 240 /* 241 * Partition manager supports transmission of a memory 242 * transaction descriptor in a buffer dynamically allocated 243 * by the endpoint. 244 */ 245 ret_w2 = BIT(0); 246 break; 247 248 case FFA_ERROR: 249 case FFA_VERSION: 250 case FFA_SUCCESS_32: 251 #ifdef ARM64 252 case FFA_SUCCESS_64: 253 #endif 254 case FFA_FEATURES: 255 case FFA_SPM_ID_GET: 256 case FFA_MEM_FRAG_TX: 257 case FFA_MEM_RECLAIM: 258 case FFA_MSG_SEND_DIRECT_REQ_64: 259 case FFA_MSG_SEND_DIRECT_REQ_32: 260 case FFA_INTERRUPT: 261 case FFA_PARTITION_INFO_GET: 262 case FFA_RXTX_UNMAP: 263 case FFA_RX_RELEASE: 264 case FFA_FEATURE_MANAGED_EXIT_INTR: 265 case FFA_NOTIFICATION_BITMAP_CREATE: 266 case FFA_NOTIFICATION_BITMAP_DESTROY: 267 case FFA_NOTIFICATION_BIND: 268 case FFA_NOTIFICATION_UNBIND: 269 case FFA_NOTIFICATION_SET: 270 case FFA_NOTIFICATION_GET: 271 case FFA_NOTIFICATION_INFO_GET_32: 272 #ifdef ARM64 273 case FFA_NOTIFICATION_INFO_GET_64: 274 #endif 275 ret_fid = FFA_SUCCESS_32; 276 ret_w2 = FFA_PARAM_MBZ; 277 break; 278 default: 279 break; 280 } 281 282 spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, ret_w2, FFA_PARAM_MBZ, 283 FFA_PARAM_MBZ, FFA_PARAM_MBZ); 284 } 285 286 static int map_buf(paddr_t pa, unsigned int sz, void **va_ret) 287 { 288 tee_mm_entry_t *mm = NULL; 289 290 if (!core_pbuf_is(CORE_MEM_NON_SEC, pa, sz)) 291 return FFA_INVALID_PARAMETERS; 292 293 mm = tee_mm_alloc(&tee_mm_shm, sz); 294 if (!mm) 295 return FFA_NO_MEMORY; 296 297 if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pa, 298 sz / SMALL_PAGE_SIZE, 299 MEM_AREA_NSEC_SHM)) { 300 tee_mm_free(mm); 301 return FFA_INVALID_PARAMETERS; 302 } 303 304 *va_ret = (void *)tee_mm_get_smem(mm); 305 return 0; 306 } 307 308 void spmc_handle_spm_id_get(struct thread_smc_args *args) 309 { 310 spmc_set_args(args, FFA_SUCCESS_32, FFA_PARAM_MBZ, spmc_id, 311 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); 312 } 313 314 static void unmap_buf(void *va, size_t sz) 315 { 316 tee_mm_entry_t *mm = tee_mm_find(&tee_mm_shm, (vaddr_t)va); 317 318 assert(mm); 319 core_mmu_unmap_pages(tee_mm_get_smem(mm), sz / SMALL_PAGE_SIZE); 320 tee_mm_free(mm); 321 } 322 323 void spmc_handle_rxtx_map(struct thread_smc_args *args, struct ffa_rxtx *rxtx) 324 { 325 int rc = 0; 326 unsigned int sz = 0; 327 paddr_t rx_pa = 0; 328 paddr_t tx_pa = 0; 329 void *rx = NULL; 330 void *tx = NULL; 331 332 cpu_spin_lock(&rxtx->spinlock); 333 334 if (args->a3 & GENMASK_64(63, 6)) { 335 rc = FFA_INVALID_PARAMETERS; 336 goto out; 337 } 338 339 sz = args->a3 * SMALL_PAGE_SIZE; 340 if (!sz) { 341 rc = FFA_INVALID_PARAMETERS; 342 goto out; 343 } 344 /* TX/RX are swapped compared to the caller */ 345 tx_pa = args->a2; 346 rx_pa = args->a1; 347 348 if (rxtx->size) { 349 rc = FFA_DENIED; 350 goto out; 351 } 352 353 /* 354 * If the buffer comes from a SP the address is virtual and already 355 * mapped. 356 */ 357 if (is_nw_buf(rxtx)) { 358 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 359 enum teecore_memtypes mt = MEM_AREA_NEX_NSEC_SHM; 360 bool tx_alloced = false; 361 362 /* 363 * With virtualization we establish this mapping in 364 * the nexus mapping which then is replicated to 365 * each partition. 366 * 367 * This means that this mapping must be done before 368 * any partition is created and then must not be 369 * changed. 370 */ 371 372 /* 373 * core_mmu_add_mapping() may reuse previous 374 * mappings. First check if there's any mappings to 375 * reuse so we know how to clean up in case of 376 * failure. 377 */ 378 tx = phys_to_virt(tx_pa, mt, sz); 379 rx = phys_to_virt(rx_pa, mt, sz); 380 if (!tx) { 381 tx = core_mmu_add_mapping(mt, tx_pa, sz); 382 if (!tx) { 383 rc = FFA_NO_MEMORY; 384 goto out; 385 } 386 tx_alloced = true; 387 } 388 if (!rx) 389 rx = core_mmu_add_mapping(mt, rx_pa, sz); 390 391 if (!rx) { 392 if (tx_alloced && tx) 393 core_mmu_remove_mapping(mt, tx, sz); 394 rc = FFA_NO_MEMORY; 395 goto out; 396 } 397 } else { 398 rc = map_buf(tx_pa, sz, &tx); 399 if (rc) 400 goto out; 401 rc = map_buf(rx_pa, sz, &rx); 402 if (rc) { 403 unmap_buf(tx, sz); 404 goto out; 405 } 406 } 407 rxtx->tx = tx; 408 rxtx->rx = rx; 409 } else { 410 if ((tx_pa & SMALL_PAGE_MASK) || (rx_pa & SMALL_PAGE_MASK)) { 411 rc = FFA_INVALID_PARAMETERS; 412 goto out; 413 } 414 415 if (!virt_to_phys((void *)tx_pa) || 416 !virt_to_phys((void *)rx_pa)) { 417 rc = FFA_INVALID_PARAMETERS; 418 goto out; 419 } 420 421 rxtx->tx = (void *)tx_pa; 422 rxtx->rx = (void *)rx_pa; 423 } 424 425 rxtx->size = sz; 426 rxtx->tx_is_mine = true; 427 DMSG("Mapped tx %#"PRIxPA" size %#x @ %p", tx_pa, sz, tx); 428 DMSG("Mapped rx %#"PRIxPA" size %#x @ %p", rx_pa, sz, rx); 429 out: 430 cpu_spin_unlock(&rxtx->spinlock); 431 set_simple_ret_val(args, rc); 432 } 433 434 void spmc_handle_rxtx_unmap(struct thread_smc_args *args, struct ffa_rxtx *rxtx) 435 { 436 int rc = FFA_INVALID_PARAMETERS; 437 438 cpu_spin_lock(&rxtx->spinlock); 439 440 if (!rxtx->size) 441 goto out; 442 443 /* We don't unmap the SP memory as the SP might still use it */ 444 if (is_nw_buf(rxtx)) { 445 unmap_buf(rxtx->rx, rxtx->size); 446 unmap_buf(rxtx->tx, rxtx->size); 447 } 448 rxtx->size = 0; 449 rxtx->rx = NULL; 450 rxtx->tx = NULL; 451 rc = 0; 452 out: 453 cpu_spin_unlock(&rxtx->spinlock); 454 set_simple_ret_val(args, rc); 455 } 456 457 void spmc_handle_rx_release(struct thread_smc_args *args, struct ffa_rxtx *rxtx) 458 { 459 int rc = 0; 460 461 cpu_spin_lock(&rxtx->spinlock); 462 /* The senders RX is our TX */ 463 if (!rxtx->size || rxtx->tx_is_mine) { 464 rc = FFA_DENIED; 465 } else { 466 rc = 0; 467 rxtx->tx_is_mine = true; 468 } 469 cpu_spin_unlock(&rxtx->spinlock); 470 471 set_simple_ret_val(args, rc); 472 } 473 474 static bool is_nil_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3) 475 { 476 return !w0 && !w1 && !w2 && !w3; 477 } 478 479 static bool is_my_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3) 480 { 481 /* 482 * This depends on which UUID we have been assigned. 483 * TODO add a generic mechanism to obtain our UUID. 484 * 485 * The test below is for the hard coded UUID 486 * 486178e0-e7f8-11e3-bc5e-0002a5d5c51b 487 */ 488 return w0 == my_uuid_words[0] && w1 == my_uuid_words[1] && 489 w2 == my_uuid_words[2] && w3 == my_uuid_words[3]; 490 } 491 492 TEE_Result spmc_fill_partition_entry(uint32_t ffa_vers, void *buf, size_t blen, 493 size_t idx, uint16_t endpoint_id, 494 uint16_t execution_context, 495 uint32_t part_props, 496 const uint32_t uuid_words[4]) 497 { 498 struct ffa_partition_info_x *fpi = NULL; 499 size_t fpi_size = sizeof(*fpi); 500 501 if (ffa_vers >= FFA_VERSION_1_1) 502 fpi_size += FFA_UUID_SIZE; 503 504 if ((idx + 1) * fpi_size > blen) 505 return TEE_ERROR_OUT_OF_MEMORY; 506 507 fpi = (void *)((vaddr_t)buf + idx * fpi_size); 508 fpi->id = endpoint_id; 509 /* Number of execution contexts implemented by this partition */ 510 fpi->execution_context = execution_context; 511 512 fpi->partition_properties = part_props; 513 514 if (ffa_vers >= FFA_VERSION_1_1) { 515 if (uuid_words) 516 memcpy(fpi->uuid, uuid_words, FFA_UUID_SIZE); 517 else 518 memset(fpi->uuid, 0, FFA_UUID_SIZE); 519 } 520 521 return TEE_SUCCESS; 522 } 523 524 static int handle_partition_info_get_all(size_t *elem_count, 525 struct ffa_rxtx *rxtx, bool count_only) 526 { 527 if (!count_only) { 528 /* Add OP-TEE SP */ 529 if (spmc_fill_partition_entry(rxtx->ffa_vers, rxtx->tx, 530 rxtx->size, 0, optee_endpoint_id, 531 CFG_TEE_CORE_NB_CORE, 532 my_part_props, my_uuid_words)) 533 return FFA_NO_MEMORY; 534 } 535 *elem_count = 1; 536 537 if (IS_ENABLED(CFG_SECURE_PARTITION)) { 538 if (sp_partition_info_get(rxtx->ffa_vers, rxtx->tx, rxtx->size, 539 NULL, elem_count, count_only)) 540 return FFA_NO_MEMORY; 541 } 542 543 return FFA_OK; 544 } 545 546 void spmc_handle_partition_info_get(struct thread_smc_args *args, 547 struct ffa_rxtx *rxtx) 548 { 549 TEE_Result res = TEE_SUCCESS; 550 uint32_t ret_fid = FFA_ERROR; 551 uint32_t fpi_size = 0; 552 uint32_t rc = 0; 553 bool count_only = args->a5 & FFA_PARTITION_INFO_GET_COUNT_FLAG; 554 555 if (!count_only) { 556 cpu_spin_lock(&rxtx->spinlock); 557 558 if (!rxtx->size || !rxtx->tx_is_mine) { 559 rc = FFA_BUSY; 560 goto out; 561 } 562 } 563 564 if (is_nil_uuid(args->a1, args->a2, args->a3, args->a4)) { 565 size_t elem_count = 0; 566 567 ret_fid = handle_partition_info_get_all(&elem_count, rxtx, 568 count_only); 569 570 if (ret_fid) { 571 rc = ret_fid; 572 ret_fid = FFA_ERROR; 573 } else { 574 ret_fid = FFA_SUCCESS_32; 575 rc = elem_count; 576 } 577 578 goto out; 579 } 580 581 if (is_my_uuid(args->a1, args->a2, args->a3, args->a4)) { 582 if (!count_only) { 583 res = spmc_fill_partition_entry(rxtx->ffa_vers, 584 rxtx->tx, rxtx->size, 0, 585 optee_endpoint_id, 586 CFG_TEE_CORE_NB_CORE, 587 my_part_props, 588 my_uuid_words); 589 if (res) { 590 ret_fid = FFA_ERROR; 591 rc = FFA_INVALID_PARAMETERS; 592 goto out; 593 } 594 } 595 rc = 1; 596 } else if (IS_ENABLED(CFG_SECURE_PARTITION)) { 597 uint32_t uuid_array[4] = { 0 }; 598 TEE_UUID uuid = { }; 599 size_t count = 0; 600 601 uuid_array[0] = args->a1; 602 uuid_array[1] = args->a2; 603 uuid_array[2] = args->a3; 604 uuid_array[3] = args->a4; 605 tee_uuid_from_octets(&uuid, (uint8_t *)uuid_array); 606 607 res = sp_partition_info_get(rxtx->ffa_vers, rxtx->tx, 608 rxtx->size, &uuid, &count, 609 count_only); 610 if (res != TEE_SUCCESS) { 611 ret_fid = FFA_ERROR; 612 rc = FFA_INVALID_PARAMETERS; 613 goto out; 614 } 615 rc = count; 616 } else { 617 ret_fid = FFA_ERROR; 618 rc = FFA_INVALID_PARAMETERS; 619 goto out; 620 } 621 622 ret_fid = FFA_SUCCESS_32; 623 624 out: 625 if (ret_fid == FFA_SUCCESS_32 && !count_only && 626 rxtx->ffa_vers >= FFA_VERSION_1_1) 627 fpi_size = sizeof(struct ffa_partition_info_x) + FFA_UUID_SIZE; 628 629 spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, fpi_size, 630 FFA_PARAM_MBZ, FFA_PARAM_MBZ); 631 if (!count_only) { 632 rxtx->tx_is_mine = false; 633 cpu_spin_unlock(&rxtx->spinlock); 634 } 635 } 636 637 static void spmc_handle_run(struct thread_smc_args *args) 638 { 639 uint16_t endpoint = FFA_TARGET_INFO_GET_SP_ID(args->a1); 640 uint16_t thread_id = FFA_TARGET_INFO_GET_VCPU_ID(args->a1); 641 uint32_t rc = FFA_OK; 642 643 if (endpoint != optee_endpoint_id) { 644 /* 645 * The endpoint should be an SP, try to resume the SP from 646 * preempted into busy state. 647 */ 648 rc = spmc_sp_resume_from_preempted(endpoint); 649 if (rc) 650 goto out; 651 } 652 653 thread_resume_from_rpc(thread_id, 0, 0, 0, 0); 654 655 /* thread_resume_from_rpc return only of the thread_id is invalid */ 656 rc = FFA_INVALID_PARAMETERS; 657 658 out: 659 set_simple_ret_val(args, rc); 660 } 661 #endif /*CFG_CORE_SEL1_SPMC*/ 662 663 static uint32_t spmc_enable_async_notif(uint32_t bottom_half_value, 664 uint16_t vm_id) 665 { 666 uint32_t old_itr_status = 0; 667 668 if (!spmc_notif_is_ready) { 669 /* 670 * This should never happen, not if normal world respects the 671 * exchanged capabilities. 672 */ 673 EMSG("Asynchronous notifications are not ready"); 674 return TEE_ERROR_NOT_IMPLEMENTED; 675 } 676 677 if (bottom_half_value >= OPTEE_FFA_MAX_ASYNC_NOTIF_VALUE) { 678 EMSG("Invalid bottom half value %"PRIu32, bottom_half_value); 679 return TEE_ERROR_BAD_PARAMETERS; 680 } 681 682 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 683 do_bottom_half_value = bottom_half_value; 684 if (!IS_ENABLED(CFG_CORE_SEL1_SPMC)) 685 notif_vm_id = vm_id; 686 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 687 688 notif_deliver_atomic_event(NOTIF_EVENT_STARTED); 689 return TEE_SUCCESS; 690 } 691 692 static void handle_yielding_call(struct thread_smc_args *args, 693 uint32_t direct_resp_fid) 694 { 695 TEE_Result res = 0; 696 697 thread_check_canaries(); 698 699 #ifdef ARM64 700 /* Saving this for an eventual RPC */ 701 thread_get_core_local()->direct_resp_fid = direct_resp_fid; 702 #endif 703 704 if (args->a3 == OPTEE_FFA_YIELDING_CALL_RESUME) { 705 /* Note connection to struct thread_rpc_arg::ret */ 706 thread_resume_from_rpc(args->a7, args->a4, args->a5, args->a6, 707 0); 708 res = TEE_ERROR_BAD_PARAMETERS; 709 } else { 710 thread_alloc_and_run(args->a1, args->a3, args->a4, args->a5, 711 args->a6, args->a7); 712 res = TEE_ERROR_BUSY; 713 } 714 spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 715 0, res, 0, 0); 716 } 717 718 static uint32_t handle_unregister_shm(uint32_t a4, uint32_t a5) 719 { 720 uint64_t cookie = reg_pair_to_64(a5, a4); 721 uint32_t res = 0; 722 723 res = mobj_ffa_unregister_by_cookie(cookie); 724 switch (res) { 725 case TEE_SUCCESS: 726 case TEE_ERROR_ITEM_NOT_FOUND: 727 return 0; 728 case TEE_ERROR_BUSY: 729 EMSG("res %#"PRIx32, res); 730 return FFA_BUSY; 731 default: 732 EMSG("res %#"PRIx32, res); 733 return FFA_INVALID_PARAMETERS; 734 } 735 } 736 737 static void handle_blocking_call(struct thread_smc_args *args, 738 uint32_t direct_resp_fid) 739 { 740 uint32_t sec_caps = 0; 741 742 switch (args->a3) { 743 case OPTEE_FFA_GET_API_VERSION: 744 spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0, 745 OPTEE_FFA_VERSION_MAJOR, OPTEE_FFA_VERSION_MINOR, 746 0); 747 break; 748 case OPTEE_FFA_GET_OS_VERSION: 749 spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0, 750 CFG_OPTEE_REVISION_MAJOR, 751 CFG_OPTEE_REVISION_MINOR, TEE_IMPL_GIT_SHA1); 752 break; 753 case OPTEE_FFA_EXCHANGE_CAPABILITIES: 754 sec_caps = OPTEE_FFA_SEC_CAP_ARG_OFFSET; 755 if (spmc_notif_is_ready) 756 sec_caps |= OPTEE_FFA_SEC_CAP_ASYNC_NOTIF; 757 spmc_set_args(args, direct_resp_fid, 758 swap_src_dst(args->a1), 0, 0, 759 THREAD_RPC_MAX_NUM_PARAMS, sec_caps); 760 break; 761 case OPTEE_FFA_UNREGISTER_SHM: 762 spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0, 763 handle_unregister_shm(args->a4, args->a5), 0, 0); 764 break; 765 case OPTEE_FFA_ENABLE_ASYNC_NOTIF: 766 spmc_set_args(args, direct_resp_fid, 767 swap_src_dst(args->a1), 0, 768 spmc_enable_async_notif(args->a4, 769 FFA_SRC(args->a1)), 770 0, 0); 771 break; 772 default: 773 EMSG("Unhandled blocking service ID %#"PRIx32, 774 (uint32_t)args->a3); 775 spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0, 776 TEE_ERROR_BAD_PARAMETERS, 0, 0); 777 } 778 } 779 780 static void handle_framework_direct_request(struct thread_smc_args *args, 781 struct ffa_rxtx *rxtx, 782 uint32_t direct_resp_fid) 783 { 784 uint32_t w0 = FFA_ERROR; 785 uint32_t w1 = FFA_PARAM_MBZ; 786 uint32_t w2 = FFA_NOT_SUPPORTED; 787 uint32_t w3 = FFA_PARAM_MBZ; 788 789 switch (args->a2 & FFA_MSG_TYPE_MASK) { 790 case FFA_MSG_SEND_VM_CREATED: 791 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 792 uint16_t guest_id = args->a5; 793 TEE_Result res = virt_guest_created(guest_id); 794 795 w0 = direct_resp_fid; 796 w1 = swap_src_dst(args->a1); 797 w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_CREATED; 798 if (res == TEE_SUCCESS) 799 w3 = FFA_OK; 800 else if (res == TEE_ERROR_OUT_OF_MEMORY) 801 w3 = FFA_DENIED; 802 else 803 w3 = FFA_INVALID_PARAMETERS; 804 } 805 break; 806 case FFA_MSG_SEND_VM_DESTROYED: 807 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 808 uint16_t guest_id = args->a5; 809 TEE_Result res = virt_guest_destroyed(guest_id); 810 811 w0 = direct_resp_fid; 812 w1 = swap_src_dst(args->a1); 813 w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_DESTROYED; 814 if (res == TEE_SUCCESS) 815 w3 = FFA_OK; 816 else 817 w3 = FFA_INVALID_PARAMETERS; 818 } 819 break; 820 case FFA_MSG_VERSION_REQ: 821 w0 = direct_resp_fid; 822 w1 = swap_src_dst(args->a1); 823 w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_VERSION_RESP; 824 w3 = spmc_exchange_version(args->a3, rxtx); 825 break; 826 default: 827 break; 828 } 829 spmc_set_args(args, w0, w1, w2, w3, FFA_PARAM_MBZ, FFA_PARAM_MBZ); 830 } 831 832 static void handle_direct_request(struct thread_smc_args *args, 833 struct ffa_rxtx *rxtx) 834 { 835 uint32_t direct_resp_fid = 0; 836 837 if (IS_ENABLED(CFG_SECURE_PARTITION) && 838 FFA_DST(args->a1) != optee_endpoint_id) { 839 spmc_sp_start_thread(args); 840 return; 841 } 842 843 if (OPTEE_SMC_IS_64(args->a0)) 844 direct_resp_fid = FFA_MSG_SEND_DIRECT_RESP_64; 845 else 846 direct_resp_fid = FFA_MSG_SEND_DIRECT_RESP_32; 847 848 if (args->a2 & FFA_MSG_FLAG_FRAMEWORK) { 849 handle_framework_direct_request(args, rxtx, direct_resp_fid); 850 return; 851 } 852 853 if (IS_ENABLED(CFG_NS_VIRTUALIZATION) && 854 virt_set_guest(get_sender_id(args->a1))) { 855 spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0, 856 TEE_ERROR_ITEM_NOT_FOUND, 0, 0); 857 return; 858 } 859 860 if (args->a3 & BIT32(OPTEE_FFA_YIELDING_CALL_BIT)) 861 handle_yielding_call(args, direct_resp_fid); 862 else 863 handle_blocking_call(args, direct_resp_fid); 864 865 /* 866 * Note that handle_yielding_call() typically only returns if a 867 * thread cannot be allocated or found. virt_unset_guest() is also 868 * called from thread_state_suspend() and thread_state_free(). 869 */ 870 virt_unset_guest(); 871 } 872 873 int spmc_read_mem_transaction(uint32_t ffa_vers, void *buf, size_t blen, 874 struct ffa_mem_transaction_x *trans) 875 { 876 uint16_t mem_reg_attr = 0; 877 uint32_t flags = 0; 878 uint32_t count = 0; 879 uint32_t offs = 0; 880 uint32_t size = 0; 881 size_t n = 0; 882 883 if (!IS_ALIGNED_WITH_TYPE(buf, uint64_t)) 884 return FFA_INVALID_PARAMETERS; 885 886 if (ffa_vers >= FFA_VERSION_1_1) { 887 struct ffa_mem_transaction_1_1 *descr = NULL; 888 889 if (blen < sizeof(*descr)) 890 return FFA_INVALID_PARAMETERS; 891 892 descr = buf; 893 trans->sender_id = READ_ONCE(descr->sender_id); 894 mem_reg_attr = READ_ONCE(descr->mem_reg_attr); 895 flags = READ_ONCE(descr->flags); 896 trans->global_handle = READ_ONCE(descr->global_handle); 897 trans->tag = READ_ONCE(descr->tag); 898 899 count = READ_ONCE(descr->mem_access_count); 900 size = READ_ONCE(descr->mem_access_size); 901 offs = READ_ONCE(descr->mem_access_offs); 902 } else { 903 struct ffa_mem_transaction_1_0 *descr = NULL; 904 905 if (blen < sizeof(*descr)) 906 return FFA_INVALID_PARAMETERS; 907 908 descr = buf; 909 trans->sender_id = READ_ONCE(descr->sender_id); 910 mem_reg_attr = READ_ONCE(descr->mem_reg_attr); 911 flags = READ_ONCE(descr->flags); 912 trans->global_handle = READ_ONCE(descr->global_handle); 913 trans->tag = READ_ONCE(descr->tag); 914 915 count = READ_ONCE(descr->mem_access_count); 916 size = sizeof(struct ffa_mem_access); 917 offs = offsetof(struct ffa_mem_transaction_1_0, 918 mem_access_array); 919 } 920 921 if (mem_reg_attr > UINT8_MAX || flags > UINT8_MAX || 922 size > UINT8_MAX || count > UINT8_MAX || offs > UINT16_MAX) 923 return FFA_INVALID_PARAMETERS; 924 925 /* Check that the endpoint memory access descriptor array fits */ 926 if (MUL_OVERFLOW(size, count, &n) || ADD_OVERFLOW(offs, n, &n) || 927 n > blen) 928 return FFA_INVALID_PARAMETERS; 929 930 trans->mem_reg_attr = mem_reg_attr; 931 trans->flags = flags; 932 trans->mem_access_size = size; 933 trans->mem_access_count = count; 934 trans->mem_access_offs = offs; 935 return 0; 936 } 937 938 #if defined(CFG_CORE_SEL1_SPMC) 939 static int get_acc_perms(vaddr_t mem_acc_base, unsigned int mem_access_size, 940 unsigned int mem_access_count, uint8_t *acc_perms, 941 unsigned int *region_offs) 942 { 943 struct ffa_mem_access_perm *descr = NULL; 944 struct ffa_mem_access *mem_acc = NULL; 945 unsigned int n = 0; 946 947 for (n = 0; n < mem_access_count; n++) { 948 mem_acc = (void *)(mem_acc_base + mem_access_size * n); 949 descr = &mem_acc->access_perm; 950 if (READ_ONCE(descr->endpoint_id) == optee_endpoint_id) { 951 *acc_perms = READ_ONCE(descr->perm); 952 *region_offs = READ_ONCE(mem_acc[n].region_offs); 953 return 0; 954 } 955 } 956 957 return FFA_INVALID_PARAMETERS; 958 } 959 960 static int mem_share_init(struct ffa_mem_transaction_x *mem_trans, void *buf, 961 size_t blen, unsigned int *page_count, 962 unsigned int *region_count, size_t *addr_range_offs) 963 { 964 const uint16_t exp_mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR; 965 const uint8_t exp_mem_acc_perm = FFA_MEM_ACC_RW; 966 struct ffa_mem_region *region_descr = NULL; 967 unsigned int region_descr_offs = 0; 968 uint8_t mem_acc_perm = 0; 969 size_t n = 0; 970 971 if (mem_trans->mem_reg_attr != exp_mem_reg_attr) 972 return FFA_INVALID_PARAMETERS; 973 974 /* Check that the access permissions matches what's expected */ 975 if (get_acc_perms((vaddr_t)buf + mem_trans->mem_access_offs, 976 mem_trans->mem_access_size, 977 mem_trans->mem_access_count, 978 &mem_acc_perm, ®ion_descr_offs) || 979 mem_acc_perm != exp_mem_acc_perm) 980 return FFA_INVALID_PARAMETERS; 981 982 /* Check that the Composite memory region descriptor fits */ 983 if (ADD_OVERFLOW(region_descr_offs, sizeof(*region_descr), &n) || 984 n > blen) 985 return FFA_INVALID_PARAMETERS; 986 987 if (!IS_ALIGNED_WITH_TYPE((vaddr_t)buf + region_descr_offs, 988 struct ffa_mem_region)) 989 return FFA_INVALID_PARAMETERS; 990 991 region_descr = (struct ffa_mem_region *)((vaddr_t)buf + 992 region_descr_offs); 993 *page_count = READ_ONCE(region_descr->total_page_count); 994 *region_count = READ_ONCE(region_descr->address_range_count); 995 *addr_range_offs = n; 996 return 0; 997 } 998 999 static int add_mem_share_helper(struct mem_share_state *s, void *buf, 1000 size_t flen) 1001 { 1002 unsigned int region_count = flen / sizeof(struct ffa_address_range); 1003 struct ffa_address_range *arange = NULL; 1004 unsigned int n = 0; 1005 1006 if (region_count > s->region_count) 1007 region_count = s->region_count; 1008 1009 if (!IS_ALIGNED_WITH_TYPE(buf, struct ffa_address_range)) 1010 return FFA_INVALID_PARAMETERS; 1011 arange = buf; 1012 1013 for (n = 0; n < region_count; n++) { 1014 unsigned int page_count = READ_ONCE(arange[n].page_count); 1015 uint64_t addr = READ_ONCE(arange[n].address); 1016 1017 if (mobj_ffa_add_pages_at(s->mf, &s->current_page_idx, 1018 addr, page_count)) 1019 return FFA_INVALID_PARAMETERS; 1020 } 1021 1022 s->region_count -= region_count; 1023 if (s->region_count) 1024 return region_count * sizeof(*arange); 1025 1026 if (s->current_page_idx != s->page_count) 1027 return FFA_INVALID_PARAMETERS; 1028 1029 return 0; 1030 } 1031 1032 static int add_mem_share_frag(struct mem_frag_state *s, void *buf, size_t flen) 1033 { 1034 int rc = 0; 1035 1036 rc = add_mem_share_helper(&s->share, buf, flen); 1037 if (rc >= 0) { 1038 if (!ADD_OVERFLOW(s->frag_offset, rc, &s->frag_offset)) { 1039 /* We're not at the end of the descriptor yet */ 1040 if (s->share.region_count) 1041 return s->frag_offset; 1042 1043 /* We're done */ 1044 rc = 0; 1045 } else { 1046 rc = FFA_INVALID_PARAMETERS; 1047 } 1048 } 1049 1050 SLIST_REMOVE(&frag_state_head, s, mem_frag_state, link); 1051 if (rc < 0) 1052 mobj_ffa_sel1_spmc_delete(s->share.mf); 1053 else 1054 mobj_ffa_push_to_inactive(s->share.mf); 1055 free(s); 1056 1057 return rc; 1058 } 1059 1060 static bool is_sp_share(struct ffa_mem_transaction_x *mem_trans, 1061 void *buf) 1062 { 1063 struct ffa_mem_access_perm *perm = NULL; 1064 struct ffa_mem_access *mem_acc = NULL; 1065 1066 if (!IS_ENABLED(CFG_SECURE_PARTITION)) 1067 return false; 1068 1069 if (mem_trans->mem_access_count < 1) 1070 return false; 1071 1072 mem_acc = (void *)((vaddr_t)buf + mem_trans->mem_access_offs); 1073 perm = &mem_acc->access_perm; 1074 1075 /* 1076 * perm->endpoint_id is read here only to check if the endpoint is 1077 * OP-TEE. We do read it later on again, but there are some additional 1078 * checks there to make sure that the data is correct. 1079 */ 1080 return READ_ONCE(perm->endpoint_id) != optee_endpoint_id; 1081 } 1082 1083 static int add_mem_share(struct ffa_mem_transaction_x *mem_trans, 1084 tee_mm_entry_t *mm, void *buf, size_t blen, 1085 size_t flen, uint64_t *global_handle) 1086 { 1087 int rc = 0; 1088 struct mem_share_state share = { }; 1089 size_t addr_range_offs = 0; 1090 uint64_t cookie = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID; 1091 size_t n = 0; 1092 1093 rc = mem_share_init(mem_trans, buf, flen, &share.page_count, 1094 &share.region_count, &addr_range_offs); 1095 if (rc) 1096 return rc; 1097 1098 if (MUL_OVERFLOW(share.region_count, 1099 sizeof(struct ffa_address_range), &n) || 1100 ADD_OVERFLOW(n, addr_range_offs, &n) || n > blen) 1101 return FFA_INVALID_PARAMETERS; 1102 1103 if (mem_trans->global_handle) 1104 cookie = mem_trans->global_handle; 1105 share.mf = mobj_ffa_sel1_spmc_new(cookie, share.page_count); 1106 if (!share.mf) 1107 return FFA_NO_MEMORY; 1108 1109 if (flen != blen) { 1110 struct mem_frag_state *s = calloc(sizeof(*s), 1); 1111 1112 if (!s) { 1113 rc = FFA_NO_MEMORY; 1114 goto err; 1115 } 1116 s->share = share; 1117 s->mm = mm; 1118 s->frag_offset = addr_range_offs; 1119 1120 SLIST_INSERT_HEAD(&frag_state_head, s, link); 1121 rc = add_mem_share_frag(s, (char *)buf + addr_range_offs, 1122 flen - addr_range_offs); 1123 1124 if (rc >= 0) 1125 *global_handle = mobj_ffa_get_cookie(share.mf); 1126 1127 return rc; 1128 } 1129 1130 rc = add_mem_share_helper(&share, (char *)buf + addr_range_offs, 1131 flen - addr_range_offs); 1132 if (rc) { 1133 /* 1134 * Number of consumed bytes may be returned instead of 0 for 1135 * done. 1136 */ 1137 rc = FFA_INVALID_PARAMETERS; 1138 goto err; 1139 } 1140 1141 *global_handle = mobj_ffa_push_to_inactive(share.mf); 1142 1143 return 0; 1144 err: 1145 mobj_ffa_sel1_spmc_delete(share.mf); 1146 return rc; 1147 } 1148 1149 static int handle_mem_share_tmem(paddr_t pbuf, size_t blen, size_t flen, 1150 unsigned int page_count, 1151 uint64_t *global_handle, struct ffa_rxtx *rxtx) 1152 { 1153 struct ffa_mem_transaction_x mem_trans = { }; 1154 int rc = 0; 1155 size_t len = 0; 1156 void *buf = NULL; 1157 tee_mm_entry_t *mm = NULL; 1158 vaddr_t offs = pbuf & SMALL_PAGE_MASK; 1159 1160 if (MUL_OVERFLOW(page_count, SMALL_PAGE_SIZE, &len)) 1161 return FFA_INVALID_PARAMETERS; 1162 if (!core_pbuf_is(CORE_MEM_NON_SEC, pbuf, len)) 1163 return FFA_INVALID_PARAMETERS; 1164 1165 /* 1166 * Check that the length reported in flen is covered by len even 1167 * if the offset is taken into account. 1168 */ 1169 if (len < flen || len - offs < flen) 1170 return FFA_INVALID_PARAMETERS; 1171 1172 mm = tee_mm_alloc(&tee_mm_shm, len); 1173 if (!mm) 1174 return FFA_NO_MEMORY; 1175 1176 if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pbuf, 1177 page_count, MEM_AREA_NSEC_SHM)) { 1178 rc = FFA_INVALID_PARAMETERS; 1179 goto out; 1180 } 1181 buf = (void *)(tee_mm_get_smem(mm) + offs); 1182 1183 cpu_spin_lock(&rxtx->spinlock); 1184 rc = spmc_read_mem_transaction(rxtx->ffa_vers, buf, flen, &mem_trans); 1185 if (!rc && IS_ENABLED(CFG_NS_VIRTUALIZATION) && 1186 virt_set_guest(mem_trans.sender_id)) 1187 rc = FFA_DENIED; 1188 if (!rc) 1189 rc = add_mem_share(&mem_trans, mm, buf, blen, flen, 1190 global_handle); 1191 virt_unset_guest(); 1192 cpu_spin_unlock(&rxtx->spinlock); 1193 if (rc > 0) 1194 return rc; 1195 1196 core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count); 1197 out: 1198 tee_mm_free(mm); 1199 return rc; 1200 } 1201 1202 static int handle_mem_share_rxbuf(size_t blen, size_t flen, 1203 uint64_t *global_handle, 1204 struct ffa_rxtx *rxtx) 1205 { 1206 struct ffa_mem_transaction_x mem_trans = { }; 1207 int rc = FFA_DENIED; 1208 1209 cpu_spin_lock(&rxtx->spinlock); 1210 1211 if (!rxtx->rx || flen > rxtx->size) 1212 goto out; 1213 1214 rc = spmc_read_mem_transaction(rxtx->ffa_vers, rxtx->rx, flen, 1215 &mem_trans); 1216 if (rc) 1217 goto out; 1218 if (is_sp_share(&mem_trans, rxtx->rx)) { 1219 rc = spmc_sp_add_share(&mem_trans, rxtx, blen, 1220 global_handle, NULL); 1221 goto out; 1222 } 1223 1224 if (IS_ENABLED(CFG_NS_VIRTUALIZATION) && 1225 virt_set_guest(mem_trans.sender_id)) 1226 goto out; 1227 1228 rc = add_mem_share(&mem_trans, NULL, rxtx->rx, blen, flen, 1229 global_handle); 1230 1231 virt_unset_guest(); 1232 1233 out: 1234 cpu_spin_unlock(&rxtx->spinlock); 1235 1236 return rc; 1237 } 1238 1239 static void handle_mem_share(struct thread_smc_args *args, 1240 struct ffa_rxtx *rxtx) 1241 { 1242 uint32_t tot_len = args->a1; 1243 uint32_t frag_len = args->a2; 1244 uint64_t addr = args->a3; 1245 uint32_t page_count = args->a4; 1246 uint32_t ret_w1 = 0; 1247 uint32_t ret_w2 = FFA_INVALID_PARAMETERS; 1248 uint32_t ret_w3 = 0; 1249 uint32_t ret_fid = FFA_ERROR; 1250 uint64_t global_handle = 0; 1251 int rc = 0; 1252 1253 /* Check that the MBZs are indeed 0 */ 1254 if (args->a5 || args->a6 || args->a7) 1255 goto out; 1256 1257 /* Check that fragment length doesn't exceed total length */ 1258 if (frag_len > tot_len) 1259 goto out; 1260 1261 /* Check for 32-bit calling convention */ 1262 if (args->a0 == FFA_MEM_SHARE_32) 1263 addr &= UINT32_MAX; 1264 1265 if (!addr) { 1266 /* 1267 * The memory transaction descriptor is passed via our rx 1268 * buffer. 1269 */ 1270 if (page_count) 1271 goto out; 1272 rc = handle_mem_share_rxbuf(tot_len, frag_len, &global_handle, 1273 rxtx); 1274 } else { 1275 rc = handle_mem_share_tmem(addr, tot_len, frag_len, page_count, 1276 &global_handle, rxtx); 1277 } 1278 if (rc < 0) { 1279 ret_w2 = rc; 1280 } else if (rc > 0) { 1281 ret_fid = FFA_MEM_FRAG_RX; 1282 ret_w3 = rc; 1283 reg_pair_from_64(global_handle, &ret_w2, &ret_w1); 1284 } else { 1285 ret_fid = FFA_SUCCESS_32; 1286 reg_pair_from_64(global_handle, &ret_w3, &ret_w2); 1287 } 1288 out: 1289 spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0); 1290 } 1291 1292 static struct mem_frag_state *get_frag_state(uint64_t global_handle) 1293 { 1294 struct mem_frag_state *s = NULL; 1295 1296 SLIST_FOREACH(s, &frag_state_head, link) 1297 if (mobj_ffa_get_cookie(s->share.mf) == global_handle) 1298 return s; 1299 1300 return NULL; 1301 } 1302 1303 static void handle_mem_frag_tx(struct thread_smc_args *args, 1304 struct ffa_rxtx *rxtx) 1305 { 1306 uint64_t global_handle = reg_pair_to_64(args->a2, args->a1); 1307 size_t flen = args->a3; 1308 uint32_t endpoint_id = args->a4; 1309 struct mem_frag_state *s = NULL; 1310 tee_mm_entry_t *mm = NULL; 1311 unsigned int page_count = 0; 1312 void *buf = NULL; 1313 uint32_t ret_w1 = 0; 1314 uint32_t ret_w2 = 0; 1315 uint32_t ret_w3 = 0; 1316 uint32_t ret_fid = 0; 1317 int rc = 0; 1318 1319 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1320 uint16_t guest_id = endpoint_id >> 16; 1321 1322 if (!guest_id || virt_set_guest(guest_id)) { 1323 rc = FFA_INVALID_PARAMETERS; 1324 goto out_set_rc; 1325 } 1326 } 1327 1328 /* 1329 * Currently we're only doing this for fragmented FFA_MEM_SHARE_* 1330 * requests. 1331 */ 1332 1333 cpu_spin_lock(&rxtx->spinlock); 1334 1335 s = get_frag_state(global_handle); 1336 if (!s) { 1337 rc = FFA_INVALID_PARAMETERS; 1338 goto out; 1339 } 1340 1341 mm = s->mm; 1342 if (mm) { 1343 if (flen > tee_mm_get_bytes(mm)) { 1344 rc = FFA_INVALID_PARAMETERS; 1345 goto out; 1346 } 1347 page_count = s->share.page_count; 1348 buf = (void *)tee_mm_get_smem(mm); 1349 } else { 1350 if (flen > rxtx->size) { 1351 rc = FFA_INVALID_PARAMETERS; 1352 goto out; 1353 } 1354 buf = rxtx->rx; 1355 } 1356 1357 rc = add_mem_share_frag(s, buf, flen); 1358 out: 1359 virt_unset_guest(); 1360 cpu_spin_unlock(&rxtx->spinlock); 1361 1362 if (rc <= 0 && mm) { 1363 core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count); 1364 tee_mm_free(mm); 1365 } 1366 1367 out_set_rc: 1368 if (rc < 0) { 1369 ret_fid = FFA_ERROR; 1370 ret_w2 = rc; 1371 } else if (rc > 0) { 1372 ret_fid = FFA_MEM_FRAG_RX; 1373 ret_w3 = rc; 1374 reg_pair_from_64(global_handle, &ret_w2, &ret_w1); 1375 } else { 1376 ret_fid = FFA_SUCCESS_32; 1377 reg_pair_from_64(global_handle, &ret_w3, &ret_w2); 1378 } 1379 1380 spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0); 1381 } 1382 1383 static void handle_mem_reclaim(struct thread_smc_args *args) 1384 { 1385 int rc = FFA_INVALID_PARAMETERS; 1386 uint64_t cookie = 0; 1387 1388 if (args->a3 || args->a4 || args->a5 || args->a6 || args->a7) 1389 goto out; 1390 1391 cookie = reg_pair_to_64(args->a2, args->a1); 1392 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1393 uint16_t guest_id = 0; 1394 1395 if (cookie & FFA_MEMORY_HANDLE_HYPERVISOR_BIT) { 1396 guest_id = virt_find_guest_by_cookie(cookie); 1397 } else { 1398 guest_id = (cookie >> FFA_MEMORY_HANDLE_PRTN_SHIFT) & 1399 FFA_MEMORY_HANDLE_PRTN_MASK; 1400 } 1401 if (!guest_id) 1402 goto out; 1403 if (virt_set_guest(guest_id)) { 1404 if (!virt_reclaim_cookie_from_destroyed_guest(guest_id, 1405 cookie)) 1406 rc = FFA_OK; 1407 goto out; 1408 } 1409 } 1410 1411 switch (mobj_ffa_sel1_spmc_reclaim(cookie)) { 1412 case TEE_SUCCESS: 1413 rc = FFA_OK; 1414 break; 1415 case TEE_ERROR_ITEM_NOT_FOUND: 1416 DMSG("cookie %#"PRIx64" not found", cookie); 1417 rc = FFA_INVALID_PARAMETERS; 1418 break; 1419 default: 1420 DMSG("cookie %#"PRIx64" busy", cookie); 1421 rc = FFA_DENIED; 1422 break; 1423 } 1424 1425 virt_unset_guest(); 1426 1427 out: 1428 set_simple_ret_val(args, rc); 1429 } 1430 1431 static void handle_notification_bitmap_create(struct thread_smc_args *args) 1432 { 1433 uint32_t ret_val = FFA_INVALID_PARAMETERS; 1434 uint32_t ret_fid = FFA_ERROR; 1435 uint32_t old_itr_status = 0; 1436 1437 if (!FFA_TARGET_INFO_GET_SP_ID(args->a1) && !args->a3 && !args->a4 && 1438 !args->a5 && !args->a6 && !args->a7) { 1439 uint16_t vm_id = args->a1; 1440 1441 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 1442 1443 if (notif_vm_id_valid) { 1444 if (vm_id == notif_vm_id) 1445 ret_val = FFA_DENIED; 1446 else 1447 ret_val = FFA_NO_MEMORY; 1448 } else { 1449 notif_vm_id = vm_id; 1450 notif_vm_id_valid = true; 1451 ret_val = FFA_OK; 1452 ret_fid = FFA_SUCCESS_32; 1453 } 1454 1455 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 1456 } 1457 1458 spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0); 1459 } 1460 1461 static void handle_notification_bitmap_destroy(struct thread_smc_args *args) 1462 { 1463 uint32_t ret_val = FFA_INVALID_PARAMETERS; 1464 uint32_t ret_fid = FFA_ERROR; 1465 uint32_t old_itr_status = 0; 1466 1467 if (!FFA_TARGET_INFO_GET_SP_ID(args->a1) && !args->a3 && !args->a4 && 1468 !args->a5 && !args->a6 && !args->a7) { 1469 uint16_t vm_id = args->a1; 1470 1471 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 1472 1473 if (notif_vm_id_valid && vm_id == notif_vm_id) { 1474 if (notif_pending_bitmap || notif_bound_bitmap) { 1475 ret_val = FFA_DENIED; 1476 } else { 1477 notif_vm_id_valid = false; 1478 ret_val = FFA_OK; 1479 ret_fid = FFA_SUCCESS_32; 1480 } 1481 } 1482 1483 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 1484 } 1485 1486 spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0); 1487 } 1488 1489 static void handle_notification_bind(struct thread_smc_args *args) 1490 { 1491 uint32_t ret_val = FFA_INVALID_PARAMETERS; 1492 uint32_t ret_fid = FFA_ERROR; 1493 uint32_t old_itr_status = 0; 1494 uint64_t bitmap = 0; 1495 uint16_t vm_id = 0; 1496 1497 if (args->a5 || args->a6 || args->a7) 1498 goto out; 1499 if (args->a2) { 1500 /* We only deal with global notifications for now */ 1501 ret_val = FFA_NOT_SUPPORTED; 1502 goto out; 1503 } 1504 1505 /* The destination of the eventual notification */ 1506 vm_id = FFA_DST(args->a1); 1507 bitmap = reg_pair_to_64(args->a4, args->a3); 1508 1509 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 1510 1511 if (notif_vm_id_valid && vm_id == notif_vm_id) { 1512 if (bitmap & notif_bound_bitmap) { 1513 ret_val = FFA_DENIED; 1514 } else { 1515 notif_bound_bitmap |= bitmap; 1516 ret_val = FFA_OK; 1517 ret_fid = FFA_SUCCESS_32; 1518 } 1519 } 1520 1521 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 1522 out: 1523 spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0); 1524 } 1525 1526 static void handle_notification_unbind(struct thread_smc_args *args) 1527 { 1528 uint32_t ret_val = FFA_INVALID_PARAMETERS; 1529 uint32_t ret_fid = FFA_ERROR; 1530 uint32_t old_itr_status = 0; 1531 uint64_t bitmap = 0; 1532 uint16_t vm_id = 0; 1533 1534 if (args->a2 || args->a5 || args->a6 || args->a7) 1535 goto out; 1536 1537 /* The destination of the eventual notification */ 1538 vm_id = FFA_DST(args->a1); 1539 bitmap = reg_pair_to_64(args->a4, args->a3); 1540 1541 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 1542 1543 if (notif_vm_id_valid && vm_id == notif_vm_id) { 1544 /* 1545 * Spec says: 1546 * At least one notification is bound to another Sender or 1547 * is currently pending. 1548 * 1549 * Not sure what the intention is. 1550 */ 1551 if (bitmap & notif_pending_bitmap) { 1552 ret_val = FFA_DENIED; 1553 } else { 1554 notif_bound_bitmap &= ~bitmap; 1555 ret_val = FFA_OK; 1556 ret_fid = FFA_SUCCESS_32; 1557 } 1558 } 1559 1560 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 1561 out: 1562 spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0); 1563 } 1564 1565 static void handle_notification_get(struct thread_smc_args *args) 1566 { 1567 uint32_t w2 = FFA_INVALID_PARAMETERS; 1568 uint32_t ret_fid = FFA_ERROR; 1569 uint32_t old_itr_status = 0; 1570 uint16_t vm_id = 0; 1571 uint32_t w3 = 0; 1572 1573 if (args->a5 || args->a6 || args->a7) 1574 goto out; 1575 if (!(args->a2 & 0x1)) { 1576 ret_fid = FFA_SUCCESS_32; 1577 w2 = 0; 1578 goto out; 1579 } 1580 vm_id = FFA_DST(args->a1); 1581 1582 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 1583 1584 if (notif_vm_id_valid && vm_id == notif_vm_id) { 1585 reg_pair_from_64(notif_pending_bitmap, &w3, &w2); 1586 notif_pending_bitmap = 0; 1587 ret_fid = FFA_SUCCESS_32; 1588 } 1589 1590 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 1591 out: 1592 spmc_set_args(args, ret_fid, 0, w2, w3, 0, 0); 1593 } 1594 1595 static void handle_notification_info_get(struct thread_smc_args *args) 1596 { 1597 uint32_t w2 = FFA_INVALID_PARAMETERS; 1598 uint32_t ret_fid = FFA_ERROR; 1599 1600 if (args->a1 || args->a2 || args->a3 || args->a4 || args->a5 || 1601 args->a6 || args->a7) 1602 goto out; 1603 1604 if (OPTEE_SMC_IS_64(args->a0)) 1605 ret_fid = FFA_SUCCESS_64; 1606 else 1607 ret_fid = FFA_SUCCESS_32; 1608 1609 /* 1610 * Note, we're only supporting physical OS kernel in normal world 1611 * with Global Notifications. 1612 * So one list of ID list registers (BIT[11:7]) 1613 * and one count of IDs (BIT[13:12] + 1) 1614 * and the VM is always 0. 1615 */ 1616 w2 = SHIFT_U32(1, 7); 1617 out: 1618 spmc_set_args(args, ret_fid, 0, w2, 0, 0, 0); 1619 } 1620 1621 void thread_spmc_set_async_notif_intid(int intid) 1622 { 1623 assert(interrupt_can_raise_sgi(interrupt_get_main_chip())); 1624 notif_intid = intid; 1625 spmc_notif_is_ready = true; 1626 DMSG("Asynchronous notifications are ready"); 1627 } 1628 1629 void notif_send_async(uint32_t value) 1630 { 1631 uint32_t old_itr_status = 0; 1632 1633 old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock); 1634 assert(value == NOTIF_VALUE_DO_BOTTOM_HALF && spmc_notif_is_ready && 1635 do_bottom_half_value >= 0 && notif_intid >= 0); 1636 notif_pending_bitmap |= BIT64(do_bottom_half_value); 1637 interrupt_raise_sgi(interrupt_get_main_chip(), notif_intid, 1638 ITR_CPU_MASK_TO_THIS_CPU); 1639 cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status); 1640 } 1641 #else 1642 void notif_send_async(uint32_t value) 1643 { 1644 /* global notification, delay notification interrupt */ 1645 uint32_t flags = BIT32(1); 1646 int res = 0; 1647 1648 assert(value == NOTIF_VALUE_DO_BOTTOM_HALF && spmc_notif_is_ready && 1649 do_bottom_half_value >= 0); 1650 res = ffa_set_notification(notif_vm_id, optee_endpoint_id, flags, 1651 BIT64(do_bottom_half_value)); 1652 if (res) { 1653 EMSG("notification set failed with error %d", res); 1654 panic(); 1655 } 1656 } 1657 #endif 1658 1659 /* Only called from assembly */ 1660 void thread_spmc_msg_recv(struct thread_smc_args *args); 1661 void thread_spmc_msg_recv(struct thread_smc_args *args) 1662 { 1663 assert((thread_get_exceptions() & THREAD_EXCP_ALL) == THREAD_EXCP_ALL); 1664 switch (args->a0) { 1665 #if defined(CFG_CORE_SEL1_SPMC) 1666 case FFA_FEATURES: 1667 handle_features(args); 1668 break; 1669 case FFA_SPM_ID_GET: 1670 spmc_handle_spm_id_get(args); 1671 break; 1672 #ifdef ARM64 1673 case FFA_RXTX_MAP_64: 1674 #endif 1675 case FFA_RXTX_MAP_32: 1676 spmc_handle_rxtx_map(args, &my_rxtx); 1677 break; 1678 case FFA_RXTX_UNMAP: 1679 spmc_handle_rxtx_unmap(args, &my_rxtx); 1680 break; 1681 case FFA_RX_RELEASE: 1682 spmc_handle_rx_release(args, &my_rxtx); 1683 break; 1684 case FFA_PARTITION_INFO_GET: 1685 spmc_handle_partition_info_get(args, &my_rxtx); 1686 break; 1687 case FFA_RUN: 1688 spmc_handle_run(args); 1689 break; 1690 #endif /*CFG_CORE_SEL1_SPMC*/ 1691 case FFA_INTERRUPT: 1692 if (IS_ENABLED(CFG_CORE_SEL1_SPMC)) 1693 spmc_set_args(args, FFA_NORMAL_WORLD_RESUME, 0, 0, 0, 1694 0, 0); 1695 else 1696 spmc_set_args(args, FFA_MSG_WAIT, 0, 0, 0, 0, 0); 1697 break; 1698 #ifdef ARM64 1699 case FFA_MSG_SEND_DIRECT_REQ_64: 1700 #endif 1701 case FFA_MSG_SEND_DIRECT_REQ_32: 1702 handle_direct_request(args, &my_rxtx); 1703 break; 1704 #if defined(CFG_CORE_SEL1_SPMC) 1705 #ifdef ARM64 1706 case FFA_MEM_SHARE_64: 1707 #endif 1708 case FFA_MEM_SHARE_32: 1709 handle_mem_share(args, &my_rxtx); 1710 break; 1711 case FFA_MEM_RECLAIM: 1712 if (!IS_ENABLED(CFG_SECURE_PARTITION) || 1713 !ffa_mem_reclaim(args, NULL)) 1714 handle_mem_reclaim(args); 1715 break; 1716 case FFA_MEM_FRAG_TX: 1717 handle_mem_frag_tx(args, &my_rxtx); 1718 break; 1719 case FFA_NOTIFICATION_BITMAP_CREATE: 1720 handle_notification_bitmap_create(args); 1721 break; 1722 case FFA_NOTIFICATION_BITMAP_DESTROY: 1723 handle_notification_bitmap_destroy(args); 1724 break; 1725 case FFA_NOTIFICATION_BIND: 1726 handle_notification_bind(args); 1727 break; 1728 case FFA_NOTIFICATION_UNBIND: 1729 handle_notification_unbind(args); 1730 break; 1731 case FFA_NOTIFICATION_GET: 1732 handle_notification_get(args); 1733 break; 1734 #ifdef ARM64 1735 case FFA_NOTIFICATION_INFO_GET_64: 1736 #endif 1737 case FFA_NOTIFICATION_INFO_GET_32: 1738 handle_notification_info_get(args); 1739 break; 1740 #endif /*CFG_CORE_SEL1_SPMC*/ 1741 case FFA_ERROR: 1742 EMSG("Cannot handle FFA_ERROR(%d)", (int)args->a2); 1743 if (!IS_ENABLED(CFG_CORE_SEL1_SPMC)) { 1744 /* 1745 * The SPMC will return an FFA_ERROR back so better 1746 * panic() now than flooding the log. 1747 */ 1748 panic("FFA_ERROR from SPMC is fatal"); 1749 } 1750 spmc_set_args(args, FFA_ERROR, FFA_PARAM_MBZ, FFA_NOT_SUPPORTED, 1751 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ); 1752 break; 1753 default: 1754 EMSG("Unhandled FFA function ID %#"PRIx32, (uint32_t)args->a0); 1755 set_simple_ret_val(args, FFA_NOT_SUPPORTED); 1756 } 1757 } 1758 1759 static TEE_Result yielding_call_with_arg(uint64_t cookie, uint32_t offset) 1760 { 1761 size_t sz_rpc = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS); 1762 struct thread_ctx *thr = threads + thread_get_id(); 1763 TEE_Result res = TEE_ERROR_BAD_PARAMETERS; 1764 struct optee_msg_arg *arg = NULL; 1765 struct mobj *mobj = NULL; 1766 uint32_t num_params = 0; 1767 size_t sz = 0; 1768 1769 mobj = mobj_ffa_get_by_cookie(cookie, 0); 1770 if (!mobj) { 1771 EMSG("Can't find cookie %#"PRIx64, cookie); 1772 return TEE_ERROR_BAD_PARAMETERS; 1773 } 1774 1775 res = mobj_inc_map(mobj); 1776 if (res) 1777 goto out_put_mobj; 1778 1779 res = TEE_ERROR_BAD_PARAMETERS; 1780 arg = mobj_get_va(mobj, offset, sizeof(*arg)); 1781 if (!arg) 1782 goto out_dec_map; 1783 1784 num_params = READ_ONCE(arg->num_params); 1785 if (num_params > OPTEE_MSG_MAX_NUM_PARAMS) 1786 goto out_dec_map; 1787 1788 sz = OPTEE_MSG_GET_ARG_SIZE(num_params); 1789 1790 thr->rpc_arg = mobj_get_va(mobj, offset + sz, sz_rpc); 1791 if (!thr->rpc_arg) 1792 goto out_dec_map; 1793 1794 virt_on_stdcall(); 1795 res = tee_entry_std(arg, num_params); 1796 1797 thread_rpc_shm_cache_clear(&thr->shm_cache); 1798 thr->rpc_arg = NULL; 1799 1800 out_dec_map: 1801 mobj_dec_map(mobj); 1802 out_put_mobj: 1803 mobj_put(mobj); 1804 return res; 1805 } 1806 1807 /* 1808 * Helper routine for the assembly function thread_std_smc_entry() 1809 * 1810 * Note: this function is weak just to make link_dummies_paged.c happy. 1811 */ 1812 uint32_t __weak __thread_std_smc_entry(uint32_t a0, uint32_t a1, 1813 uint32_t a2, uint32_t a3, 1814 uint32_t a4, uint32_t a5 __unused) 1815 { 1816 /* 1817 * Arguments are supplied from handle_yielding_call() as: 1818 * a0 <- w1 1819 * a1 <- w3 1820 * a2 <- w4 1821 * a3 <- w5 1822 * a4 <- w6 1823 * a5 <- w7 1824 */ 1825 thread_get_tsd()->rpc_target_info = swap_src_dst(a0); 1826 if (a1 == OPTEE_FFA_YIELDING_CALL_WITH_ARG) 1827 return yielding_call_with_arg(reg_pair_to_64(a3, a2), a4); 1828 return FFA_DENIED; 1829 } 1830 1831 static bool set_fmem(struct optee_msg_param *param, struct thread_param *tpm) 1832 { 1833 uint64_t offs = tpm->u.memref.offs; 1834 1835 param->attr = tpm->attr - THREAD_PARAM_ATTR_MEMREF_IN + 1836 OPTEE_MSG_ATTR_TYPE_FMEM_INPUT; 1837 1838 param->u.fmem.offs_low = offs; 1839 param->u.fmem.offs_high = offs >> 32; 1840 if (param->u.fmem.offs_high != offs >> 32) 1841 return false; 1842 1843 param->u.fmem.size = tpm->u.memref.size; 1844 if (tpm->u.memref.mobj) { 1845 uint64_t cookie = mobj_get_cookie(tpm->u.memref.mobj); 1846 1847 /* If a mobj is passed it better be one with a valid cookie. */ 1848 if (cookie == OPTEE_MSG_FMEM_INVALID_GLOBAL_ID) 1849 return false; 1850 param->u.fmem.global_id = cookie; 1851 } else { 1852 param->u.fmem.global_id = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID; 1853 } 1854 1855 return true; 1856 } 1857 1858 static uint32_t get_rpc_arg(uint32_t cmd, size_t num_params, 1859 struct thread_param *params, 1860 struct optee_msg_arg **arg_ret) 1861 { 1862 size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS); 1863 struct thread_ctx *thr = threads + thread_get_id(); 1864 struct optee_msg_arg *arg = thr->rpc_arg; 1865 1866 if (num_params > THREAD_RPC_MAX_NUM_PARAMS) 1867 return TEE_ERROR_BAD_PARAMETERS; 1868 1869 if (!arg) { 1870 EMSG("rpc_arg not set"); 1871 return TEE_ERROR_GENERIC; 1872 } 1873 1874 memset(arg, 0, sz); 1875 arg->cmd = cmd; 1876 arg->num_params = num_params; 1877 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1878 1879 for (size_t n = 0; n < num_params; n++) { 1880 switch (params[n].attr) { 1881 case THREAD_PARAM_ATTR_NONE: 1882 arg->params[n].attr = OPTEE_MSG_ATTR_TYPE_NONE; 1883 break; 1884 case THREAD_PARAM_ATTR_VALUE_IN: 1885 case THREAD_PARAM_ATTR_VALUE_OUT: 1886 case THREAD_PARAM_ATTR_VALUE_INOUT: 1887 arg->params[n].attr = params[n].attr - 1888 THREAD_PARAM_ATTR_VALUE_IN + 1889 OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1890 arg->params[n].u.value.a = params[n].u.value.a; 1891 arg->params[n].u.value.b = params[n].u.value.b; 1892 arg->params[n].u.value.c = params[n].u.value.c; 1893 break; 1894 case THREAD_PARAM_ATTR_MEMREF_IN: 1895 case THREAD_PARAM_ATTR_MEMREF_OUT: 1896 case THREAD_PARAM_ATTR_MEMREF_INOUT: 1897 if (!set_fmem(arg->params + n, params + n)) 1898 return TEE_ERROR_BAD_PARAMETERS; 1899 break; 1900 default: 1901 return TEE_ERROR_BAD_PARAMETERS; 1902 } 1903 } 1904 1905 if (arg_ret) 1906 *arg_ret = arg; 1907 1908 return TEE_SUCCESS; 1909 } 1910 1911 static uint32_t get_rpc_arg_res(struct optee_msg_arg *arg, size_t num_params, 1912 struct thread_param *params) 1913 { 1914 for (size_t n = 0; n < num_params; n++) { 1915 switch (params[n].attr) { 1916 case THREAD_PARAM_ATTR_VALUE_OUT: 1917 case THREAD_PARAM_ATTR_VALUE_INOUT: 1918 params[n].u.value.a = arg->params[n].u.value.a; 1919 params[n].u.value.b = arg->params[n].u.value.b; 1920 params[n].u.value.c = arg->params[n].u.value.c; 1921 break; 1922 case THREAD_PARAM_ATTR_MEMREF_OUT: 1923 case THREAD_PARAM_ATTR_MEMREF_INOUT: 1924 params[n].u.memref.size = arg->params[n].u.fmem.size; 1925 break; 1926 default: 1927 break; 1928 } 1929 } 1930 1931 return arg->ret; 1932 } 1933 1934 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1935 struct thread_param *params) 1936 { 1937 struct thread_rpc_arg rpc_arg = { .call = { 1938 .w1 = thread_get_tsd()->rpc_target_info, 1939 .w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD, 1940 }, 1941 }; 1942 struct optee_msg_arg *arg = NULL; 1943 uint32_t ret = 0; 1944 1945 ret = get_rpc_arg(cmd, num_params, params, &arg); 1946 if (ret) 1947 return ret; 1948 1949 thread_rpc(&rpc_arg); 1950 1951 return get_rpc_arg_res(arg, num_params, params); 1952 } 1953 1954 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj) 1955 { 1956 struct thread_rpc_arg rpc_arg = { .call = { 1957 .w1 = thread_get_tsd()->rpc_target_info, 1958 .w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD, 1959 }, 1960 }; 1961 struct thread_param param = THREAD_PARAM_VALUE(IN, bt, cookie, 0); 1962 uint32_t res2 = 0; 1963 uint32_t res = 0; 1964 1965 DMSG("freeing cookie %#"PRIx64, cookie); 1966 1967 res = get_rpc_arg(OPTEE_RPC_CMD_SHM_FREE, 1, ¶m, NULL); 1968 1969 mobj_put(mobj); 1970 res2 = mobj_ffa_unregister_by_cookie(cookie); 1971 if (res2) 1972 DMSG("mobj_ffa_unregister_by_cookie(%#"PRIx64"): %#"PRIx32, 1973 cookie, res2); 1974 if (!res) 1975 thread_rpc(&rpc_arg); 1976 } 1977 1978 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt) 1979 { 1980 struct thread_rpc_arg rpc_arg = { .call = { 1981 .w1 = thread_get_tsd()->rpc_target_info, 1982 .w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD, 1983 }, 1984 }; 1985 struct thread_param param = THREAD_PARAM_VALUE(IN, bt, size, align); 1986 struct optee_msg_arg *arg = NULL; 1987 unsigned int internal_offset = 0; 1988 struct mobj *mobj = NULL; 1989 uint64_t cookie = 0; 1990 1991 if (get_rpc_arg(OPTEE_RPC_CMD_SHM_ALLOC, 1, ¶m, &arg)) 1992 return NULL; 1993 1994 thread_rpc(&rpc_arg); 1995 1996 if (arg->num_params != 1 || 1997 arg->params->attr != OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT) 1998 return NULL; 1999 2000 internal_offset = READ_ONCE(arg->params->u.fmem.internal_offs); 2001 cookie = READ_ONCE(arg->params->u.fmem.global_id); 2002 mobj = mobj_ffa_get_by_cookie(cookie, internal_offset); 2003 if (!mobj) { 2004 DMSG("mobj_ffa_get_by_cookie(%#"PRIx64", %#x): failed", 2005 cookie, internal_offset); 2006 return NULL; 2007 } 2008 2009 assert(mobj_is_nonsec(mobj)); 2010 2011 if (mobj->size < size) { 2012 DMSG("Mobj %#"PRIx64": wrong size", cookie); 2013 mobj_put(mobj); 2014 return NULL; 2015 } 2016 2017 if (mobj_inc_map(mobj)) { 2018 DMSG("mobj_inc_map(%#"PRIx64"): failed", cookie); 2019 mobj_put(mobj); 2020 return NULL; 2021 } 2022 2023 return mobj; 2024 } 2025 2026 struct mobj *thread_rpc_alloc_payload(size_t size) 2027 { 2028 return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_APPL); 2029 } 2030 2031 struct mobj *thread_rpc_alloc_kernel_payload(size_t size) 2032 { 2033 return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_KERNEL); 2034 } 2035 2036 void thread_rpc_free_kernel_payload(struct mobj *mobj) 2037 { 2038 if (mobj) 2039 thread_rpc_free(OPTEE_RPC_SHM_TYPE_KERNEL, 2040 mobj_get_cookie(mobj), mobj); 2041 } 2042 2043 void thread_rpc_free_payload(struct mobj *mobj) 2044 { 2045 if (mobj) 2046 thread_rpc_free(OPTEE_RPC_SHM_TYPE_APPL, mobj_get_cookie(mobj), 2047 mobj); 2048 } 2049 2050 struct mobj *thread_rpc_alloc_global_payload(size_t size) 2051 { 2052 return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_GLOBAL); 2053 } 2054 2055 void thread_rpc_free_global_payload(struct mobj *mobj) 2056 { 2057 if (mobj) 2058 thread_rpc_free(OPTEE_RPC_SHM_TYPE_GLOBAL, 2059 mobj_get_cookie(mobj), mobj); 2060 } 2061 2062 void thread_spmc_register_secondary_ep(vaddr_t ep) 2063 { 2064 unsigned long ret = 0; 2065 2066 /* Let the SPM know the entry point for secondary CPUs */ 2067 ret = thread_smc(FFA_SECONDARY_EP_REGISTER_64, ep, 0, 0); 2068 2069 if (ret != FFA_SUCCESS_32 && ret != FFA_SUCCESS_64) 2070 EMSG("FFA_SECONDARY_EP_REGISTER_64 ret %#lx", ret); 2071 } 2072 2073 static uint16_t ffa_id_get(void) 2074 { 2075 /* 2076 * Ask the SPM component running at a higher EL to return our FF-A ID. 2077 * This can either be the SPMC ID (if the SPMC is enabled in OP-TEE) or 2078 * the partition ID (if not). 2079 */ 2080 struct thread_smc_args args = { 2081 .a0 = FFA_ID_GET, 2082 }; 2083 2084 thread_smccc(&args); 2085 if (!is_ffa_success(args.a0)) { 2086 if (args.a0 == FFA_ERROR) 2087 EMSG("Get id failed with error %ld", args.a2); 2088 else 2089 EMSG("Get id failed"); 2090 panic(); 2091 } 2092 2093 return args.a2; 2094 } 2095 2096 static uint16_t ffa_spm_id_get(void) 2097 { 2098 /* 2099 * Ask the SPM component running at a higher EL to return its ID. 2100 * If OP-TEE implements the S-EL1 SPMC, this will get the SPMD ID. 2101 * If not, the ID of the SPMC will be returned. 2102 */ 2103 struct thread_smc_args args = { 2104 .a0 = FFA_SPM_ID_GET, 2105 }; 2106 2107 thread_smccc(&args); 2108 if (!is_ffa_success(args.a0)) { 2109 if (args.a0 == FFA_ERROR) 2110 EMSG("Get spm id failed with error %ld", args.a2); 2111 else 2112 EMSG("Get spm id failed"); 2113 panic(); 2114 } 2115 2116 return args.a2; 2117 } 2118 2119 #if defined(CFG_CORE_SEL1_SPMC) 2120 static TEE_Result spmc_init(void) 2121 { 2122 spmd_id = ffa_spm_id_get(); 2123 DMSG("SPMD ID %#"PRIx16, spmd_id); 2124 2125 spmc_id = ffa_id_get(); 2126 DMSG("SPMC ID %#"PRIx16, spmc_id); 2127 2128 optee_endpoint_id = FFA_SWD_ID_MIN; 2129 while (optee_endpoint_id == spmd_id || optee_endpoint_id == spmc_id) 2130 optee_endpoint_id++; 2131 2132 DMSG("OP-TEE endpoint ID %#"PRIx16, optee_endpoint_id); 2133 2134 /* 2135 * If SPMD think we are version 1.0 it will report version 1.0 to 2136 * normal world regardless of what version we query the SPM with. 2137 * However, if SPMD think we are version 1.1 it will forward 2138 * queries from normal world to let us negotiate version. So by 2139 * setting version 1.0 here we should be compatible. 2140 * 2141 * Note that disagreement on negotiated version means that we'll 2142 * have communication problems with normal world. 2143 */ 2144 my_rxtx.ffa_vers = FFA_VERSION_1_0; 2145 2146 return TEE_SUCCESS; 2147 } 2148 #else /* !defined(CFG_CORE_SEL1_SPMC) */ 2149 static void spmc_rxtx_map(struct ffa_rxtx *rxtx) 2150 { 2151 struct thread_smc_args args = { 2152 #ifdef ARM64 2153 .a0 = FFA_RXTX_MAP_64, 2154 #else 2155 .a0 = FFA_RXTX_MAP_32, 2156 #endif 2157 .a1 = virt_to_phys(rxtx->tx), 2158 .a2 = virt_to_phys(rxtx->rx), 2159 .a3 = 1, 2160 }; 2161 2162 thread_smccc(&args); 2163 if (!is_ffa_success(args.a0)) { 2164 if (args.a0 == FFA_ERROR) 2165 EMSG("rxtx map failed with error %ld", args.a2); 2166 else 2167 EMSG("rxtx map failed"); 2168 panic(); 2169 } 2170 } 2171 2172 static uint32_t get_ffa_version(uint32_t my_version) 2173 { 2174 struct thread_smc_args args = { 2175 .a0 = FFA_VERSION, 2176 .a1 = my_version, 2177 }; 2178 2179 thread_smccc(&args); 2180 if (args.a0 & BIT(31)) { 2181 EMSG("FF-A version failed with error %ld", args.a0); 2182 panic(); 2183 } 2184 2185 return args.a0; 2186 } 2187 2188 static void *spmc_retrieve_req(uint64_t cookie, 2189 struct ffa_mem_transaction_x *trans) 2190 { 2191 struct ffa_mem_access *acc_descr_array = NULL; 2192 struct ffa_mem_access_perm *perm_descr = NULL; 2193 struct thread_smc_args args = { 2194 .a0 = FFA_MEM_RETRIEVE_REQ_32, 2195 .a3 = 0, /* Address, Using TX -> MBZ */ 2196 .a4 = 0, /* Using TX -> MBZ */ 2197 }; 2198 size_t size = 0; 2199 int rc = 0; 2200 2201 if (my_rxtx.ffa_vers == FFA_VERSION_1_0) { 2202 struct ffa_mem_transaction_1_0 *trans_descr = my_rxtx.tx; 2203 2204 size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access); 2205 memset(trans_descr, 0, size); 2206 trans_descr->sender_id = thread_get_tsd()->rpc_target_info; 2207 trans_descr->mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR; 2208 trans_descr->global_handle = cookie; 2209 trans_descr->flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE | 2210 FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT; 2211 trans_descr->mem_access_count = 1; 2212 acc_descr_array = trans_descr->mem_access_array; 2213 } else { 2214 struct ffa_mem_transaction_1_1 *trans_descr = my_rxtx.tx; 2215 2216 size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access); 2217 memset(trans_descr, 0, size); 2218 trans_descr->sender_id = thread_get_tsd()->rpc_target_info; 2219 trans_descr->mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR; 2220 trans_descr->global_handle = cookie; 2221 trans_descr->flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE | 2222 FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT; 2223 trans_descr->mem_access_count = 1; 2224 trans_descr->mem_access_offs = sizeof(*trans_descr); 2225 trans_descr->mem_access_size = sizeof(struct ffa_mem_access); 2226 acc_descr_array = (void *)((vaddr_t)my_rxtx.tx + 2227 sizeof(*trans_descr)); 2228 } 2229 acc_descr_array->region_offs = 0; 2230 acc_descr_array->reserved = 0; 2231 perm_descr = &acc_descr_array->access_perm; 2232 perm_descr->endpoint_id = optee_endpoint_id; 2233 perm_descr->perm = FFA_MEM_ACC_RW; 2234 perm_descr->flags = 0; 2235 2236 args.a1 = size; /* Total Length */ 2237 args.a2 = size; /* Frag Length == Total length */ 2238 thread_smccc(&args); 2239 if (args.a0 != FFA_MEM_RETRIEVE_RESP) { 2240 if (args.a0 == FFA_ERROR) 2241 EMSG("Failed to fetch cookie %#"PRIx64" error code %d", 2242 cookie, (int)args.a2); 2243 else 2244 EMSG("Failed to fetch cookie %#"PRIx64" a0 %#"PRIx64, 2245 cookie, args.a0); 2246 return NULL; 2247 } 2248 rc = spmc_read_mem_transaction(my_rxtx.ffa_vers, my_rxtx.rx, 2249 my_rxtx.size, trans); 2250 if (rc) { 2251 EMSG("Memory transaction failure for cookie %#"PRIx64" rc %d", 2252 cookie, rc); 2253 return NULL; 2254 } 2255 2256 return my_rxtx.rx; 2257 } 2258 2259 void thread_spmc_relinquish(uint64_t cookie) 2260 { 2261 struct ffa_mem_relinquish *relinquish_desc = my_rxtx.tx; 2262 struct thread_smc_args args = { 2263 .a0 = FFA_MEM_RELINQUISH, 2264 }; 2265 2266 memset(relinquish_desc, 0, sizeof(*relinquish_desc)); 2267 relinquish_desc->handle = cookie; 2268 relinquish_desc->flags = 0; 2269 relinquish_desc->endpoint_count = 1; 2270 relinquish_desc->endpoint_id_array[0] = optee_endpoint_id; 2271 thread_smccc(&args); 2272 if (!is_ffa_success(args.a0)) 2273 EMSG("Failed to relinquish cookie %#"PRIx64, cookie); 2274 } 2275 2276 static int set_pages(struct ffa_address_range *regions, 2277 unsigned int num_regions, unsigned int num_pages, 2278 struct mobj_ffa *mf) 2279 { 2280 unsigned int n = 0; 2281 unsigned int idx = 0; 2282 2283 for (n = 0; n < num_regions; n++) { 2284 unsigned int page_count = READ_ONCE(regions[n].page_count); 2285 uint64_t addr = READ_ONCE(regions[n].address); 2286 2287 if (mobj_ffa_add_pages_at(mf, &idx, addr, page_count)) 2288 return FFA_INVALID_PARAMETERS; 2289 } 2290 2291 if (idx != num_pages) 2292 return FFA_INVALID_PARAMETERS; 2293 2294 return 0; 2295 } 2296 2297 struct mobj_ffa *thread_spmc_populate_mobj_from_rx(uint64_t cookie) 2298 { 2299 struct mobj_ffa *ret = NULL; 2300 struct ffa_mem_transaction_x retrieve_desc = { }; 2301 struct ffa_mem_access *descr_array = NULL; 2302 struct ffa_mem_region *descr = NULL; 2303 struct mobj_ffa *mf = NULL; 2304 unsigned int num_pages = 0; 2305 unsigned int offs = 0; 2306 void *buf = NULL; 2307 struct thread_smc_args ffa_rx_release_args = { 2308 .a0 = FFA_RX_RELEASE 2309 }; 2310 2311 /* 2312 * OP-TEE is only supporting a single mem_region while the 2313 * specification allows for more than one. 2314 */ 2315 buf = spmc_retrieve_req(cookie, &retrieve_desc); 2316 if (!buf) { 2317 EMSG("Failed to retrieve cookie from rx buffer %#"PRIx64, 2318 cookie); 2319 return NULL; 2320 } 2321 2322 descr_array = (void *)((vaddr_t)buf + retrieve_desc.mem_access_offs); 2323 offs = READ_ONCE(descr_array->region_offs); 2324 descr = (struct ffa_mem_region *)((vaddr_t)buf + offs); 2325 2326 num_pages = READ_ONCE(descr->total_page_count); 2327 mf = mobj_ffa_spmc_new(cookie, num_pages); 2328 if (!mf) 2329 goto out; 2330 2331 if (set_pages(descr->address_range_array, 2332 READ_ONCE(descr->address_range_count), num_pages, mf)) { 2333 mobj_ffa_spmc_delete(mf); 2334 goto out; 2335 } 2336 2337 ret = mf; 2338 2339 out: 2340 /* Release RX buffer after the mem retrieve request. */ 2341 thread_smccc(&ffa_rx_release_args); 2342 2343 return ret; 2344 } 2345 2346 static TEE_Result spmc_init(void) 2347 { 2348 unsigned int major = 0; 2349 unsigned int minor __maybe_unused = 0; 2350 uint32_t my_vers = 0; 2351 uint32_t vers = 0; 2352 2353 my_vers = MAKE_FFA_VERSION(FFA_VERSION_MAJOR, FFA_VERSION_MINOR); 2354 vers = get_ffa_version(my_vers); 2355 major = (vers >> FFA_VERSION_MAJOR_SHIFT) & FFA_VERSION_MAJOR_MASK; 2356 minor = (vers >> FFA_VERSION_MINOR_SHIFT) & FFA_VERSION_MINOR_MASK; 2357 DMSG("SPMC reported version %u.%u", major, minor); 2358 if (major != FFA_VERSION_MAJOR) { 2359 EMSG("Incompatible major version %u, expected %u", 2360 major, FFA_VERSION_MAJOR); 2361 panic(); 2362 } 2363 if (vers < my_vers) 2364 my_vers = vers; 2365 DMSG("Using version %u.%u", 2366 (my_vers >> FFA_VERSION_MAJOR_SHIFT) & FFA_VERSION_MAJOR_MASK, 2367 (my_vers >> FFA_VERSION_MINOR_SHIFT) & FFA_VERSION_MINOR_MASK); 2368 my_rxtx.ffa_vers = my_vers; 2369 2370 spmc_rxtx_map(&my_rxtx); 2371 2372 spmc_id = ffa_spm_id_get(); 2373 DMSG("SPMC ID %#"PRIx16, spmc_id); 2374 2375 optee_endpoint_id = ffa_id_get(); 2376 DMSG("OP-TEE endpoint ID %#"PRIx16, optee_endpoint_id); 2377 2378 if (!ffa_features(FFA_NOTIFICATION_SET)) { 2379 spmc_notif_is_ready = true; 2380 DMSG("Asynchronous notifications are ready"); 2381 } 2382 2383 return TEE_SUCCESS; 2384 } 2385 #endif /* !defined(CFG_CORE_SEL1_SPMC) */ 2386 2387 /* 2388 * boot_final() is always done before exiting at end of boot 2389 * initialization. In case of virtualization the init-calls are done only 2390 * once a OP-TEE partition has been created. So with virtualization we have 2391 * to initialize via boot_final() to make sure we have a value assigned 2392 * before it's used the first time. 2393 */ 2394 #ifdef CFG_NS_VIRTUALIZATION 2395 boot_final(spmc_init); 2396 #else 2397 service_init(spmc_init); 2398 #endif 2399