xref: /optee_os/core/arch/arm/kernel/thread_spmc.c (revision 0f7e723f527b21338a27a5e949db1db02e452b9f)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2025, Linaro Limited.
4  * Copyright (c) 2019-2024, Arm Limited. All rights reserved.
5  */
6 
7 #include <assert.h>
8 #include <ffa.h>
9 #include <initcall.h>
10 #include <io.h>
11 #include <kernel/dt.h>
12 #include <kernel/interrupt.h>
13 #include <kernel/notif.h>
14 #include <kernel/panic.h>
15 #include <kernel/secure_partition.h>
16 #include <kernel/spinlock.h>
17 #include <kernel/spmc_sp_handler.h>
18 #include <kernel/tee_misc.h>
19 #include <kernel/thread.h>
20 #include <kernel/thread_private.h>
21 #include <kernel/thread_spmc.h>
22 #include <kernel/virtualization.h>
23 #include <libfdt.h>
24 #include <mm/core_mmu.h>
25 #include <mm/mobj.h>
26 #include <optee_ffa.h>
27 #include <optee_msg.h>
28 #include <optee_rpc_cmd.h>
29 #include <sm/optee_smc.h>
30 #include <string.h>
31 #include <sys/queue.h>
32 #include <tee/entry_std.h>
33 #include <tee/uuid.h>
34 #include <tee_api_types.h>
35 #include <types_ext.h>
36 #include <util.h>
37 
38 #if defined(CFG_CORE_SEL1_SPMC)
39 struct mem_op_state {
40 	bool mem_share;
41 	struct mobj_ffa *mf;
42 	unsigned int page_count;
43 	unsigned int region_count;
44 	unsigned int current_page_idx;
45 };
46 
47 struct mem_frag_state {
48 	struct mem_op_state op;
49 	tee_mm_entry_t *mm;
50 	unsigned int frag_offset;
51 	SLIST_ENTRY(mem_frag_state) link;
52 };
53 #endif
54 
55 struct notif_vm_bitmap {
56 	bool initialized;
57 	int do_bottom_half_value;
58 	uint64_t pending;
59 	uint64_t bound;
60 };
61 
62 STAILQ_HEAD(spmc_lsp_desc_head, spmc_lsp_desc);
63 
64 static struct spmc_lsp_desc_head lsp_head __nex_data =
65 	STAILQ_HEAD_INITIALIZER(lsp_head);
66 
67 static unsigned int spmc_notif_lock __nex_data = SPINLOCK_UNLOCK;
68 static bool spmc_notif_is_ready __nex_bss;
69 static int notif_intid __nex_data __maybe_unused = -1;
70 
71 /* Id used to look up the guest specific struct notif_vm_bitmap */
72 static unsigned int notif_vm_bitmap_id __nex_bss;
73 /* Notification state when ns-virtualization isn't enabled */
74 static struct notif_vm_bitmap default_notif_vm_bitmap;
75 
76 /* Initialized in spmc_init() below */
77 static struct spmc_lsp_desc optee_core_lsp;
78 #ifdef CFG_CORE_SEL1_SPMC
79 /*
80  * Representation of the internal SPMC when OP-TEE is the S-EL1 SPMC.
81  * Initialized in spmc_init() below.
82  */
83 static struct spmc_lsp_desc optee_spmc_lsp;
84 /* FF-A ID of the SPMD. This is only valid when OP-TEE is the S-EL1 SPMC. */
85 static uint16_t spmd_id __nex_bss;
86 
87 /*
88  * If struct ffa_rxtx::size is 0 RX/TX buffers are not mapped or initialized.
89  *
90  * struct ffa_rxtx::spin_lock protects the variables below from concurrent
91  * access this includes the use of content of struct ffa_rxtx::rx and
92  * @frag_state_head.
93  *
94  * struct ffa_rxtx::tx_buf_is_mine is true when we may write to struct
95  * ffa_rxtx::tx and false when it is owned by normal world.
96  *
97  * Note that we can't prevent normal world from updating the content of
98  * these buffers so we must always be careful when reading. while we hold
99  * the lock.
100  */
101 
102 static struct ffa_rxtx my_rxtx __nex_bss;
103 
104 static bool is_nw_buf(struct ffa_rxtx *rxtx)
105 {
106 	return rxtx == &my_rxtx;
107 }
108 
109 static SLIST_HEAD(mem_frag_state_head, mem_frag_state) frag_state_head =
110 	SLIST_HEAD_INITIALIZER(&frag_state_head);
111 
112 #else
113 /* FF-A ID of the external SPMC */
114 static uint16_t spmc_id __nex_bss;
115 static uint8_t __rx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE) __nex_bss;
116 static uint8_t __tx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE) __nex_bss;
117 static struct ffa_rxtx my_rxtx __nex_data = {
118 	.rx = __rx_buf,
119 	.tx = __tx_buf,
120 	.size = sizeof(__rx_buf),
121 };
122 #endif
123 
124 bool spmc_is_reserved_id(uint16_t id)
125 {
126 #ifdef CFG_CORE_SEL1_SPMC
127 	return id == spmd_id;
128 #else
129 	return id == spmc_id;
130 #endif
131 }
132 
133 struct spmc_lsp_desc *spmc_find_lsp_by_sp_id(uint16_t sp_id)
134 {
135 	struct spmc_lsp_desc *desc = NULL;
136 
137 	STAILQ_FOREACH(desc, &lsp_head, link)
138 		if (desc->sp_id == sp_id)
139 			return desc;
140 
141 	return NULL;
142 }
143 
144 static uint32_t swap_src_dst(uint32_t src_dst)
145 {
146 	return (src_dst >> 16) | (src_dst << 16);
147 }
148 
149 static uint16_t get_sender_id(uint32_t src_dst)
150 {
151 	return src_dst >> 16;
152 }
153 
154 void spmc_set_args(struct thread_smc_1_2_regs *args, uint32_t fid,
155 		   uint32_t src_dst, uint32_t w2, uint32_t w3, uint32_t w4,
156 		   uint32_t w5)
157 {
158 	*args = (struct thread_smc_1_2_regs){
159 		.a0 = fid,
160 		.a1 = src_dst,
161 		.a2 = w2,
162 		.a3 = w3,
163 		.a4 = w4,
164 		.a5 = w5,
165 	};
166 }
167 
168 static void set_simple_ret_val(struct thread_smc_1_2_regs *args, int ffa_ret)
169 {
170 	if (ffa_ret)
171 		spmc_set_args(args, FFA_ERROR, 0, ffa_ret, 0, 0, 0);
172 	else
173 		spmc_set_args(args, FFA_SUCCESS_32, 0, 0, 0, 0, 0);
174 }
175 
176 uint32_t spmc_exchange_version(uint32_t vers, struct ffa_rxtx *rxtx)
177 {
178 	uint32_t major_vers = FFA_GET_MAJOR_VERSION(vers);
179 	uint32_t minor_vers = FFA_GET_MINOR_VERSION(vers);
180 	uint32_t my_vers = FFA_VERSION_1_2;
181 	uint32_t my_major_vers = 0;
182 	uint32_t my_minor_vers = 0;
183 
184 	my_major_vers = FFA_GET_MAJOR_VERSION(my_vers);
185 	my_minor_vers = FFA_GET_MINOR_VERSION(my_vers);
186 
187 	/*
188 	 * No locking, if the caller does concurrent calls to this it's
189 	 * only making a mess for itself. We must be able to renegotiate
190 	 * the FF-A version in order to support differing versions between
191 	 * the loader and the driver.
192 	 *
193 	 * Callers should use the version requested if we return a matching
194 	 * major version and a matching or larger minor version. The caller
195 	 * should downgrade to our minor version if our minor version is
196 	 * smaller. Regardless, always return our version as recommended by
197 	 * the specification.
198 	 */
199 	if (major_vers == my_major_vers) {
200 		if (minor_vers > my_minor_vers)
201 			rxtx->ffa_vers = my_vers;
202 		else
203 			rxtx->ffa_vers = vers;
204 	}
205 
206 	return my_vers;
207 }
208 
209 static bool is_ffa_success(uint32_t fid)
210 {
211 #ifdef ARM64
212 	if (fid == FFA_SUCCESS_64)
213 		return true;
214 #endif
215 	return fid == FFA_SUCCESS_32;
216 }
217 
218 static int32_t get_ffa_ret_code(const struct thread_smc_args *args)
219 {
220 	if (is_ffa_success(args->a0))
221 		return FFA_OK;
222 	if (args->a0 == FFA_ERROR && args->a2)
223 		return args->a2;
224 	return FFA_NOT_SUPPORTED;
225 }
226 
227 static int ffa_simple_call(uint32_t fid, unsigned long a1, unsigned long a2,
228 			   unsigned long a3, unsigned long a4)
229 {
230 	struct thread_smc_args args = {
231 		.a0 = fid,
232 		.a1 = a1,
233 		.a2 = a2,
234 		.a3 = a3,
235 		.a4 = a4,
236 	};
237 
238 	thread_smccc(&args);
239 
240 	return get_ffa_ret_code(&args);
241 }
242 
243 static int __maybe_unused ffa_features(uint32_t id)
244 {
245 	return ffa_simple_call(FFA_FEATURES, id, 0, 0, 0);
246 }
247 
248 static int __maybe_unused ffa_set_notification(uint16_t dst, uint16_t src,
249 					       uint32_t flags, uint64_t bitmap)
250 {
251 	return ffa_simple_call(FFA_NOTIFICATION_SET,
252 			       SHIFT_U32(src, 16) | dst, flags,
253 			       low32_from_64(bitmap), high32_from_64(bitmap));
254 }
255 
256 #if defined(CFG_CORE_SEL1_SPMC)
257 static void handle_features(struct thread_smc_1_2_regs *args)
258 {
259 	uint32_t ret_fid = FFA_ERROR;
260 	uint32_t ret_w2 = FFA_NOT_SUPPORTED;
261 
262 	switch (args->a1) {
263 	case FFA_FEATURE_SCHEDULE_RECV_INTR:
264 		if (spmc_notif_is_ready) {
265 			ret_fid = FFA_SUCCESS_32;
266 			ret_w2 = notif_intid;
267 		}
268 		break;
269 
270 #ifdef ARM64
271 	case FFA_RXTX_MAP_64:
272 #endif
273 	case FFA_RXTX_MAP_32:
274 		ret_fid = FFA_SUCCESS_32;
275 		ret_w2 = 0; /* 4kB Minimum buffer size and alignment boundary */
276 		break;
277 #ifdef ARM64
278 	case FFA_MEM_SHARE_64:
279 #endif
280 	case FFA_MEM_SHARE_32:
281 		ret_fid = FFA_SUCCESS_32;
282 		/*
283 		 * Partition manager supports transmission of a memory
284 		 * transaction descriptor in a buffer dynamically allocated
285 		 * by the endpoint.
286 		 */
287 		ret_w2 = BIT(0);
288 		break;
289 
290 	case FFA_ERROR:
291 	case FFA_VERSION:
292 	case FFA_SUCCESS_32:
293 #ifdef ARM64
294 	case FFA_SUCCESS_64:
295 #endif
296 	case FFA_FEATURES:
297 	case FFA_SPM_ID_GET:
298 	case FFA_MEM_FRAG_TX:
299 	case FFA_MEM_RECLAIM:
300 	case FFA_MSG_SEND_DIRECT_REQ_64:
301 	case FFA_MSG_SEND_DIRECT_REQ_32:
302 	case FFA_INTERRUPT:
303 	case FFA_PARTITION_INFO_GET:
304 	case FFA_RXTX_UNMAP:
305 	case FFA_RX_RELEASE:
306 	case FFA_FEATURE_MANAGED_EXIT_INTR:
307 	case FFA_NOTIFICATION_BITMAP_CREATE:
308 	case FFA_NOTIFICATION_BITMAP_DESTROY:
309 	case FFA_NOTIFICATION_BIND:
310 	case FFA_NOTIFICATION_UNBIND:
311 	case FFA_NOTIFICATION_SET:
312 	case FFA_NOTIFICATION_GET:
313 	case FFA_NOTIFICATION_INFO_GET_32:
314 #ifdef ARM64
315 	case FFA_NOTIFICATION_INFO_GET_64:
316 #endif
317 		ret_fid = FFA_SUCCESS_32;
318 		ret_w2 = FFA_PARAM_MBZ;
319 		break;
320 	default:
321 		break;
322 	}
323 
324 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, ret_w2, FFA_PARAM_MBZ,
325 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
326 }
327 
328 static int map_buf(paddr_t pa, unsigned int sz, void **va_ret)
329 {
330 	tee_mm_entry_t *mm = NULL;
331 
332 	if (!core_pbuf_is(CORE_MEM_NON_SEC, pa, sz))
333 		return FFA_INVALID_PARAMETERS;
334 
335 	mm = tee_mm_alloc(&core_virt_shm_pool, sz);
336 	if (!mm)
337 		return FFA_NO_MEMORY;
338 
339 	if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pa,
340 					  sz / SMALL_PAGE_SIZE,
341 					  MEM_AREA_NSEC_SHM)) {
342 		tee_mm_free(mm);
343 		return FFA_INVALID_PARAMETERS;
344 	}
345 
346 	*va_ret = (void *)tee_mm_get_smem(mm);
347 	return 0;
348 }
349 
350 void spmc_handle_spm_id_get(struct thread_smc_1_2_regs *args)
351 {
352 	spmc_set_args(args, FFA_SUCCESS_32, FFA_PARAM_MBZ, optee_spmc_lsp.sp_id,
353 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
354 }
355 
356 static void unmap_buf(void *va, size_t sz)
357 {
358 	tee_mm_entry_t *mm = tee_mm_find(&core_virt_shm_pool, (vaddr_t)va);
359 
360 	assert(mm);
361 	core_mmu_unmap_pages(tee_mm_get_smem(mm), sz / SMALL_PAGE_SIZE);
362 	tee_mm_free(mm);
363 }
364 
365 void spmc_handle_rxtx_map(struct thread_smc_1_2_regs *args,
366 			  struct ffa_rxtx *rxtx)
367 {
368 	int rc = 0;
369 	unsigned int sz = 0;
370 	paddr_t rx_pa = 0;
371 	paddr_t tx_pa = 0;
372 	void *rx = NULL;
373 	void *tx = NULL;
374 
375 	cpu_spin_lock(&rxtx->spinlock);
376 
377 	if (args->a3 & GENMASK_64(63, 6)) {
378 		rc = FFA_INVALID_PARAMETERS;
379 		goto out;
380 	}
381 
382 	sz = args->a3 * SMALL_PAGE_SIZE;
383 	if (!sz) {
384 		rc = FFA_INVALID_PARAMETERS;
385 		goto out;
386 	}
387 	/* TX/RX are swapped compared to the caller */
388 	tx_pa = args->a2;
389 	rx_pa = args->a1;
390 
391 	if (rxtx->size) {
392 		rc = FFA_DENIED;
393 		goto out;
394 	}
395 
396 	/*
397 	 * If the buffer comes from a SP the address is virtual and already
398 	 * mapped.
399 	 */
400 	if (is_nw_buf(rxtx)) {
401 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
402 			enum teecore_memtypes mt = MEM_AREA_NEX_NSEC_SHM;
403 			bool tx_alloced = false;
404 
405 			/*
406 			 * With virtualization we establish this mapping in
407 			 * the nexus mapping which then is replicated to
408 			 * each partition.
409 			 *
410 			 * This means that this mapping must be done before
411 			 * any partition is created and then must not be
412 			 * changed.
413 			 */
414 
415 			/*
416 			 * core_mmu_add_mapping() may reuse previous
417 			 * mappings. First check if there's any mappings to
418 			 * reuse so we know how to clean up in case of
419 			 * failure.
420 			 */
421 			tx = phys_to_virt(tx_pa, mt, sz);
422 			rx = phys_to_virt(rx_pa, mt, sz);
423 			if (!tx) {
424 				tx = core_mmu_add_mapping(mt, tx_pa, sz);
425 				if (!tx) {
426 					rc = FFA_NO_MEMORY;
427 					goto out;
428 				}
429 				tx_alloced = true;
430 			}
431 			if (!rx)
432 				rx = core_mmu_add_mapping(mt, rx_pa, sz);
433 
434 			if (!rx) {
435 				if (tx_alloced && tx)
436 					core_mmu_remove_mapping(mt, tx, sz);
437 				rc = FFA_NO_MEMORY;
438 				goto out;
439 			}
440 		} else {
441 			rc = map_buf(tx_pa, sz, &tx);
442 			if (rc)
443 				goto out;
444 			rc = map_buf(rx_pa, sz, &rx);
445 			if (rc) {
446 				unmap_buf(tx, sz);
447 				goto out;
448 			}
449 		}
450 		rxtx->tx = tx;
451 		rxtx->rx = rx;
452 	} else {
453 		if ((tx_pa & SMALL_PAGE_MASK) || (rx_pa & SMALL_PAGE_MASK)) {
454 			rc = FFA_INVALID_PARAMETERS;
455 			goto out;
456 		}
457 
458 		if (!virt_to_phys((void *)tx_pa) ||
459 		    !virt_to_phys((void *)rx_pa)) {
460 			rc = FFA_INVALID_PARAMETERS;
461 			goto out;
462 		}
463 
464 		rxtx->tx = (void *)tx_pa;
465 		rxtx->rx = (void *)rx_pa;
466 	}
467 
468 	rxtx->size = sz;
469 	rxtx->tx_is_mine = true;
470 	DMSG("Mapped tx %#"PRIxPA" size %#x @ %p", tx_pa, sz, tx);
471 	DMSG("Mapped rx %#"PRIxPA" size %#x @ %p", rx_pa, sz, rx);
472 out:
473 	cpu_spin_unlock(&rxtx->spinlock);
474 	set_simple_ret_val(args, rc);
475 }
476 
477 void spmc_handle_rxtx_unmap(struct thread_smc_1_2_regs *args,
478 			    struct ffa_rxtx *rxtx)
479 {
480 	int rc = FFA_INVALID_PARAMETERS;
481 
482 	cpu_spin_lock(&rxtx->spinlock);
483 
484 	if (!rxtx->size)
485 		goto out;
486 
487 	/*
488 	 * We don't unmap the SP memory as the SP might still use it.
489 	 * We avoid to make changes to nexus mappings at this stage since
490 	 * there currently isn't a way to replicate those changes to all
491 	 * partitions.
492 	 */
493 	if (is_nw_buf(rxtx) && !IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
494 		unmap_buf(rxtx->rx, rxtx->size);
495 		unmap_buf(rxtx->tx, rxtx->size);
496 	}
497 	rxtx->size = 0;
498 	rxtx->rx = NULL;
499 	rxtx->tx = NULL;
500 	rc = 0;
501 out:
502 	cpu_spin_unlock(&rxtx->spinlock);
503 	set_simple_ret_val(args, rc);
504 }
505 
506 void spmc_handle_rx_release(struct thread_smc_1_2_regs *args,
507 			    struct ffa_rxtx *rxtx)
508 {
509 	int rc = 0;
510 
511 	cpu_spin_lock(&rxtx->spinlock);
512 	/* The senders RX is our TX */
513 	if (!rxtx->size || rxtx->tx_is_mine) {
514 		rc = FFA_DENIED;
515 	} else {
516 		rc = 0;
517 		rxtx->tx_is_mine = true;
518 	}
519 	cpu_spin_unlock(&rxtx->spinlock);
520 
521 	set_simple_ret_val(args, rc);
522 }
523 
524 static bool is_nil_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3)
525 {
526 	return !w0 && !w1 && !w2 && !w3;
527 }
528 
529 TEE_Result spmc_fill_partition_entry(uint32_t ffa_vers, void *buf, size_t blen,
530 				     size_t idx, uint16_t endpoint_id,
531 				     uint16_t execution_context,
532 				     uint32_t part_props,
533 				     const uint32_t uuid_words[4])
534 {
535 	struct ffa_partition_info_x *fpi = NULL;
536 	size_t fpi_size = sizeof(*fpi);
537 
538 	if (ffa_vers >= FFA_VERSION_1_1)
539 		fpi_size += FFA_UUID_SIZE;
540 
541 	if ((idx + 1) * fpi_size > blen)
542 		return TEE_ERROR_OUT_OF_MEMORY;
543 
544 	fpi = (void *)((vaddr_t)buf + idx * fpi_size);
545 	fpi->id = endpoint_id;
546 	/* Number of execution contexts implemented by this partition */
547 	fpi->execution_context = execution_context;
548 
549 	fpi->partition_properties = part_props;
550 
551 	/* In FF-A 1.0 only bits [2:0] are defined, let's mask others */
552 	if (ffa_vers < FFA_VERSION_1_1)
553 		fpi->partition_properties &= FFA_PART_PROP_DIRECT_REQ_RECV |
554 					     FFA_PART_PROP_DIRECT_REQ_SEND |
555 					     FFA_PART_PROP_INDIRECT_MSGS;
556 
557 	if (ffa_vers >= FFA_VERSION_1_1) {
558 		if (uuid_words)
559 			memcpy(fpi->uuid, uuid_words, FFA_UUID_SIZE);
560 		else
561 			memset(fpi->uuid, 0, FFA_UUID_SIZE);
562 	}
563 
564 	return TEE_SUCCESS;
565 }
566 
567 static TEE_Result lsp_partition_info_get(uint32_t ffa_vers, void *buf,
568 					 size_t buf_size, size_t *elem_count,
569 					 const uint32_t uuid_words[4],
570 					 bool count_only)
571 {
572 	struct spmc_lsp_desc *desc = NULL;
573 	TEE_Result res = TEE_SUCCESS;
574 	size_t c = *elem_count;
575 
576 	STAILQ_FOREACH(desc, &lsp_head, link) {
577 		/*
578 		 * LSPs (OP-TEE SPMC) without an assigned UUID are not
579 		 * proper LSPs and shouldn't be reported here.
580 		 */
581 		if (is_nil_uuid(desc->uuid_words[0], desc->uuid_words[1],
582 				desc->uuid_words[2], desc->uuid_words[3]))
583 			continue;
584 
585 		if (uuid_words && memcmp(uuid_words, desc->uuid_words,
586 					 sizeof(desc->uuid_words)))
587 			continue;
588 
589 		if (!count_only && !res)
590 			res = spmc_fill_partition_entry(ffa_vers, buf, buf_size,
591 							c, desc->sp_id,
592 							CFG_TEE_CORE_NB_CORE,
593 							desc->properties,
594 							desc->uuid_words);
595 		c++;
596 	}
597 
598 	*elem_count = c;
599 
600 	return res;
601 }
602 
603 void spmc_handle_partition_info_get(struct thread_smc_1_2_regs *args,
604 				    struct ffa_rxtx *rxtx)
605 {
606 	TEE_Result res = TEE_SUCCESS;
607 	uint32_t ret_fid = FFA_ERROR;
608 	uint32_t fpi_size = 0;
609 	uint32_t rc = 0;
610 	bool count_only = args->a5 & FFA_PARTITION_INFO_GET_COUNT_FLAG;
611 	uint32_t uuid_words[4] = { args->a1, args->a2, args->a3, args->a4, };
612 	uint32_t *uuid = uuid_words;
613 	size_t count = 0;
614 
615 	if (!count_only) {
616 		cpu_spin_lock(&rxtx->spinlock);
617 
618 		if (!rxtx->size || !rxtx->tx_is_mine) {
619 			rc = FFA_BUSY;
620 			goto out;
621 		}
622 	}
623 
624 	if (is_nil_uuid(uuid[0], uuid[1], uuid[2], uuid[3]))
625 		uuid = NULL;
626 
627 	if (lsp_partition_info_get(rxtx->ffa_vers, rxtx->tx, rxtx->size,
628 				   &count, uuid, count_only)) {
629 		ret_fid = FFA_ERROR;
630 		rc = FFA_INVALID_PARAMETERS;
631 		goto out;
632 	}
633 	if (IS_ENABLED(CFG_SECURE_PARTITION)) {
634 		res = sp_partition_info_get(rxtx->ffa_vers, rxtx->tx,
635 					    rxtx->size, uuid, &count,
636 					    count_only);
637 		if (res != TEE_SUCCESS) {
638 			ret_fid = FFA_ERROR;
639 			rc = FFA_INVALID_PARAMETERS;
640 			goto out;
641 		}
642 	}
643 
644 	rc = count;
645 	ret_fid = FFA_SUCCESS_32;
646 out:
647 	if (ret_fid == FFA_SUCCESS_32 && !count_only &&
648 	    rxtx->ffa_vers >= FFA_VERSION_1_1)
649 		fpi_size = sizeof(struct ffa_partition_info_x) + FFA_UUID_SIZE;
650 
651 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, fpi_size,
652 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
653 	if (!count_only) {
654 		rxtx->tx_is_mine = false;
655 		cpu_spin_unlock(&rxtx->spinlock);
656 	}
657 }
658 
659 static void spmc_handle_run(struct thread_smc_1_2_regs *args)
660 {
661 	uint16_t endpoint = FFA_TARGET_INFO_GET_SP_ID(args->a1);
662 	uint16_t thread_id = FFA_TARGET_INFO_GET_VCPU_ID(args->a1);
663 	uint32_t rc = FFA_INVALID_PARAMETERS;
664 
665 	/*
666 	 * OP-TEE core threads are only preemted using controlled exit so
667 	 * FFA_RUN mustn't be used to resume such threads.
668 	 *
669 	 * The OP-TEE SPMC is not preemted at all, it's an error to try to
670 	 * resume that ID.
671 	 */
672 	if (spmc_find_lsp_by_sp_id(endpoint))
673 		goto out;
674 
675 	/*
676 	 * The endpoint should be a S-EL0 SP, try to resume the SP from
677 	 * preempted into busy state.
678 	 */
679 	rc = spmc_sp_resume_from_preempted(endpoint, thread_id);
680 out:
681 	set_simple_ret_val(args, rc);
682 }
683 #endif /*CFG_CORE_SEL1_SPMC*/
684 
685 static struct notif_vm_bitmap *get_notif_vm_bitmap(struct guest_partition *prtn,
686 						   uint16_t vm_id)
687 {
688 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
689 		if (!prtn)
690 			return NULL;
691 		assert(vm_id == virt_get_guest_id(prtn));
692 		return virt_get_guest_spec_data(prtn, notif_vm_bitmap_id);
693 	}
694 	if (vm_id)
695 		return NULL;
696 	return &default_notif_vm_bitmap;
697 }
698 
699 static uint32_t spmc_enable_async_notif(uint32_t bottom_half_value,
700 					uint16_t vm_id)
701 {
702 	struct guest_partition *prtn = NULL;
703 	struct notif_vm_bitmap *nvb = NULL;
704 	uint32_t old_itr_status = 0;
705 	uint32_t res = 0;
706 
707 	if (!spmc_notif_is_ready) {
708 		/*
709 		 * This should never happen, not if normal world respects the
710 		 * exchanged capabilities.
711 		 */
712 		EMSG("Asynchronous notifications are not ready");
713 		return TEE_ERROR_NOT_IMPLEMENTED;
714 	}
715 
716 	if (bottom_half_value >= OPTEE_FFA_MAX_ASYNC_NOTIF_VALUE) {
717 		EMSG("Invalid bottom half value %"PRIu32, bottom_half_value);
718 		return TEE_ERROR_BAD_PARAMETERS;
719 	}
720 
721 	prtn = virt_get_guest(vm_id);
722 	nvb = get_notif_vm_bitmap(prtn, vm_id);
723 	if (!nvb) {
724 		res = TEE_ERROR_BAD_PARAMETERS;
725 		goto out;
726 	}
727 
728 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
729 	nvb->do_bottom_half_value = bottom_half_value;
730 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
731 
732 	notif_deliver_atomic_event(NOTIF_EVENT_STARTED, vm_id);
733 	res = TEE_SUCCESS;
734 out:
735 	virt_put_guest(prtn);
736 	return res;
737 }
738 
739 static uint32_t get_direct_resp_fid(uint32_t fid)
740 {
741 	assert(fid == FFA_MSG_SEND_DIRECT_REQ_64 ||
742 	       fid == FFA_MSG_SEND_DIRECT_REQ_32);
743 
744 	if (OPTEE_SMC_IS_64(fid))
745 		return FFA_MSG_SEND_DIRECT_RESP_64;
746 	return FFA_MSG_SEND_DIRECT_RESP_32;
747 }
748 
749 static void handle_yielding_call(struct thread_smc_1_2_regs *args)
750 {
751 	uint32_t direct_resp_fid = get_direct_resp_fid(args->a0);
752 	TEE_Result res = TEE_SUCCESS;
753 
754 	thread_check_canaries();
755 
756 #ifdef ARM64
757 	/* Saving this for an eventual RPC */
758 	thread_get_core_local()->direct_resp_fid = direct_resp_fid;
759 #endif
760 
761 	if (args->a3 == OPTEE_FFA_YIELDING_CALL_RESUME) {
762 		/* Note connection to struct thread_rpc_arg::ret */
763 		thread_resume_from_rpc(args->a7, args->a4, args->a5, args->a6,
764 				       0);
765 		res = TEE_ERROR_BAD_PARAMETERS;
766 	} else {
767 		thread_alloc_and_run(args->a1, args->a3, args->a4, args->a5,
768 				     args->a6, args->a7);
769 		res = TEE_ERROR_BUSY;
770 	}
771 	spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1),
772 		      0, res, 0, 0);
773 }
774 
775 static uint32_t handle_unregister_shm(uint32_t a4, uint32_t a5)
776 {
777 	uint64_t cookie = reg_pair_to_64(a5, a4);
778 	uint32_t res = 0;
779 
780 	res = mobj_ffa_unregister_by_cookie(cookie);
781 	switch (res) {
782 	case TEE_SUCCESS:
783 	case TEE_ERROR_ITEM_NOT_FOUND:
784 		return 0;
785 	case TEE_ERROR_BUSY:
786 		EMSG("res %#"PRIx32, res);
787 		return FFA_BUSY;
788 	default:
789 		EMSG("res %#"PRIx32, res);
790 		return FFA_INVALID_PARAMETERS;
791 	}
792 }
793 
794 static void handle_blocking_call(struct thread_smc_1_2_regs *args)
795 {
796 	uint32_t direct_resp_fid = get_direct_resp_fid(args->a0);
797 	uint32_t sec_caps = 0;
798 
799 	switch (args->a3) {
800 	case OPTEE_FFA_GET_API_VERSION:
801 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
802 			      OPTEE_FFA_VERSION_MAJOR, OPTEE_FFA_VERSION_MINOR,
803 			      0);
804 		break;
805 	case OPTEE_FFA_GET_OS_VERSION:
806 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
807 			      CFG_OPTEE_REVISION_MAJOR,
808 			      CFG_OPTEE_REVISION_MINOR,
809 			      TEE_IMPL_GIT_SHA1 >> 32);
810 		break;
811 	case OPTEE_FFA_EXCHANGE_CAPABILITIES:
812 		sec_caps = OPTEE_FFA_SEC_CAP_ARG_OFFSET;
813 		if (spmc_notif_is_ready)
814 			sec_caps |= OPTEE_FFA_SEC_CAP_ASYNC_NOTIF;
815 		if (IS_ENABLED(CFG_RPMB_ANNOUNCE_PROBE_CAP))
816 			sec_caps |= OPTEE_FFA_SEC_CAP_RPMB_PROBE;
817 		if (IS_ENABLED(CFG_CORE_DYN_PROTMEM))
818 			sec_caps |= OPTEE_FFA_SEC_CAP_PROTMEM;
819 		spmc_set_args(args, direct_resp_fid,
820 			      swap_src_dst(args->a1), 0, 0,
821 			      THREAD_RPC_MAX_NUM_PARAMS, sec_caps);
822 		break;
823 	case OPTEE_FFA_UNREGISTER_SHM:
824 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
825 			      handle_unregister_shm(args->a4, args->a5), 0, 0);
826 		break;
827 	case OPTEE_FFA_ENABLE_ASYNC_NOTIF:
828 		spmc_set_args(args, direct_resp_fid,
829 			      swap_src_dst(args->a1), 0,
830 			      spmc_enable_async_notif(args->a4,
831 						      FFA_SRC(args->a1)),
832 			      0, 0);
833 		break;
834 #ifdef CFG_CORE_DYN_PROTMEM
835 	case OPTEE_FFA_RELEASE_PROTMEM:
836 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
837 			      handle_unregister_shm(args->a4, args->a5), 0, 0);
838 		break;
839 #endif
840 	default:
841 		EMSG("Unhandled blocking service ID %#"PRIx32,
842 		     (uint32_t)args->a3);
843 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
844 			      TEE_ERROR_BAD_PARAMETERS, 0, 0);
845 	}
846 }
847 
848 static void handle_framework_direct_request(struct thread_smc_1_2_regs *args)
849 {
850 	uint32_t direct_resp_fid = get_direct_resp_fid(args->a0);
851 	uint32_t w0 = FFA_ERROR;
852 	uint32_t w1 = FFA_PARAM_MBZ;
853 	uint32_t w2 = FFA_NOT_SUPPORTED;
854 	uint32_t w3 = FFA_PARAM_MBZ;
855 
856 	switch (args->a2 & FFA_MSG_TYPE_MASK) {
857 	case FFA_MSG_SEND_VM_CREATED:
858 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
859 			uint16_t guest_id = args->a5;
860 			TEE_Result res = virt_guest_created(guest_id);
861 
862 			w0 = direct_resp_fid;
863 			w1 = swap_src_dst(args->a1);
864 			w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_CREATED;
865 			if (res == TEE_SUCCESS)
866 				w3 = FFA_OK;
867 			else if (res == TEE_ERROR_OUT_OF_MEMORY)
868 				w3 = FFA_DENIED;
869 			else
870 				w3 = FFA_INVALID_PARAMETERS;
871 		}
872 		break;
873 	case FFA_MSG_SEND_VM_DESTROYED:
874 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
875 			uint16_t guest_id = args->a5;
876 			TEE_Result res = virt_guest_destroyed(guest_id);
877 
878 			w0 = direct_resp_fid;
879 			w1 = swap_src_dst(args->a1);
880 			w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_DESTROYED;
881 			if (res == TEE_SUCCESS)
882 				w3 = FFA_OK;
883 			else
884 				w3 = FFA_INVALID_PARAMETERS;
885 		}
886 		break;
887 	case FFA_MSG_VERSION_REQ:
888 		w0 = direct_resp_fid;
889 		w1 = swap_src_dst(args->a1);
890 		w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_VERSION_RESP;
891 		w3 = spmc_exchange_version(args->a3, &my_rxtx);
892 		break;
893 	default:
894 		break;
895 	}
896 	spmc_set_args(args, w0, w1, w2, w3, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
897 }
898 
899 static void optee_lsp_handle_direct_request(struct thread_smc_1_2_regs *args)
900 {
901 	if (args->a2 & FFA_MSG_FLAG_FRAMEWORK) {
902 		handle_framework_direct_request(args);
903 		return;
904 	}
905 
906 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
907 	    virt_set_guest(get_sender_id(args->a1))) {
908 		spmc_set_args(args, get_direct_resp_fid(args->a0),
909 			      swap_src_dst(args->a1), 0,
910 			      TEE_ERROR_ITEM_NOT_FOUND, 0, 0);
911 		return;
912 	}
913 
914 	if (args->a3 & BIT32(OPTEE_FFA_YIELDING_CALL_BIT))
915 		handle_yielding_call(args);
916 	else
917 		handle_blocking_call(args);
918 
919 	/*
920 	 * Note that handle_yielding_call() typically only returns if a
921 	 * thread cannot be allocated or found. virt_unset_guest() is also
922 	 * called from thread_state_suspend() and thread_state_free().
923 	 */
924 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
925 		virt_unset_guest();
926 }
927 
928 static void __maybe_unused
929 optee_spmc_lsp_handle_direct_request(struct thread_smc_1_2_regs *args)
930 {
931 	if (args->a2 & FFA_MSG_FLAG_FRAMEWORK)
932 		handle_framework_direct_request(args);
933 	else
934 		set_simple_ret_val(args, FFA_INVALID_PARAMETERS);
935 }
936 
937 static void handle_direct_request(struct thread_smc_1_2_regs *args)
938 {
939 	struct spmc_lsp_desc *lsp = spmc_find_lsp_by_sp_id(FFA_DST(args->a1));
940 
941 	if (lsp) {
942 		lsp->direct_req(args);
943 	} else {
944 		int rc = spmc_sp_start_thread(args);
945 
946 		/*
947 		 * spmc_sp_start_thread() returns here if the SPs aren't
948 		 * supported or if all threads are busy.
949 		 */
950 		set_simple_ret_val(args, rc);
951 	}
952 }
953 
954 int spmc_read_mem_transaction(uint32_t ffa_vers, void *buf, size_t blen,
955 			      struct ffa_mem_transaction_x *trans)
956 {
957 	uint16_t mem_reg_attr = 0;
958 	uint32_t flags = 0;
959 	uint32_t count = 0;
960 	uint32_t offs = 0;
961 	uint32_t size = 0;
962 	size_t n = 0;
963 
964 	if (!IS_ALIGNED_WITH_TYPE(buf, uint64_t))
965 		return FFA_INVALID_PARAMETERS;
966 
967 	if (ffa_vers >= FFA_VERSION_1_1) {
968 		struct ffa_mem_transaction_1_1 *descr = NULL;
969 
970 		if (blen < sizeof(*descr))
971 			return FFA_INVALID_PARAMETERS;
972 
973 		descr = buf;
974 		trans->sender_id = READ_ONCE(descr->sender_id);
975 		mem_reg_attr = READ_ONCE(descr->mem_reg_attr);
976 		flags = READ_ONCE(descr->flags);
977 		trans->global_handle = READ_ONCE(descr->global_handle);
978 		trans->tag = READ_ONCE(descr->tag);
979 
980 		count = READ_ONCE(descr->mem_access_count);
981 		size = READ_ONCE(descr->mem_access_size);
982 		offs = READ_ONCE(descr->mem_access_offs);
983 	} else {
984 		struct ffa_mem_transaction_1_0 *descr = NULL;
985 
986 		if (blen < sizeof(*descr))
987 			return FFA_INVALID_PARAMETERS;
988 
989 		descr = buf;
990 		trans->sender_id = READ_ONCE(descr->sender_id);
991 		mem_reg_attr = READ_ONCE(descr->mem_reg_attr);
992 		flags = READ_ONCE(descr->flags);
993 		trans->global_handle = READ_ONCE(descr->global_handle);
994 		trans->tag = READ_ONCE(descr->tag);
995 
996 		count = READ_ONCE(descr->mem_access_count);
997 		size = sizeof(struct ffa_mem_access);
998 		offs = offsetof(struct ffa_mem_transaction_1_0,
999 				mem_access_array);
1000 	}
1001 
1002 	if (mem_reg_attr > UINT8_MAX || flags > UINT8_MAX ||
1003 	    size > UINT8_MAX || count > UINT8_MAX || offs > UINT16_MAX)
1004 		return FFA_INVALID_PARAMETERS;
1005 
1006 	/* Check that the endpoint memory access descriptor array fits */
1007 	if (MUL_OVERFLOW(size, count, &n) || ADD_OVERFLOW(offs, n, &n) ||
1008 	    n > blen)
1009 		return FFA_INVALID_PARAMETERS;
1010 
1011 	trans->mem_reg_attr = mem_reg_attr;
1012 	trans->flags = flags;
1013 	trans->mem_access_size = size;
1014 	trans->mem_access_count = count;
1015 	trans->mem_access_offs = offs;
1016 	return 0;
1017 }
1018 
1019 #if defined(CFG_CORE_SEL1_SPMC)
1020 static int get_acc_perms(vaddr_t mem_acc_base, unsigned int mem_access_size,
1021 			 unsigned int mem_access_count, uint8_t *acc_perms,
1022 			 unsigned int *region_offs)
1023 {
1024 	struct ffa_mem_access_perm *descr = NULL;
1025 	struct ffa_mem_access *mem_acc = NULL;
1026 	unsigned int n = 0;
1027 
1028 	for (n = 0; n < mem_access_count; n++) {
1029 		mem_acc = (void *)(mem_acc_base + mem_access_size * n);
1030 		descr = &mem_acc->access_perm;
1031 		if (READ_ONCE(descr->endpoint_id) == optee_core_lsp.sp_id) {
1032 			*acc_perms = READ_ONCE(descr->perm);
1033 			*region_offs = READ_ONCE(mem_acc[n].region_offs);
1034 			return 0;
1035 		}
1036 	}
1037 
1038 	return FFA_INVALID_PARAMETERS;
1039 }
1040 
1041 static int mem_op_init(bool mem_share, struct ffa_mem_transaction_x *mem_trans,
1042 		       void *buf, size_t blen, unsigned int *page_count,
1043 		       unsigned int *region_count, size_t *addr_range_offs)
1044 {
1045 	const uint8_t exp_mem_acc_perm = FFA_MEM_ACC_RW;
1046 	struct ffa_mem_region *region_descr = NULL;
1047 	unsigned int region_descr_offs = 0;
1048 	uint16_t exp_mem_reg_attr = 0;
1049 	uint8_t mem_acc_perm = 0;
1050 	size_t n = 0;
1051 
1052 	if (mem_share)
1053 		exp_mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
1054 	if (mem_trans->mem_reg_attr != exp_mem_reg_attr)
1055 		return FFA_INVALID_PARAMETERS;
1056 
1057 	/* Check that the access permissions matches what's expected */
1058 	if (get_acc_perms((vaddr_t)buf + mem_trans->mem_access_offs,
1059 			  mem_trans->mem_access_size,
1060 			  mem_trans->mem_access_count,
1061 			  &mem_acc_perm, &region_descr_offs) ||
1062 	    mem_acc_perm != exp_mem_acc_perm)
1063 		return FFA_INVALID_PARAMETERS;
1064 
1065 	/* Check that the Composite memory region descriptor fits */
1066 	if (ADD_OVERFLOW(region_descr_offs, sizeof(*region_descr), &n) ||
1067 	    n > blen)
1068 		return FFA_INVALID_PARAMETERS;
1069 
1070 	if (!IS_ALIGNED_WITH_TYPE((vaddr_t)buf + region_descr_offs,
1071 				  struct ffa_mem_region))
1072 		return FFA_INVALID_PARAMETERS;
1073 
1074 	region_descr = (struct ffa_mem_region *)((vaddr_t)buf +
1075 						 region_descr_offs);
1076 	*page_count = READ_ONCE(region_descr->total_page_count);
1077 	*region_count = READ_ONCE(region_descr->address_range_count);
1078 	*addr_range_offs = n;
1079 	return 0;
1080 }
1081 
1082 static int add_mem_op_helper(struct mem_op_state *s, void *buf, size_t flen)
1083 {
1084 	unsigned int region_count = flen / sizeof(struct ffa_address_range);
1085 	struct ffa_address_range *arange = NULL;
1086 	unsigned int n = 0;
1087 
1088 	if (region_count > s->region_count)
1089 		region_count = s->region_count;
1090 
1091 	if (!IS_ALIGNED_WITH_TYPE(buf, struct ffa_address_range))
1092 		return FFA_INVALID_PARAMETERS;
1093 	arange = buf;
1094 
1095 	for (n = 0; n < region_count; n++) {
1096 		unsigned int page_count = READ_ONCE(arange[n].page_count);
1097 		uint64_t addr = READ_ONCE(arange[n].address);
1098 
1099 		if (mobj_ffa_add_pages_at(s->mf, &s->current_page_idx,
1100 					  addr, page_count))
1101 			return FFA_INVALID_PARAMETERS;
1102 	}
1103 
1104 	s->region_count -= region_count;
1105 	if (s->region_count)
1106 		return region_count * sizeof(*arange);
1107 
1108 	if (s->current_page_idx != s->page_count)
1109 		return FFA_INVALID_PARAMETERS;
1110 
1111 	return 0;
1112 }
1113 
1114 static int add_mem_op_frag(struct mem_frag_state *s, void *buf, size_t flen)
1115 {
1116 	int rc = 0;
1117 
1118 	rc = add_mem_op_helper(&s->op, buf, flen);
1119 	if (rc >= 0) {
1120 		if (!ADD_OVERFLOW(s->frag_offset, rc, &s->frag_offset)) {
1121 			/* We're not at the end of the descriptor yet */
1122 			if (s->op.region_count)
1123 				return s->frag_offset;
1124 
1125 			/* We're done */
1126 			rc = 0;
1127 		} else {
1128 			rc = FFA_INVALID_PARAMETERS;
1129 		}
1130 	}
1131 
1132 	SLIST_REMOVE(&frag_state_head, s, mem_frag_state, link);
1133 	if (rc < 0) {
1134 		mobj_ffa_sel1_spmc_delete(s->op.mf);
1135 	} else {
1136 		if (mobj_ffa_push_to_inactive(s->op.mf)) {
1137 			rc = FFA_INVALID_PARAMETERS;
1138 			mobj_ffa_sel1_spmc_delete(s->op.mf);
1139 		}
1140 	}
1141 	free(s);
1142 
1143 	return rc;
1144 }
1145 
1146 static bool is_sp_op(struct ffa_mem_transaction_x *mem_trans, void *buf)
1147 {
1148 	struct ffa_mem_access_perm *perm = NULL;
1149 	struct ffa_mem_access *mem_acc = NULL;
1150 
1151 	if (!IS_ENABLED(CFG_SECURE_PARTITION))
1152 		return false;
1153 
1154 	if (mem_trans->mem_access_count < 1)
1155 		return false;
1156 
1157 	mem_acc = (void *)((vaddr_t)buf + mem_trans->mem_access_offs);
1158 	perm = &mem_acc->access_perm;
1159 
1160 	/*
1161 	 * perm->endpoint_id is read here only to check if the endpoint is
1162 	 * OP-TEE. We do read it later on again, but there are some additional
1163 	 * checks there to make sure that the data is correct.
1164 	 */
1165 	return READ_ONCE(perm->endpoint_id) != optee_core_lsp.sp_id;
1166 }
1167 
1168 static int add_mem_op(bool mem_share, struct ffa_mem_transaction_x *mem_trans,
1169 		      tee_mm_entry_t *mm, void *buf, size_t blen, size_t flen,
1170 		      uint64_t *global_handle)
1171 {
1172 	int rc = 0;
1173 	struct mem_op_state op = { .mem_share = mem_share, };
1174 	size_t addr_range_offs = 0;
1175 	uint64_t cookie = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID;
1176 	enum mobj_use_case use_case = MOBJ_USE_CASE_NS_SHM;
1177 	size_t n = 0;
1178 
1179 	rc = mem_op_init(mem_share, mem_trans, buf, flen, &op.page_count,
1180 			 &op.region_count, &addr_range_offs);
1181 	if (rc)
1182 		return rc;
1183 
1184 	if (!op.page_count || !op.region_count)
1185 		return FFA_INVALID_PARAMETERS;
1186 
1187 	if (MUL_OVERFLOW(op.region_count,
1188 			 sizeof(struct ffa_address_range), &n) ||
1189 	    ADD_OVERFLOW(n, addr_range_offs, &n) || n > blen)
1190 		return FFA_INVALID_PARAMETERS;
1191 
1192 	if (mem_trans->global_handle)
1193 		cookie = mem_trans->global_handle;
1194 	if (!mem_share)
1195 		use_case = mem_trans->tag;
1196 	op.mf = mobj_ffa_sel1_spmc_new(cookie, op.page_count, use_case);
1197 	if (!op.mf)
1198 		return FFA_NO_MEMORY;
1199 
1200 	if (flen != blen) {
1201 		struct mem_frag_state *s = calloc(1, sizeof(*s));
1202 
1203 		if (!s) {
1204 			rc = FFA_NO_MEMORY;
1205 			goto err;
1206 		}
1207 		s->op = op;
1208 		s->mm = mm;
1209 		s->frag_offset = addr_range_offs;
1210 
1211 		SLIST_INSERT_HEAD(&frag_state_head, s, link);
1212 		rc = add_mem_op_frag(s, (char *)buf + addr_range_offs,
1213 				     flen - addr_range_offs);
1214 
1215 		if (rc >= 0)
1216 			*global_handle = mobj_ffa_get_cookie(op.mf);
1217 
1218 		return rc;
1219 	}
1220 
1221 	rc = add_mem_op_helper(&op, (char *)buf + addr_range_offs,
1222 			       flen - addr_range_offs);
1223 	if (rc) {
1224 		/*
1225 		 * Number of consumed bytes may be returned instead of 0 for
1226 		 * done.
1227 		 */
1228 		rc = FFA_INVALID_PARAMETERS;
1229 		goto err;
1230 	}
1231 
1232 	if (mobj_ffa_push_to_inactive(op.mf)) {
1233 		rc = FFA_INVALID_PARAMETERS;
1234 		goto err;
1235 	}
1236 	*global_handle = mobj_ffa_get_cookie(op.mf);
1237 
1238 	return 0;
1239 err:
1240 	mobj_ffa_sel1_spmc_delete(op.mf);
1241 	return rc;
1242 }
1243 
1244 static int handle_mem_op_tmem(bool share_mem, paddr_t pbuf, size_t blen,
1245 			      size_t flen, unsigned int page_count,
1246 			      uint64_t *global_handle, struct ffa_rxtx *rxtx)
1247 {
1248 	struct ffa_mem_transaction_x mem_trans = { };
1249 	int rc = 0;
1250 	size_t len = 0;
1251 	void *buf = NULL;
1252 	tee_mm_entry_t *mm = NULL;
1253 	vaddr_t offs = pbuf & SMALL_PAGE_MASK;
1254 
1255 	if (MUL_OVERFLOW(page_count, SMALL_PAGE_SIZE, &len))
1256 		return FFA_INVALID_PARAMETERS;
1257 	if (!core_pbuf_is(CORE_MEM_NON_SEC, pbuf, len))
1258 		return FFA_INVALID_PARAMETERS;
1259 
1260 	/*
1261 	 * Check that the length reported in flen is covered by len even
1262 	 * if the offset is taken into account.
1263 	 */
1264 	if (len < flen || len - offs < flen)
1265 		return FFA_INVALID_PARAMETERS;
1266 
1267 	mm = tee_mm_alloc(&core_virt_shm_pool, len);
1268 	if (!mm)
1269 		return FFA_NO_MEMORY;
1270 
1271 	if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pbuf,
1272 					  page_count, MEM_AREA_NSEC_SHM)) {
1273 		rc = FFA_INVALID_PARAMETERS;
1274 		goto out;
1275 	}
1276 	buf = (void *)(tee_mm_get_smem(mm) + offs);
1277 
1278 	cpu_spin_lock(&rxtx->spinlock);
1279 	rc = spmc_read_mem_transaction(rxtx->ffa_vers, buf, flen, &mem_trans);
1280 	if (rc)
1281 		goto unlock;
1282 
1283 	if (is_sp_op(&mem_trans, buf)) {
1284 		if (!share_mem) {
1285 			rc = FFA_DENIED;
1286 			goto unlock;
1287 		}
1288 		rc = spmc_sp_add_share(&mem_trans, buf, blen, flen,
1289 				       global_handle, NULL);
1290 		goto unlock;
1291 	}
1292 
1293 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
1294 	    virt_set_guest(mem_trans.sender_id)) {
1295 		rc = FFA_DENIED;
1296 		goto unlock;
1297 	}
1298 
1299 	rc = add_mem_op(share_mem, &mem_trans, mm, buf, blen, flen,
1300 			global_handle);
1301 
1302 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1303 		virt_unset_guest();
1304 
1305 unlock:
1306 	cpu_spin_unlock(&rxtx->spinlock);
1307 	if (rc > 0)
1308 		return rc;
1309 
1310 	core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count);
1311 out:
1312 	tee_mm_free(mm);
1313 	return rc;
1314 }
1315 
1316 static int handle_mem_op_rxbuf(bool share_mem, size_t blen, size_t flen,
1317 			       uint64_t *global_handle, struct ffa_rxtx *rxtx)
1318 {
1319 	struct ffa_mem_transaction_x mem_trans = { };
1320 	int rc = FFA_DENIED;
1321 
1322 	cpu_spin_lock(&rxtx->spinlock);
1323 
1324 	if (!rxtx->rx || flen > rxtx->size)
1325 		goto out;
1326 
1327 	rc = spmc_read_mem_transaction(rxtx->ffa_vers, rxtx->rx, flen,
1328 				       &mem_trans);
1329 	if (rc)
1330 		goto out;
1331 	if (is_sp_op(&mem_trans, rxtx->rx)) {
1332 		if (!share_mem) {
1333 			rc = FFA_DENIED;
1334 			goto out;
1335 		}
1336 		rc = spmc_sp_add_share(&mem_trans, rxtx, blen, flen,
1337 				       global_handle, NULL);
1338 		goto out;
1339 	}
1340 
1341 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
1342 	    virt_set_guest(mem_trans.sender_id))
1343 		goto out;
1344 
1345 	rc = add_mem_op(share_mem, &mem_trans, NULL, rxtx->rx, blen, flen,
1346 			global_handle);
1347 
1348 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1349 		virt_unset_guest();
1350 
1351 out:
1352 	cpu_spin_unlock(&rxtx->spinlock);
1353 
1354 	return rc;
1355 }
1356 
1357 static void handle_mem_op(struct thread_smc_1_2_regs *args,
1358 			  struct ffa_rxtx *rxtx)
1359 {
1360 	uint32_t tot_len = args->a1;
1361 	uint32_t frag_len = args->a2;
1362 	uint64_t addr = args->a3;
1363 	uint32_t page_count = args->a4;
1364 	uint32_t ret_w1 = 0;
1365 	uint32_t ret_w2 = FFA_INVALID_PARAMETERS;
1366 	uint32_t ret_w3 = 0;
1367 	uint32_t ret_fid = FFA_ERROR;
1368 	uint64_t global_handle = 0;
1369 	bool share_mem = false;
1370 	int rc = 0;
1371 
1372 	/* Check that the MBZs are indeed 0 */
1373 	if (args->a5 || args->a6 || args->a7)
1374 		goto out;
1375 
1376 	/* Check that fragment length doesn't exceed total length */
1377 	if (frag_len > tot_len)
1378 		goto out;
1379 
1380 	/* Check for 32-bit calling convention */
1381 	if (!OPTEE_SMC_IS_64(args->a0))
1382 		addr &= UINT32_MAX;
1383 
1384 	if (args->a0 == FFA_MEM_SHARE_32 || args->a0 == FFA_MEM_SHARE_64)
1385 		share_mem = true;
1386 	else
1387 		share_mem = false;
1388 
1389 	if (!addr) {
1390 		/*
1391 		 * The memory transaction descriptor is passed via our rx
1392 		 * buffer.
1393 		 */
1394 		if (page_count)
1395 			goto out;
1396 		rc = handle_mem_op_rxbuf(share_mem, tot_len, frag_len,
1397 					 &global_handle, rxtx);
1398 	} else {
1399 		rc = handle_mem_op_tmem(share_mem, addr, tot_len, frag_len,
1400 					page_count, &global_handle, rxtx);
1401 	}
1402 	if (rc < 0) {
1403 		ret_w2 = rc;
1404 	} else if (rc > 0) {
1405 		ret_fid = FFA_MEM_FRAG_RX;
1406 		ret_w3 = rc;
1407 		reg_pair_from_64(global_handle, &ret_w2, &ret_w1);
1408 	} else {
1409 		ret_fid = FFA_SUCCESS_32;
1410 		reg_pair_from_64(global_handle, &ret_w3, &ret_w2);
1411 	}
1412 out:
1413 	spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0);
1414 }
1415 
1416 static struct mem_frag_state *get_frag_state(uint64_t global_handle)
1417 {
1418 	struct mem_frag_state *s = NULL;
1419 
1420 	SLIST_FOREACH(s, &frag_state_head, link)
1421 		if (mobj_ffa_get_cookie(s->op.mf) == global_handle)
1422 			return s;
1423 
1424 	return NULL;
1425 }
1426 
1427 static void handle_mem_frag_tx(struct thread_smc_1_2_regs *args,
1428 			       struct ffa_rxtx *rxtx)
1429 {
1430 	uint64_t global_handle = reg_pair_to_64(args->a2, args->a1);
1431 	size_t flen = args->a3;
1432 	uint32_t endpoint_id = args->a4;
1433 	struct mem_frag_state *s = NULL;
1434 	tee_mm_entry_t *mm = NULL;
1435 	unsigned int page_count = 0;
1436 	void *buf = NULL;
1437 	uint32_t ret_w1 = 0;
1438 	uint32_t ret_w2 = 0;
1439 	uint32_t ret_w3 = 0;
1440 	uint32_t ret_fid = 0;
1441 	int rc = 0;
1442 
1443 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1444 		uint16_t guest_id = endpoint_id >> 16;
1445 
1446 		if (!guest_id || virt_set_guest(guest_id)) {
1447 			rc = FFA_INVALID_PARAMETERS;
1448 			goto out_set_rc;
1449 		}
1450 	}
1451 
1452 	/*
1453 	 * Currently we're only doing this for fragmented FFA_MEM_SHARE_*
1454 	 * requests.
1455 	 */
1456 
1457 	cpu_spin_lock(&rxtx->spinlock);
1458 
1459 	s = get_frag_state(global_handle);
1460 	if (!s) {
1461 		rc = FFA_INVALID_PARAMETERS;
1462 		goto out;
1463 	}
1464 
1465 	mm = s->mm;
1466 	if (mm) {
1467 		if (flen > tee_mm_get_bytes(mm)) {
1468 			rc = FFA_INVALID_PARAMETERS;
1469 			goto out;
1470 		}
1471 		page_count = s->op.page_count;
1472 		buf = (void *)tee_mm_get_smem(mm);
1473 	} else {
1474 		if (flen > rxtx->size) {
1475 			rc = FFA_INVALID_PARAMETERS;
1476 			goto out;
1477 		}
1478 		buf = rxtx->rx;
1479 	}
1480 
1481 	rc = add_mem_op_frag(s, buf, flen);
1482 out:
1483 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1484 		virt_unset_guest();
1485 
1486 	cpu_spin_unlock(&rxtx->spinlock);
1487 
1488 	if (rc <= 0 && mm) {
1489 		core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count);
1490 		tee_mm_free(mm);
1491 	}
1492 
1493 out_set_rc:
1494 	if (rc < 0) {
1495 		ret_fid = FFA_ERROR;
1496 		ret_w2 = rc;
1497 	} else if (rc > 0) {
1498 		ret_fid = FFA_MEM_FRAG_RX;
1499 		ret_w3 = rc;
1500 		reg_pair_from_64(global_handle, &ret_w2, &ret_w1);
1501 	} else {
1502 		ret_fid = FFA_SUCCESS_32;
1503 		reg_pair_from_64(global_handle, &ret_w3, &ret_w2);
1504 	}
1505 
1506 	spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0);
1507 }
1508 
1509 static void handle_mem_reclaim(struct thread_smc_1_2_regs *args)
1510 {
1511 	int rc = FFA_INVALID_PARAMETERS;
1512 	uint64_t cookie = 0;
1513 
1514 	if (args->a3 || args->a4 || args->a5 || args->a6 || args->a7)
1515 		goto out;
1516 
1517 	cookie = reg_pair_to_64(args->a2, args->a1);
1518 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1519 		uint16_t guest_id = 0;
1520 
1521 		if (cookie & FFA_MEMORY_HANDLE_HYPERVISOR_BIT) {
1522 			guest_id = virt_find_guest_by_cookie(cookie);
1523 		} else {
1524 			guest_id = (cookie >> FFA_MEMORY_HANDLE_PRTN_SHIFT) &
1525 				   FFA_MEMORY_HANDLE_PRTN_MASK;
1526 		}
1527 		if (!guest_id)
1528 			goto out;
1529 		if (virt_set_guest(guest_id)) {
1530 			if (!virt_reclaim_cookie_from_destroyed_guest(guest_id,
1531 								      cookie))
1532 				rc = FFA_OK;
1533 			goto out;
1534 		}
1535 	}
1536 
1537 	switch (mobj_ffa_sel1_spmc_reclaim(cookie)) {
1538 	case TEE_SUCCESS:
1539 		rc = FFA_OK;
1540 		break;
1541 	case TEE_ERROR_ITEM_NOT_FOUND:
1542 		DMSG("cookie %#"PRIx64" not found", cookie);
1543 		rc = FFA_INVALID_PARAMETERS;
1544 		break;
1545 	default:
1546 		DMSG("cookie %#"PRIx64" busy", cookie);
1547 		rc = FFA_DENIED;
1548 		break;
1549 	}
1550 
1551 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1552 		virt_unset_guest();
1553 
1554 out:
1555 	set_simple_ret_val(args, rc);
1556 }
1557 
1558 static void handle_notification_bitmap_create(struct thread_smc_1_2_regs *args)
1559 {
1560 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1561 	uint32_t ret_fid = FFA_ERROR;
1562 	uint32_t old_itr_status = 0;
1563 
1564 	if (!FFA_TARGET_INFO_GET_SP_ID(args->a1) && !args->a3 && !args->a4 &&
1565 	    !args->a5 && !args->a6 && !args->a7) {
1566 		struct guest_partition *prtn = NULL;
1567 		struct notif_vm_bitmap *nvb = NULL;
1568 		uint16_t vm_id = args->a1;
1569 
1570 		prtn = virt_get_guest(vm_id);
1571 		nvb = get_notif_vm_bitmap(prtn, vm_id);
1572 		if (!nvb) {
1573 			ret_val = FFA_INVALID_PARAMETERS;
1574 			goto out_virt_put;
1575 		}
1576 
1577 		old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1578 
1579 		if (nvb->initialized) {
1580 			ret_val = FFA_DENIED;
1581 			goto out_unlock;
1582 		}
1583 
1584 		nvb->initialized = true;
1585 		nvb->do_bottom_half_value = -1;
1586 		ret_val = FFA_OK;
1587 		ret_fid = FFA_SUCCESS_32;
1588 out_unlock:
1589 		cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1590 out_virt_put:
1591 		virt_put_guest(prtn);
1592 	}
1593 
1594 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1595 }
1596 
1597 static void handle_notification_bitmap_destroy(struct thread_smc_1_2_regs *args)
1598 {
1599 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1600 	uint32_t ret_fid = FFA_ERROR;
1601 	uint32_t old_itr_status = 0;
1602 
1603 	if (!FFA_TARGET_INFO_GET_SP_ID(args->a1) && !args->a3 && !args->a4 &&
1604 	    !args->a5 && !args->a6 && !args->a7) {
1605 		struct guest_partition *prtn = NULL;
1606 		struct notif_vm_bitmap *nvb = NULL;
1607 		uint16_t vm_id = args->a1;
1608 
1609 		prtn = virt_get_guest(vm_id);
1610 		nvb = get_notif_vm_bitmap(prtn, vm_id);
1611 		if (!nvb) {
1612 			ret_val = FFA_INVALID_PARAMETERS;
1613 			goto out_virt_put;
1614 		}
1615 
1616 		old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1617 
1618 		if (nvb->pending || nvb->bound) {
1619 			ret_val = FFA_DENIED;
1620 			goto out_unlock;
1621 		}
1622 
1623 		memset(nvb, 0, sizeof(*nvb));
1624 		ret_val = FFA_OK;
1625 		ret_fid = FFA_SUCCESS_32;
1626 out_unlock:
1627 		cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1628 out_virt_put:
1629 		virt_put_guest(prtn);
1630 	}
1631 
1632 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1633 }
1634 
1635 static void handle_notification_bind(struct thread_smc_1_2_regs *args)
1636 {
1637 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1638 	struct guest_partition *prtn = NULL;
1639 	struct notif_vm_bitmap *nvb = NULL;
1640 	uint32_t ret_fid = FFA_ERROR;
1641 	uint32_t old_itr_status = 0;
1642 	uint64_t bitmap = 0;
1643 	uint16_t vm_id = 0;
1644 
1645 	if (args->a5 || args->a6 || args->a7)
1646 		goto out;
1647 	if (args->a2) {
1648 		/* We only deal with global notifications */
1649 		ret_val = FFA_DENIED;
1650 		goto out;
1651 	}
1652 
1653 	/* The destination of the eventual notification */
1654 	vm_id = FFA_DST(args->a1);
1655 	bitmap = reg_pair_to_64(args->a4, args->a3);
1656 
1657 	prtn = virt_get_guest(vm_id);
1658 	nvb = get_notif_vm_bitmap(prtn, vm_id);
1659 	if (!nvb) {
1660 		ret_val = FFA_INVALID_PARAMETERS;
1661 		goto out_virt_put;
1662 	}
1663 
1664 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1665 
1666 	if ((bitmap & nvb->bound)) {
1667 		ret_val = FFA_DENIED;
1668 	} else {
1669 		nvb->bound |= bitmap;
1670 		ret_val = FFA_OK;
1671 		ret_fid = FFA_SUCCESS_32;
1672 	}
1673 
1674 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1675 out_virt_put:
1676 	virt_put_guest(prtn);
1677 out:
1678 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1679 }
1680 
1681 static void handle_notification_unbind(struct thread_smc_1_2_regs *args)
1682 {
1683 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1684 	struct guest_partition *prtn = NULL;
1685 	struct notif_vm_bitmap *nvb = NULL;
1686 	uint32_t ret_fid = FFA_ERROR;
1687 	uint32_t old_itr_status = 0;
1688 	uint64_t bitmap = 0;
1689 	uint16_t vm_id = 0;
1690 
1691 	if (args->a2 || args->a5 || args->a6 || args->a7)
1692 		goto out;
1693 
1694 	/* The destination of the eventual notification */
1695 	vm_id = FFA_DST(args->a1);
1696 	bitmap = reg_pair_to_64(args->a4, args->a3);
1697 
1698 	prtn = virt_get_guest(vm_id);
1699 	nvb = get_notif_vm_bitmap(prtn, vm_id);
1700 	if (!nvb) {
1701 		ret_val = FFA_INVALID_PARAMETERS;
1702 		goto out_virt_put;
1703 	}
1704 
1705 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1706 
1707 	if (bitmap & nvb->pending) {
1708 		ret_val = FFA_DENIED;
1709 	} else {
1710 		nvb->bound &= ~bitmap;
1711 		ret_val = FFA_OK;
1712 		ret_fid = FFA_SUCCESS_32;
1713 	}
1714 
1715 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1716 out_virt_put:
1717 	virt_put_guest(prtn);
1718 out:
1719 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1720 }
1721 
1722 static void handle_notification_get(struct thread_smc_1_2_regs *args)
1723 {
1724 	uint32_t w2 = FFA_INVALID_PARAMETERS;
1725 	struct guest_partition *prtn = NULL;
1726 	struct notif_vm_bitmap *nvb = NULL;
1727 	uint32_t ret_fid = FFA_ERROR;
1728 	uint32_t old_itr_status = 0;
1729 	uint16_t vm_id = 0;
1730 	uint32_t w3 = 0;
1731 
1732 	if (args->a5 || args->a6 || args->a7)
1733 		goto out;
1734 	if (!(args->a2 & 0x1)) {
1735 		ret_fid = FFA_SUCCESS_32;
1736 		w2 = 0;
1737 		goto out;
1738 	}
1739 	vm_id = FFA_DST(args->a1);
1740 
1741 	prtn = virt_get_guest(vm_id);
1742 	nvb = get_notif_vm_bitmap(prtn, vm_id);
1743 	if (!nvb)
1744 		goto out_virt_put;
1745 
1746 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1747 
1748 	reg_pair_from_64(nvb->pending, &w3, &w2);
1749 	nvb->pending = 0;
1750 	ret_fid = FFA_SUCCESS_32;
1751 
1752 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1753 out_virt_put:
1754 	virt_put_guest(prtn);
1755 out:
1756 	spmc_set_args(args, ret_fid, 0, w2, w3, 0, 0);
1757 }
1758 
1759 struct notif_info_get_state {
1760 	struct thread_smc_1_2_regs *args;
1761 	unsigned int ids_per_reg;
1762 	unsigned int ids_count;
1763 	unsigned int id_pos;
1764 	unsigned int count;
1765 	unsigned int max_list_count;
1766 	unsigned int list_count;
1767 };
1768 
1769 static bool add_id_in_regs(struct notif_info_get_state *state,
1770 			   uint16_t id)
1771 {
1772 	unsigned int reg_idx = state->id_pos / state->ids_per_reg + 3;
1773 	unsigned int reg_shift = (state->id_pos % state->ids_per_reg) * 16;
1774 
1775 	if (reg_idx > 7)
1776 		return false;
1777 
1778 	state->args->a[reg_idx] &= ~SHIFT_U64(0xffff, reg_shift);
1779 	state->args->a[reg_idx] |= (unsigned long)id << reg_shift;
1780 
1781 	state->id_pos++;
1782 	state->count++;
1783 	return true;
1784 }
1785 
1786 static bool add_id_count(struct notif_info_get_state *state)
1787 {
1788 	assert(state->list_count < state->max_list_count &&
1789 	       state->count >= 1 && state->count <= 4);
1790 
1791 	state->ids_count |= (state->count - 1) << (state->list_count * 2 + 12);
1792 	state->list_count++;
1793 	state->count = 0;
1794 
1795 	return state->list_count < state->max_list_count;
1796 }
1797 
1798 static bool add_nvb_to_state(struct notif_info_get_state *state,
1799 			     uint16_t guest_id, struct notif_vm_bitmap *nvb)
1800 {
1801 	if (!nvb->pending)
1802 		return true;
1803 	/*
1804 	 * Add only the guest_id, meaning a global notification for this
1805 	 * guest.
1806 	 *
1807 	 * If notifications for one or more specific vCPUs we'd add those
1808 	 * before calling add_id_count(), but that's not supported.
1809 	 */
1810 	return add_id_in_regs(state, guest_id) && add_id_count(state);
1811 }
1812 
1813 static void handle_notification_info_get(struct thread_smc_1_2_regs *args)
1814 {
1815 	struct notif_info_get_state state = { .args = args };
1816 	uint32_t ffa_res = FFA_INVALID_PARAMETERS;
1817 	struct guest_partition *prtn = NULL;
1818 	struct notif_vm_bitmap *nvb = NULL;
1819 	uint32_t more_pending_flag = 0;
1820 	uint32_t itr_state = 0;
1821 	uint16_t guest_id = 0;
1822 
1823 	if (args->a1 || args->a2 || args->a3 || args->a4 || args->a5 ||
1824 	    args->a6 || args->a7)
1825 		goto err;
1826 
1827 	if (OPTEE_SMC_IS_64(args->a0)) {
1828 		spmc_set_args(args, FFA_SUCCESS_64, 0, 0, 0, 0, 0);
1829 		state.ids_per_reg = 4;
1830 		state.max_list_count = 31;
1831 	} else {
1832 		spmc_set_args(args, FFA_SUCCESS_32, 0, 0, 0, 0, 0);
1833 		state.ids_per_reg = 2;
1834 		state.max_list_count = 15;
1835 	}
1836 
1837 	while (true) {
1838 		/*
1839 		 * With NS-Virtualization we need to go through all
1840 		 * partitions to collect the notification bitmaps, without
1841 		 * we just check the only notification bitmap we have.
1842 		 */
1843 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1844 			prtn = virt_next_guest(prtn);
1845 			if (!prtn)
1846 				break;
1847 			guest_id = virt_get_guest_id(prtn);
1848 		}
1849 		nvb = get_notif_vm_bitmap(prtn, guest_id);
1850 
1851 		itr_state = cpu_spin_lock_xsave(&spmc_notif_lock);
1852 		if (!add_nvb_to_state(&state, guest_id, nvb))
1853 			more_pending_flag = BIT(0);
1854 		cpu_spin_unlock_xrestore(&spmc_notif_lock, itr_state);
1855 
1856 		if (!IS_ENABLED(CFG_NS_VIRTUALIZATION) || more_pending_flag)
1857 			break;
1858 	}
1859 	virt_put_guest(prtn);
1860 
1861 	if (!state.id_pos) {
1862 		ffa_res = FFA_NO_DATA;
1863 		goto err;
1864 	}
1865 	args->a2 = (state.list_count << FFA_NOTIF_INFO_GET_ID_COUNT_SHIFT) |
1866 		   (state.ids_count << FFA_NOTIF_INFO_GET_ID_LIST_SHIFT) |
1867 		   more_pending_flag;
1868 	return;
1869 err:
1870 	spmc_set_args(args, FFA_ERROR, 0, ffa_res, 0, 0, 0);
1871 }
1872 
1873 void thread_spmc_set_async_notif_intid(int intid)
1874 {
1875 	assert(interrupt_can_raise_sgi(interrupt_get_main_chip()));
1876 	notif_intid = intid;
1877 	spmc_notif_is_ready = true;
1878 	DMSG("Asynchronous notifications are ready");
1879 }
1880 
1881 void notif_send_async(uint32_t value, uint16_t guest_id)
1882 {
1883 	struct guest_partition *prtn = NULL;
1884 	struct notif_vm_bitmap *nvb = NULL;
1885 	uint32_t old_itr_status = 0;
1886 
1887 	prtn = virt_get_guest(guest_id);
1888 	nvb = get_notif_vm_bitmap(prtn, guest_id);
1889 
1890 	if (nvb) {
1891 		old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1892 		assert(value == NOTIF_VALUE_DO_BOTTOM_HALF &&
1893 		       spmc_notif_is_ready && nvb->do_bottom_half_value >= 0 &&
1894 		       notif_intid >= 0);
1895 		nvb->pending |= BIT64(nvb->do_bottom_half_value);
1896 		interrupt_raise_sgi(interrupt_get_main_chip(), notif_intid,
1897 				    ITR_CPU_MASK_TO_THIS_CPU);
1898 		cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1899 	}
1900 
1901 	virt_put_guest(prtn);
1902 }
1903 #else
1904 void notif_send_async(uint32_t value, uint16_t guest_id)
1905 {
1906 	struct guest_partition *prtn = NULL;
1907 	struct notif_vm_bitmap *nvb = NULL;
1908 	/* global notification, delay notification interrupt */
1909 	uint32_t flags = BIT32(1);
1910 	int res = 0;
1911 
1912 	prtn = virt_get_guest(guest_id);
1913 	nvb = get_notif_vm_bitmap(prtn, guest_id);
1914 
1915 	if (nvb) {
1916 		assert(value == NOTIF_VALUE_DO_BOTTOM_HALF &&
1917 		       spmc_notif_is_ready && nvb->do_bottom_half_value >= 0);
1918 		res = ffa_set_notification(guest_id, optee_core_lsp.sp_id,
1919 					   flags,
1920 					   BIT64(nvb->do_bottom_half_value));
1921 		if (res) {
1922 			EMSG("notification set failed with error %d", res);
1923 			panic();
1924 		}
1925 	}
1926 
1927 	virt_put_guest(prtn);
1928 }
1929 #endif
1930 
1931 /* Only called from assembly */
1932 void thread_spmc_msg_recv(struct thread_smc_1_2_regs *args);
1933 void thread_spmc_msg_recv(struct thread_smc_1_2_regs *args)
1934 {
1935 	assert((thread_get_exceptions() & THREAD_EXCP_ALL) == THREAD_EXCP_ALL);
1936 	switch (args->a0) {
1937 #if defined(CFG_CORE_SEL1_SPMC)
1938 	case FFA_FEATURES:
1939 		handle_features(args);
1940 		break;
1941 	case FFA_SPM_ID_GET:
1942 		spmc_handle_spm_id_get(args);
1943 		break;
1944 #ifdef ARM64
1945 	case FFA_RXTX_MAP_64:
1946 #endif
1947 	case FFA_RXTX_MAP_32:
1948 		spmc_handle_rxtx_map(args, &my_rxtx);
1949 		break;
1950 	case FFA_RXTX_UNMAP:
1951 		spmc_handle_rxtx_unmap(args, &my_rxtx);
1952 		break;
1953 	case FFA_RX_RELEASE:
1954 		spmc_handle_rx_release(args, &my_rxtx);
1955 		break;
1956 	case FFA_PARTITION_INFO_GET:
1957 		spmc_handle_partition_info_get(args, &my_rxtx);
1958 		break;
1959 	case FFA_RUN:
1960 		spmc_handle_run(args);
1961 		break;
1962 #endif /*CFG_CORE_SEL1_SPMC*/
1963 	case FFA_INTERRUPT:
1964 		if (IS_ENABLED(CFG_CORE_SEL1_SPMC))
1965 			spmc_set_args(args, FFA_NORMAL_WORLD_RESUME, 0, 0, 0,
1966 				      0, 0);
1967 		else
1968 			spmc_set_args(args, FFA_MSG_WAIT, 0, 0, 0, 0, 0);
1969 		break;
1970 #ifdef ARM64
1971 	case FFA_MSG_SEND_DIRECT_REQ_64:
1972 #endif
1973 	case FFA_MSG_SEND_DIRECT_REQ_32:
1974 		handle_direct_request(args);
1975 		break;
1976 #if defined(CFG_CORE_SEL1_SPMC)
1977 #ifdef ARM64
1978 	case FFA_MEM_SHARE_64:
1979 #endif
1980 	case FFA_MEM_SHARE_32:
1981 #ifdef ARM64
1982 	case FFA_MEM_LEND_64:
1983 #endif
1984 	case FFA_MEM_LEND_32:
1985 		handle_mem_op(args, &my_rxtx);
1986 		break;
1987 	case FFA_MEM_RECLAIM:
1988 		if (!IS_ENABLED(CFG_SECURE_PARTITION) ||
1989 		    !ffa_mem_reclaim(args, NULL))
1990 			handle_mem_reclaim(args);
1991 		break;
1992 	case FFA_MEM_FRAG_TX:
1993 		handle_mem_frag_tx(args, &my_rxtx);
1994 		break;
1995 	case FFA_NOTIFICATION_BITMAP_CREATE:
1996 		handle_notification_bitmap_create(args);
1997 		break;
1998 	case FFA_NOTIFICATION_BITMAP_DESTROY:
1999 		handle_notification_bitmap_destroy(args);
2000 		break;
2001 	case FFA_NOTIFICATION_BIND:
2002 		handle_notification_bind(args);
2003 		break;
2004 	case FFA_NOTIFICATION_UNBIND:
2005 		handle_notification_unbind(args);
2006 		break;
2007 	case FFA_NOTIFICATION_GET:
2008 		handle_notification_get(args);
2009 		break;
2010 #ifdef ARM64
2011 	case FFA_NOTIFICATION_INFO_GET_64:
2012 #endif
2013 	case FFA_NOTIFICATION_INFO_GET_32:
2014 		handle_notification_info_get(args);
2015 		break;
2016 #endif /*CFG_CORE_SEL1_SPMC*/
2017 	case FFA_ERROR:
2018 		EMSG("Cannot handle FFA_ERROR(%d)", (int)args->a2);
2019 		if (!IS_ENABLED(CFG_CORE_SEL1_SPMC)) {
2020 			/*
2021 			 * The SPMC will return an FFA_ERROR back so better
2022 			 * panic() now than flooding the log.
2023 			 */
2024 			panic("FFA_ERROR from SPMC is fatal");
2025 		}
2026 		spmc_set_args(args, FFA_ERROR, FFA_PARAM_MBZ, FFA_NOT_SUPPORTED,
2027 			      FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
2028 		break;
2029 	default:
2030 		EMSG("Unhandled FFA function ID %#"PRIx32, (uint32_t)args->a0);
2031 		set_simple_ret_val(args, FFA_NOT_SUPPORTED);
2032 	}
2033 }
2034 
2035 static TEE_Result yielding_call_with_arg(uint64_t cookie, uint32_t offset)
2036 {
2037 	size_t sz_rpc = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS);
2038 	struct thread_ctx *thr = threads + thread_get_id();
2039 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
2040 	struct optee_msg_arg *arg = NULL;
2041 	struct mobj *mobj = NULL;
2042 	uint32_t num_params = 0;
2043 	size_t sz = 0;
2044 
2045 	mobj = mobj_ffa_get_by_cookie(cookie, 0);
2046 	if (!mobj) {
2047 		EMSG("Can't find cookie %#"PRIx64, cookie);
2048 		return TEE_ERROR_BAD_PARAMETERS;
2049 	}
2050 
2051 	res = mobj_inc_map(mobj);
2052 	if (res)
2053 		goto out_put_mobj;
2054 
2055 	res = TEE_ERROR_BAD_PARAMETERS;
2056 	arg = mobj_get_va(mobj, offset, sizeof(*arg));
2057 	if (!arg)
2058 		goto out_dec_map;
2059 
2060 	num_params = READ_ONCE(arg->num_params);
2061 	if (num_params > OPTEE_MSG_MAX_NUM_PARAMS)
2062 		goto out_dec_map;
2063 
2064 	sz = OPTEE_MSG_GET_ARG_SIZE(num_params);
2065 
2066 	thr->rpc_arg = mobj_get_va(mobj, offset + sz, sz_rpc);
2067 	if (!thr->rpc_arg)
2068 		goto out_dec_map;
2069 
2070 	virt_on_stdcall();
2071 	res = tee_entry_std(arg, num_params);
2072 
2073 	thread_rpc_shm_cache_clear(&thr->shm_cache);
2074 	thr->rpc_arg = NULL;
2075 
2076 out_dec_map:
2077 	mobj_dec_map(mobj);
2078 out_put_mobj:
2079 	mobj_put(mobj);
2080 	return res;
2081 }
2082 
2083 /*
2084  * Helper routine for the assembly function thread_std_smc_entry()
2085  *
2086  * Note: this function is weak just to make link_dummies_paged.c happy.
2087  */
2088 uint32_t __weak __thread_std_smc_entry(uint32_t a0, uint32_t a1,
2089 				       uint32_t a2, uint32_t a3,
2090 				       uint32_t a4, uint32_t a5 __unused)
2091 {
2092 	/*
2093 	 * Arguments are supplied from handle_yielding_call() as:
2094 	 * a0 <- w1
2095 	 * a1 <- w3
2096 	 * a2 <- w4
2097 	 * a3 <- w5
2098 	 * a4 <- w6
2099 	 * a5 <- w7
2100 	 */
2101 	thread_get_tsd()->rpc_target_info = swap_src_dst(a0);
2102 	if (a1 == OPTEE_FFA_YIELDING_CALL_WITH_ARG)
2103 		return yielding_call_with_arg(reg_pair_to_64(a3, a2), a4);
2104 	return FFA_DENIED;
2105 }
2106 
2107 static bool set_fmem(struct optee_msg_param *param, struct thread_param *tpm)
2108 {
2109 	uint64_t offs = tpm->u.memref.offs;
2110 
2111 	param->attr = tpm->attr - THREAD_PARAM_ATTR_MEMREF_IN +
2112 		      OPTEE_MSG_ATTR_TYPE_FMEM_INPUT;
2113 
2114 	param->u.fmem.offs_low = offs;
2115 	param->u.fmem.offs_high = offs >> 32;
2116 	if (param->u.fmem.offs_high != offs >> 32)
2117 		return false;
2118 
2119 	param->u.fmem.size = tpm->u.memref.size;
2120 	if (tpm->u.memref.mobj) {
2121 		uint64_t cookie = mobj_get_cookie(tpm->u.memref.mobj);
2122 
2123 		/* If a mobj is passed it better be one with a valid cookie. */
2124 		if (cookie == OPTEE_MSG_FMEM_INVALID_GLOBAL_ID)
2125 			return false;
2126 		param->u.fmem.global_id = cookie;
2127 	} else {
2128 		param->u.fmem.global_id = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID;
2129 	}
2130 
2131 	return true;
2132 }
2133 
2134 static uint32_t get_rpc_arg(uint32_t cmd, size_t num_params,
2135 			    struct thread_param *params,
2136 			    struct optee_msg_arg **arg_ret)
2137 {
2138 	size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS);
2139 	struct thread_ctx *thr = threads + thread_get_id();
2140 	struct optee_msg_arg *arg = thr->rpc_arg;
2141 
2142 	if (num_params > THREAD_RPC_MAX_NUM_PARAMS)
2143 		return TEE_ERROR_BAD_PARAMETERS;
2144 
2145 	if (!arg) {
2146 		EMSG("rpc_arg not set");
2147 		return TEE_ERROR_GENERIC;
2148 	}
2149 
2150 	memset(arg, 0, sz);
2151 	arg->cmd = cmd;
2152 	arg->num_params = num_params;
2153 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
2154 
2155 	for (size_t n = 0; n < num_params; n++) {
2156 		switch (params[n].attr) {
2157 		case THREAD_PARAM_ATTR_NONE:
2158 			arg->params[n].attr = OPTEE_MSG_ATTR_TYPE_NONE;
2159 			break;
2160 		case THREAD_PARAM_ATTR_VALUE_IN:
2161 		case THREAD_PARAM_ATTR_VALUE_OUT:
2162 		case THREAD_PARAM_ATTR_VALUE_INOUT:
2163 			arg->params[n].attr = params[n].attr -
2164 					      THREAD_PARAM_ATTR_VALUE_IN +
2165 					      OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
2166 			arg->params[n].u.value.a = params[n].u.value.a;
2167 			arg->params[n].u.value.b = params[n].u.value.b;
2168 			arg->params[n].u.value.c = params[n].u.value.c;
2169 			break;
2170 		case THREAD_PARAM_ATTR_MEMREF_IN:
2171 		case THREAD_PARAM_ATTR_MEMREF_OUT:
2172 		case THREAD_PARAM_ATTR_MEMREF_INOUT:
2173 			if (!set_fmem(arg->params + n, params + n))
2174 				return TEE_ERROR_BAD_PARAMETERS;
2175 			break;
2176 		default:
2177 			return TEE_ERROR_BAD_PARAMETERS;
2178 		}
2179 	}
2180 
2181 	if (arg_ret)
2182 		*arg_ret = arg;
2183 
2184 	return TEE_SUCCESS;
2185 }
2186 
2187 static uint32_t get_rpc_arg_res(struct optee_msg_arg *arg, size_t num_params,
2188 				struct thread_param *params)
2189 {
2190 	for (size_t n = 0; n < num_params; n++) {
2191 		switch (params[n].attr) {
2192 		case THREAD_PARAM_ATTR_VALUE_OUT:
2193 		case THREAD_PARAM_ATTR_VALUE_INOUT:
2194 			params[n].u.value.a = arg->params[n].u.value.a;
2195 			params[n].u.value.b = arg->params[n].u.value.b;
2196 			params[n].u.value.c = arg->params[n].u.value.c;
2197 			break;
2198 		case THREAD_PARAM_ATTR_MEMREF_OUT:
2199 		case THREAD_PARAM_ATTR_MEMREF_INOUT:
2200 			params[n].u.memref.size = arg->params[n].u.fmem.size;
2201 			break;
2202 		default:
2203 			break;
2204 		}
2205 	}
2206 
2207 	return arg->ret;
2208 }
2209 
2210 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params,
2211 			struct thread_param *params)
2212 {
2213 	struct thread_rpc_arg rpc_arg = { .call = {
2214 			.w1 = thread_get_tsd()->rpc_target_info,
2215 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
2216 		},
2217 	};
2218 	struct optee_msg_arg *arg = NULL;
2219 	uint32_t ret = 0;
2220 
2221 	ret = get_rpc_arg(cmd, num_params, params, &arg);
2222 	if (ret)
2223 		return ret;
2224 
2225 	thread_rpc(&rpc_arg);
2226 
2227 	return get_rpc_arg_res(arg, num_params, params);
2228 }
2229 
2230 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj)
2231 {
2232 	struct thread_rpc_arg rpc_arg = { .call = {
2233 			.w1 = thread_get_tsd()->rpc_target_info,
2234 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
2235 		},
2236 	};
2237 	struct thread_param param = THREAD_PARAM_VALUE(IN, bt, cookie, 0);
2238 	uint32_t res2 = 0;
2239 	uint32_t res = 0;
2240 
2241 	DMSG("freeing cookie %#"PRIx64, cookie);
2242 
2243 	res = get_rpc_arg(OPTEE_RPC_CMD_SHM_FREE, 1, &param, NULL);
2244 
2245 	mobj_put(mobj);
2246 	res2 = mobj_ffa_unregister_by_cookie(cookie);
2247 	if (res2)
2248 		DMSG("mobj_ffa_unregister_by_cookie(%#"PRIx64"): %#"PRIx32,
2249 		     cookie, res2);
2250 	if (!res)
2251 		thread_rpc(&rpc_arg);
2252 }
2253 
2254 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt)
2255 {
2256 	struct thread_rpc_arg rpc_arg = { .call = {
2257 			.w1 = thread_get_tsd()->rpc_target_info,
2258 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
2259 		},
2260 	};
2261 	struct thread_param param = THREAD_PARAM_VALUE(IN, bt, size, align);
2262 	struct optee_msg_arg *arg = NULL;
2263 	unsigned int internal_offset = 0;
2264 	struct mobj *mobj = NULL;
2265 	uint64_t cookie = 0;
2266 
2267 	if (get_rpc_arg(OPTEE_RPC_CMD_SHM_ALLOC, 1, &param, &arg))
2268 		return NULL;
2269 
2270 	thread_rpc(&rpc_arg);
2271 
2272 	if (arg->num_params != 1 ||
2273 	    arg->params->attr != OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT)
2274 		return NULL;
2275 
2276 	internal_offset = READ_ONCE(arg->params->u.fmem.internal_offs);
2277 	cookie = READ_ONCE(arg->params->u.fmem.global_id);
2278 	mobj = mobj_ffa_get_by_cookie(cookie, internal_offset);
2279 	if (!mobj) {
2280 		DMSG("mobj_ffa_get_by_cookie(%#"PRIx64", %#x): failed",
2281 		     cookie, internal_offset);
2282 		return NULL;
2283 	}
2284 
2285 	assert(mobj_is_nonsec(mobj));
2286 
2287 	if (mobj->size < size) {
2288 		DMSG("Mobj %#"PRIx64": wrong size", cookie);
2289 		mobj_put(mobj);
2290 		return NULL;
2291 	}
2292 
2293 	if (mobj_inc_map(mobj)) {
2294 		DMSG("mobj_inc_map(%#"PRIx64"): failed", cookie);
2295 		mobj_put(mobj);
2296 		return NULL;
2297 	}
2298 
2299 	return mobj;
2300 }
2301 
2302 struct mobj *thread_rpc_alloc_payload(size_t size)
2303 {
2304 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_APPL);
2305 }
2306 
2307 struct mobj *thread_rpc_alloc_kernel_payload(size_t size)
2308 {
2309 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_KERNEL);
2310 }
2311 
2312 void thread_rpc_free_kernel_payload(struct mobj *mobj)
2313 {
2314 	if (mobj)
2315 		thread_rpc_free(OPTEE_RPC_SHM_TYPE_KERNEL,
2316 				mobj_get_cookie(mobj), mobj);
2317 }
2318 
2319 void thread_rpc_free_payload(struct mobj *mobj)
2320 {
2321 	if (mobj)
2322 		thread_rpc_free(OPTEE_RPC_SHM_TYPE_APPL, mobj_get_cookie(mobj),
2323 				mobj);
2324 }
2325 
2326 struct mobj *thread_rpc_alloc_global_payload(size_t size)
2327 {
2328 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_GLOBAL);
2329 }
2330 
2331 void thread_rpc_free_global_payload(struct mobj *mobj)
2332 {
2333 	if (mobj)
2334 		thread_rpc_free(OPTEE_RPC_SHM_TYPE_GLOBAL,
2335 				mobj_get_cookie(mobj), mobj);
2336 }
2337 
2338 void thread_spmc_register_secondary_ep(vaddr_t ep)
2339 {
2340 	unsigned long ret = 0;
2341 
2342 	/* Let the SPM know the entry point for secondary CPUs */
2343 	ret = thread_smc(FFA_SECONDARY_EP_REGISTER_64, ep, 0, 0);
2344 
2345 	if (ret != FFA_SUCCESS_32 && ret != FFA_SUCCESS_64)
2346 		EMSG("FFA_SECONDARY_EP_REGISTER_64 ret %#lx", ret);
2347 }
2348 
2349 static uint16_t ffa_id_get(void)
2350 {
2351 	/*
2352 	 * Ask the SPM component running at a higher EL to return our FF-A ID.
2353 	 * This can either be the SPMC ID (if the SPMC is enabled in OP-TEE) or
2354 	 * the partition ID (if not).
2355 	 */
2356 	struct thread_smc_args args = {
2357 		.a0 = FFA_ID_GET,
2358 	};
2359 
2360 	thread_smccc(&args);
2361 	if (!is_ffa_success(args.a0)) {
2362 		if (args.a0 == FFA_ERROR)
2363 			EMSG("Get id failed with error %ld", args.a2);
2364 		else
2365 			EMSG("Get id failed");
2366 		panic();
2367 	}
2368 
2369 	return args.a2;
2370 }
2371 
2372 static uint16_t ffa_spm_id_get(void)
2373 {
2374 	/*
2375 	 * Ask the SPM component running at a higher EL to return its ID.
2376 	 * If OP-TEE implements the S-EL1 SPMC, this will get the SPMD ID.
2377 	 * If not, the ID of the SPMC will be returned.
2378 	 */
2379 	struct thread_smc_args args = {
2380 		.a0 = FFA_SPM_ID_GET,
2381 	};
2382 
2383 	thread_smccc(&args);
2384 	if (!is_ffa_success(args.a0)) {
2385 		if (args.a0 == FFA_ERROR)
2386 			EMSG("Get spm id failed with error %ld", args.a2);
2387 		else
2388 			EMSG("Get spm id failed");
2389 		panic();
2390 	}
2391 
2392 	return args.a2;
2393 }
2394 
2395 #ifdef CFG_CORE_DYN_PROTMEM
2396 TEE_Result thread_spmc_get_protmem_config(enum mobj_use_case use_case,
2397 					  void *buf, size_t *buf_sz,
2398 					  size_t *min_mem_sz,
2399 					  size_t *min_mem_align)
2400 {
2401 	TEE_Result res = TEE_SUCCESS;
2402 	struct ffa_mem_access_perm mem_acc_list[] = {
2403 		{
2404 			.endpoint_id = optee_core_lsp.sp_id,
2405 			.perm = FFA_MEM_ACC_RW,
2406 		},
2407 	};
2408 
2409 	res = plat_get_protmem_config(use_case, min_mem_sz, min_mem_align);
2410 	if (res)
2411 		return res;
2412 
2413 	if (!buf || *buf_sz < sizeof(mem_acc_list)) {
2414 		*buf_sz = sizeof(mem_acc_list);
2415 		return TEE_ERROR_SHORT_BUFFER;
2416 	}
2417 
2418 	memcpy(buf, mem_acc_list, sizeof(mem_acc_list));
2419 	*buf_sz = sizeof(mem_acc_list);
2420 
2421 	return TEE_SUCCESS;
2422 }
2423 #endif /*CFG_CORE_DYN_PROTMEM*/
2424 
2425 static TEE_Result check_desc(struct spmc_lsp_desc *d)
2426 {
2427 	uint32_t accept_props = FFA_PART_PROP_DIRECT_REQ_RECV |
2428 				FFA_PART_PROP_DIRECT_REQ_SEND |
2429 				FFA_PART_PROP_NOTIF_CREATED |
2430 				FFA_PART_PROP_NOTIF_DESTROYED |
2431 				FFA_PART_PROP_AARCH64_STATE;
2432 	uint32_t id = d->sp_id;
2433 
2434 	if (id && (spmc_is_reserved_id(id) || spmc_find_lsp_by_sp_id(id) ||
2435 		   id < FFA_SWD_ID_MIN || id > FFA_SWD_ID_MAX)) {
2436 		EMSG("Conflicting SP id for SP \"%s\" id %#"PRIx32,
2437 		     d->name, id);
2438 		if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2439 			panic();
2440 		return TEE_ERROR_BAD_FORMAT;
2441 	}
2442 
2443 	if (d->properties & ~accept_props) {
2444 		EMSG("Unexpected properties in %#"PRIx32" for LSP \"%s\" %#"PRIx16,
2445 		     d->properties, d->name, d->sp_id);
2446 		if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2447 			panic();
2448 		d->properties &= accept_props;
2449 	}
2450 
2451 	if (!d->direct_req) {
2452 		EMSG("Missing direct request callback for LSP \"%s\" %#"PRIx16,
2453 		     d->name, d->sp_id);
2454 		if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2455 			panic();
2456 		return TEE_ERROR_BAD_FORMAT;
2457 	}
2458 
2459 	if (!d->uuid_words[0] && !d->uuid_words[1] &&
2460 	    !d->uuid_words[2] && !d->uuid_words[3]) {
2461 		EMSG("Found NULL UUID for LSP \"%s\" %#"PRIx16,
2462 		     d->name, d->sp_id);
2463 		if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2464 			panic();
2465 		return TEE_ERROR_BAD_FORMAT;
2466 	}
2467 
2468 	return TEE_SUCCESS;
2469 }
2470 
2471 static uint16_t find_unused_sp_id(void)
2472 {
2473 	uint32_t id = FFA_SWD_ID_MIN;
2474 
2475 	while (spmc_is_reserved_id(id) || spmc_find_lsp_by_sp_id(id)) {
2476 		id++;
2477 		assert(id <= FFA_SWD_ID_MAX);
2478 	}
2479 
2480 	return id;
2481 }
2482 
2483 TEE_Result spmc_register_lsp(struct spmc_lsp_desc *desc)
2484 {
2485 	TEE_Result res = TEE_SUCCESS;
2486 
2487 	res = check_desc(desc);
2488 	if (res)
2489 		return res;
2490 
2491 	if (STAILQ_EMPTY(&lsp_head)) {
2492 		DMSG("Cannot add Logical SP \"%s\": LSP framework not initialized yet",
2493 		     desc->name);
2494 		return TEE_ERROR_ITEM_NOT_FOUND;
2495 	}
2496 
2497 	if (!desc->sp_id)
2498 		desc->sp_id = find_unused_sp_id();
2499 
2500 	DMSG("Adding Logical SP \"%s\" with id %#"PRIx16,
2501 	     desc->name, desc->sp_id);
2502 
2503 	STAILQ_INSERT_TAIL(&lsp_head, desc, link);
2504 
2505 	return TEE_SUCCESS;
2506 }
2507 
2508 static struct spmc_lsp_desc optee_core_lsp __nex_data = {
2509 	.name = "OP-TEE",
2510 	.direct_req = optee_lsp_handle_direct_request,
2511 	.properties = FFA_PART_PROP_DIRECT_REQ_RECV |
2512 		      FFA_PART_PROP_DIRECT_REQ_SEND |
2513 #ifdef CFG_NS_VIRTUALIZATION
2514 		      FFA_PART_PROP_NOTIF_CREATED |
2515 		      FFA_PART_PROP_NOTIF_DESTROYED |
2516 #endif
2517 		      FFA_PART_PROP_AARCH64_STATE |
2518 		      FFA_PART_PROP_IS_PE_ID,
2519 	/*
2520 	 * - if the SPMC is in S-EL2 this UUID describes OP-TEE as a S-EL1
2521 	 *   SP, or
2522 	 * - if the SPMC is in S-EL1 then this UUID is for OP-TEE as a
2523 	 *   logical partition, residing in the same exception level as the
2524 	 *   SPMC
2525 	 * UUID 486178e0-e7f8-11e3-bc5e-0002a5d5c51b
2526 	 */
2527 	.uuid_words = { 0xe0786148, 0xe311f8e7, 0x02005ebc, 0x1bc5d5a5, },
2528 };
2529 
2530 #if defined(CFG_CORE_SEL1_SPMC)
2531 static struct spmc_lsp_desc optee_spmc_lsp __nex_data = {
2532 	.name = "OP-TEE SPMC",
2533 	.direct_req = optee_spmc_lsp_handle_direct_request,
2534 };
2535 
2536 static TEE_Result spmc_init(void)
2537 {
2538 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
2539 	    virt_add_guest_spec_data(&notif_vm_bitmap_id,
2540 				     sizeof(struct notif_vm_bitmap), NULL))
2541 		panic("virt_add_guest_spec_data");
2542 	spmd_id = ffa_spm_id_get();
2543 	DMSG("SPMD ID %#"PRIx16, spmd_id);
2544 
2545 	optee_spmc_lsp.sp_id = ffa_id_get();
2546 	DMSG("SPMC ID %#"PRIx16, optee_spmc_lsp.sp_id);
2547 	STAILQ_INSERT_HEAD(&lsp_head, &optee_spmc_lsp, link);
2548 
2549 	optee_core_lsp.sp_id = find_unused_sp_id();
2550 	DMSG("OP-TEE endpoint ID %#"PRIx16, optee_core_lsp.sp_id);
2551 	STAILQ_INSERT_HEAD(&lsp_head, &optee_core_lsp, link);
2552 
2553 	/*
2554 	 * If SPMD think we are version 1.0 it will report version 1.0 to
2555 	 * normal world regardless of what version we query the SPM with.
2556 	 * However, if SPMD think we are version 1.1 it will forward
2557 	 * queries from normal world to let us negotiate version. So by
2558 	 * setting version 1.0 here we should be compatible.
2559 	 *
2560 	 * Note that disagreement on negotiated version means that we'll
2561 	 * have communication problems with normal world.
2562 	 */
2563 	my_rxtx.ffa_vers = FFA_VERSION_1_0;
2564 
2565 	return TEE_SUCCESS;
2566 }
2567 #else /* !defined(CFG_CORE_SEL1_SPMC) */
2568 static void spmc_rxtx_map(struct ffa_rxtx *rxtx)
2569 {
2570 	struct thread_smc_args args = {
2571 #ifdef ARM64
2572 		.a0 = FFA_RXTX_MAP_64,
2573 #else
2574 		.a0 = FFA_RXTX_MAP_32,
2575 #endif
2576 		.a1 = virt_to_phys(rxtx->tx),
2577 		.a2 = virt_to_phys(rxtx->rx),
2578 		.a3 = 1,
2579 	};
2580 
2581 	thread_smccc(&args);
2582 	if (!is_ffa_success(args.a0)) {
2583 		if (args.a0 == FFA_ERROR)
2584 			EMSG("rxtx map failed with error %ld", args.a2);
2585 		else
2586 			EMSG("rxtx map failed");
2587 		panic();
2588 	}
2589 }
2590 
2591 static uint32_t get_ffa_version(uint32_t my_version)
2592 {
2593 	struct thread_smc_args args = {
2594 		.a0 = FFA_VERSION,
2595 		.a1 = my_version,
2596 	};
2597 
2598 	thread_smccc(&args);
2599 	if (args.a0 & BIT(31)) {
2600 		EMSG("FF-A version failed with error %ld", args.a0);
2601 		panic();
2602 	}
2603 
2604 	return args.a0;
2605 }
2606 
2607 static void *spmc_retrieve_req(struct ffa_mem_transaction_x *trans)
2608 {
2609 	uint64_t cookie __maybe_unused = trans->global_handle;
2610 	struct ffa_mem_access *acc_descr_array = NULL;
2611 	struct ffa_mem_access_perm *perm_descr = NULL;
2612 	struct thread_smc_args args = {
2613 		.a0 = FFA_MEM_RETRIEVE_REQ_32,
2614 		.a3 =	0,	/* Address, Using TX -> MBZ */
2615 		.a4 =   0,	/* Using TX -> MBZ */
2616 	};
2617 	size_t size = 0;
2618 	int rc = 0;
2619 
2620 	if (my_rxtx.ffa_vers == FFA_VERSION_1_0) {
2621 		struct ffa_mem_transaction_1_0 *trans_descr = my_rxtx.tx;
2622 
2623 		size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access);
2624 		memset(trans_descr, 0, size);
2625 		trans_descr->sender_id = trans->sender_id;
2626 		trans_descr->mem_reg_attr = trans->mem_reg_attr;
2627 		trans_descr->global_handle = trans->global_handle;
2628 		trans_descr->tag = trans->tag;
2629 		trans_descr->flags = trans->flags;
2630 		trans_descr->mem_access_count = 1;
2631 		acc_descr_array = trans_descr->mem_access_array;
2632 	} else {
2633 		struct ffa_mem_transaction_1_1 *trans_descr = my_rxtx.tx;
2634 
2635 		size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access);
2636 		memset(trans_descr, 0, size);
2637 		trans_descr->sender_id = trans->sender_id;
2638 		trans_descr->mem_reg_attr = trans->mem_reg_attr;
2639 		trans_descr->global_handle = trans->global_handle;
2640 		trans_descr->tag = trans->tag;
2641 		trans_descr->flags = trans->flags;
2642 		trans_descr->mem_access_count = 1;
2643 		trans_descr->mem_access_offs = sizeof(*trans_descr);
2644 		trans_descr->mem_access_size = sizeof(struct ffa_mem_access);
2645 		acc_descr_array = (void *)((vaddr_t)my_rxtx.tx +
2646 					   sizeof(*trans_descr));
2647 	}
2648 	acc_descr_array->region_offs = 0;
2649 	acc_descr_array->reserved = 0;
2650 	perm_descr = &acc_descr_array->access_perm;
2651 	perm_descr->endpoint_id = optee_core_lsp.sp_id;
2652 	perm_descr->perm = FFA_MEM_ACC_RW;
2653 	perm_descr->flags = 0;
2654 
2655 	args.a1 = size; /* Total Length */
2656 	args.a2 = size; /* Frag Length == Total length */
2657 	thread_smccc(&args);
2658 	if (args.a0 != FFA_MEM_RETRIEVE_RESP) {
2659 		if (args.a0 == FFA_ERROR)
2660 			EMSG("Failed to fetch cookie %#"PRIx64" error code %d",
2661 			     cookie, (int)args.a2);
2662 		else
2663 			EMSG("Failed to fetch cookie %#"PRIx64" a0 %#"PRIx64,
2664 			     cookie, args.a0);
2665 		return NULL;
2666 	}
2667 	rc = spmc_read_mem_transaction(my_rxtx.ffa_vers, my_rxtx.rx,
2668 				       my_rxtx.size, trans);
2669 	if (rc) {
2670 		EMSG("Memory transaction failure for cookie %#"PRIx64" rc %d",
2671 		     cookie, rc);
2672 		return NULL;
2673 	}
2674 
2675 	return my_rxtx.rx;
2676 }
2677 
2678 void thread_spmc_relinquish(uint64_t cookie)
2679 {
2680 	struct ffa_mem_relinquish *relinquish_desc = my_rxtx.tx;
2681 	struct thread_smc_args args = {
2682 		.a0 = FFA_MEM_RELINQUISH,
2683 	};
2684 
2685 	memset(relinquish_desc, 0, sizeof(*relinquish_desc));
2686 	relinquish_desc->handle = cookie;
2687 	relinquish_desc->flags = 0;
2688 	relinquish_desc->endpoint_count = 1;
2689 	relinquish_desc->endpoint_id_array[0] = optee_core_lsp.sp_id;
2690 	thread_smccc(&args);
2691 	if (!is_ffa_success(args.a0))
2692 		EMSG("Failed to relinquish cookie %#"PRIx64, cookie);
2693 }
2694 
2695 static int set_pages(struct ffa_address_range *regions,
2696 		     unsigned int num_regions, unsigned int num_pages,
2697 		     struct mobj_ffa *mf)
2698 {
2699 	unsigned int n = 0;
2700 	unsigned int idx = 0;
2701 
2702 	for (n = 0; n < num_regions; n++) {
2703 		unsigned int page_count = READ_ONCE(regions[n].page_count);
2704 		uint64_t addr = READ_ONCE(regions[n].address);
2705 
2706 		if (mobj_ffa_add_pages_at(mf, &idx, addr, page_count))
2707 			return FFA_INVALID_PARAMETERS;
2708 	}
2709 
2710 	if (idx != num_pages)
2711 		return FFA_INVALID_PARAMETERS;
2712 
2713 	return 0;
2714 }
2715 
2716 struct mobj_ffa *thread_spmc_populate_mobj_from_rx(uint64_t cookie,
2717 						   enum mobj_use_case use_case)
2718 {
2719 	struct mobj_ffa *ret = NULL;
2720 	struct ffa_mem_transaction_x retrieve_desc = { .tag = use_case};
2721 	struct ffa_mem_access *descr_array = NULL;
2722 	struct ffa_mem_region *descr = NULL;
2723 	struct mobj_ffa *mf = NULL;
2724 	unsigned int num_pages = 0;
2725 	unsigned int offs = 0;
2726 	void *buf = NULL;
2727 	struct thread_smc_args ffa_rx_release_args = {
2728 		.a0 = FFA_RX_RELEASE
2729 	};
2730 
2731 	if (use_case == MOBJ_USE_CASE_NS_SHM)
2732 		retrieve_desc.flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE;
2733 	else
2734 		retrieve_desc.flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_LEND;
2735 	retrieve_desc.flags |= FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT;
2736 	retrieve_desc.global_handle = cookie;
2737 	retrieve_desc.sender_id = thread_get_tsd()->rpc_target_info;
2738 	retrieve_desc.mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
2739 
2740 	/*
2741 	 * OP-TEE is only supporting a single mem_region while the
2742 	 * specification allows for more than one.
2743 	 */
2744 	buf = spmc_retrieve_req(&retrieve_desc);
2745 	if (!buf) {
2746 		EMSG("Failed to retrieve cookie from rx buffer %#"PRIx64,
2747 		     cookie);
2748 		return NULL;
2749 	}
2750 
2751 	descr_array = (void *)((vaddr_t)buf + retrieve_desc.mem_access_offs);
2752 	offs = READ_ONCE(descr_array->region_offs);
2753 	descr = (struct ffa_mem_region *)((vaddr_t)buf + offs);
2754 
2755 	num_pages = READ_ONCE(descr->total_page_count);
2756 	mf = mobj_ffa_spmc_new(cookie, num_pages, use_case);
2757 	if (!mf)
2758 		goto out;
2759 
2760 	if (set_pages(descr->address_range_array,
2761 		      READ_ONCE(descr->address_range_count), num_pages, mf)) {
2762 		mobj_ffa_spmc_delete(mf);
2763 		goto out;
2764 	}
2765 
2766 	ret = mf;
2767 
2768 out:
2769 	/* Release RX buffer after the mem retrieve request. */
2770 	thread_smccc(&ffa_rx_release_args);
2771 
2772 	return ret;
2773 }
2774 
2775 static uint32_t get_ffa_version_from_manifest(void *fdt)
2776 {
2777 	int ret = 0;
2778 	uint32_t vers = 0;
2779 
2780 	ret = fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0");
2781 	if (ret < 0) {
2782 		EMSG("Invalid FF-A manifest at %p: error %d", fdt, ret);
2783 		panic();
2784 	}
2785 
2786 	ret = fdt_read_uint32(fdt, 0, "ffa-version", &vers);
2787 	if (ret < 0) {
2788 		EMSG("Can't read \"ffa-version\" from FF-A manifest at %p: error %d",
2789 		     fdt, ret);
2790 		panic();
2791 	}
2792 
2793 	return vers;
2794 }
2795 
2796 static TEE_Result spmc_init(void)
2797 {
2798 	uint32_t my_vers = 0;
2799 	uint32_t vers = 0;
2800 
2801 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
2802 	    virt_add_guest_spec_data(&notif_vm_bitmap_id,
2803 				     sizeof(struct notif_vm_bitmap), NULL))
2804 		panic("virt_add_guest_spec_data");
2805 
2806 	my_vers = get_ffa_version_from_manifest(get_manifest_dt());
2807 	if (my_vers < FFA_VERSION_1_0 || my_vers > FFA_VERSION_1_2) {
2808 		EMSG("Unsupported version %"PRIu32".%"PRIu32" from manifest",
2809 		     FFA_GET_MAJOR_VERSION(my_vers),
2810 		     FFA_GET_MINOR_VERSION(my_vers));
2811 		panic();
2812 	}
2813 	vers = get_ffa_version(my_vers);
2814 	DMSG("SPMC reported version %"PRIu32".%"PRIu32,
2815 	     FFA_GET_MAJOR_VERSION(vers), FFA_GET_MINOR_VERSION(vers));
2816 	if (FFA_GET_MAJOR_VERSION(vers) != FFA_GET_MAJOR_VERSION(my_vers)) {
2817 		EMSG("Incompatible major version %"PRIu32", expected %"PRIu32"",
2818 		     FFA_GET_MAJOR_VERSION(vers),
2819 		     FFA_GET_MAJOR_VERSION(my_vers));
2820 		panic();
2821 	}
2822 	if (vers < my_vers)
2823 		my_vers = vers;
2824 	DMSG("Using version %"PRIu32".%"PRIu32"",
2825 	     FFA_GET_MAJOR_VERSION(my_vers), FFA_GET_MINOR_VERSION(my_vers));
2826 	my_rxtx.ffa_vers = my_vers;
2827 
2828 	spmc_rxtx_map(&my_rxtx);
2829 
2830 	spmc_id = ffa_spm_id_get();
2831 	DMSG("SPMC ID %#"PRIx16, spmc_id);
2832 
2833 	optee_core_lsp.sp_id = ffa_id_get();
2834 	DMSG("OP-TEE endpoint ID %#"PRIx16, optee_core_lsp.sp_id);
2835 	STAILQ_INSERT_HEAD(&lsp_head, &optee_core_lsp, link);
2836 
2837 	if (!ffa_features(FFA_NOTIFICATION_SET)) {
2838 		spmc_notif_is_ready = true;
2839 		DMSG("Asynchronous notifications are ready");
2840 	}
2841 
2842 	return TEE_SUCCESS;
2843 }
2844 #endif /* !defined(CFG_CORE_SEL1_SPMC) */
2845 
2846 nex_service_init(spmc_init);
2847