xref: /optee_os/core/arch/arm/kernel/thread_spmc.c (revision 021fee0affe5db6f1f713fea1119350a7433baea)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2023, Linaro Limited.
4  * Copyright (c) 2019-2024, Arm Limited. All rights reserved.
5  */
6 
7 #include <assert.h>
8 #include <ffa.h>
9 #include <initcall.h>
10 #include <io.h>
11 #include <kernel/interrupt.h>
12 #include <kernel/notif.h>
13 #include <kernel/panic.h>
14 #include <kernel/secure_partition.h>
15 #include <kernel/spinlock.h>
16 #include <kernel/spmc_sp_handler.h>
17 #include <kernel/tee_misc.h>
18 #include <kernel/thread.h>
19 #include <kernel/thread_private.h>
20 #include <kernel/thread_spmc.h>
21 #include <kernel/virtualization.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <optee_ffa.h>
25 #include <optee_msg.h>
26 #include <optee_rpc_cmd.h>
27 #include <sm/optee_smc.h>
28 #include <string.h>
29 #include <sys/queue.h>
30 #include <tee/entry_std.h>
31 #include <tee/uuid.h>
32 #include <util.h>
33 
34 #if defined(CFG_CORE_SEL1_SPMC)
35 struct mem_share_state {
36 	struct mobj_ffa *mf;
37 	unsigned int page_count;
38 	unsigned int region_count;
39 	unsigned int current_page_idx;
40 };
41 
42 struct mem_frag_state {
43 	struct mem_share_state share;
44 	tee_mm_entry_t *mm;
45 	unsigned int frag_offset;
46 	SLIST_ENTRY(mem_frag_state) link;
47 };
48 #endif
49 
50 struct notif_vm_bitmap {
51 	bool initialized;
52 	int do_bottom_half_value;
53 	uint64_t pending;
54 	uint64_t bound;
55 };
56 
57 static unsigned int spmc_notif_lock __nex_data = SPINLOCK_UNLOCK;
58 static bool spmc_notif_is_ready __nex_bss;
59 static int notif_intid __nex_data __maybe_unused = -1;
60 
61 /* Id used to look up the guest specific struct notif_vm_bitmap */
62 static unsigned int notif_vm_bitmap_id __nex_bss;
63 /* Notification state when ns-virtualization isn't enabled */
64 static struct notif_vm_bitmap default_notif_vm_bitmap;
65 
66 /* Initialized in spmc_init() below */
67 uint16_t optee_endpoint_id __nex_bss;
68 uint16_t spmc_id __nex_bss;
69 #ifdef CFG_CORE_SEL1_SPMC
70 uint16_t spmd_id __nex_bss;
71 static const uint32_t my_part_props = FFA_PART_PROP_DIRECT_REQ_RECV |
72 				      FFA_PART_PROP_DIRECT_REQ_SEND |
73 #ifdef CFG_NS_VIRTUALIZATION
74 				      FFA_PART_PROP_NOTIF_CREATED |
75 				      FFA_PART_PROP_NOTIF_DESTROYED |
76 #endif
77 #ifdef ARM64
78 				      FFA_PART_PROP_AARCH64_STATE |
79 #endif
80 				      FFA_PART_PROP_IS_PE_ID;
81 
82 static uint32_t my_uuid_words[] = {
83 	/*
84 	 * - if the SPMC is in S-EL2 this UUID describes OP-TEE as a S-EL1
85 	 *   SP, or
86 	 * - if the SPMC is in S-EL1 then this UUID is for OP-TEE as a
87 	 *   logical partition, residing in the same exception level as the
88 	 *   SPMC
89 	 * UUID 486178e0-e7f8-11e3-bc5e-0002a5d5c51b
90 	 */
91 	0xe0786148, 0xe311f8e7, 0x02005ebc, 0x1bc5d5a5,
92 };
93 
94 /*
95  * If struct ffa_rxtx::size is 0 RX/TX buffers are not mapped or initialized.
96  *
97  * struct ffa_rxtx::spin_lock protects the variables below from concurrent
98  * access this includes the use of content of struct ffa_rxtx::rx and
99  * @frag_state_head.
100  *
101  * struct ffa_rxtx::tx_buf_is_mine is true when we may write to struct
102  * ffa_rxtx::tx and false when it is owned by normal world.
103  *
104  * Note that we can't prevent normal world from updating the content of
105  * these buffers so we must always be careful when reading. while we hold
106  * the lock.
107  */
108 
109 static struct ffa_rxtx my_rxtx __nex_bss;
110 
111 static bool is_nw_buf(struct ffa_rxtx *rxtx)
112 {
113 	return rxtx == &my_rxtx;
114 }
115 
116 static SLIST_HEAD(mem_frag_state_head, mem_frag_state) frag_state_head =
117 	SLIST_HEAD_INITIALIZER(&frag_state_head);
118 
119 #else
120 static uint8_t __rx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE);
121 static uint8_t __tx_buf[SMALL_PAGE_SIZE] __aligned(SMALL_PAGE_SIZE);
122 static struct ffa_rxtx my_rxtx = {
123 	.rx = __rx_buf,
124 	.tx = __tx_buf,
125 	.size = sizeof(__rx_buf),
126 };
127 #endif
128 
129 static uint32_t swap_src_dst(uint32_t src_dst)
130 {
131 	return (src_dst >> 16) | (src_dst << 16);
132 }
133 
134 static uint16_t get_sender_id(uint32_t src_dst)
135 {
136 	return src_dst >> 16;
137 }
138 
139 void spmc_set_args(struct thread_smc_args *args, uint32_t fid, uint32_t src_dst,
140 		   uint32_t w2, uint32_t w3, uint32_t w4, uint32_t w5)
141 {
142 	*args = (struct thread_smc_args){ .a0 = fid,
143 					  .a1 = src_dst,
144 					  .a2 = w2,
145 					  .a3 = w3,
146 					  .a4 = w4,
147 					  .a5 = w5, };
148 }
149 
150 static void set_simple_ret_val(struct thread_smc_args *args, int ffa_ret)
151 {
152 	if (ffa_ret)
153 		spmc_set_args(args, FFA_ERROR, 0, ffa_ret, 0, 0, 0);
154 	else
155 		spmc_set_args(args, FFA_SUCCESS_32, 0, 0, 0, 0, 0);
156 }
157 
158 uint32_t spmc_exchange_version(uint32_t vers, struct ffa_rxtx *rxtx)
159 {
160 	/*
161 	 * No locking, if the caller does concurrent calls to this it's
162 	 * only making a mess for itself. We must be able to renegotiate
163 	 * the FF-A version in order to support differing versions between
164 	 * the loader and the driver.
165 	 */
166 	if (vers < FFA_VERSION_1_1)
167 		rxtx->ffa_vers = FFA_VERSION_1_0;
168 	else
169 		rxtx->ffa_vers = FFA_VERSION_1_1;
170 
171 	return rxtx->ffa_vers;
172 }
173 
174 static bool is_ffa_success(uint32_t fid)
175 {
176 #ifdef ARM64
177 	if (fid == FFA_SUCCESS_64)
178 		return true;
179 #endif
180 	return fid == FFA_SUCCESS_32;
181 }
182 
183 static int32_t get_ffa_ret_code(const struct thread_smc_args *args)
184 {
185 	if (is_ffa_success(args->a0))
186 		return FFA_OK;
187 	if (args->a0 == FFA_ERROR && args->a2)
188 		return args->a2;
189 	return FFA_NOT_SUPPORTED;
190 }
191 
192 static int ffa_simple_call(uint32_t fid, unsigned long a1, unsigned long a2,
193 			   unsigned long a3, unsigned long a4)
194 {
195 	struct thread_smc_args args = {
196 		.a0 = fid,
197 		.a1 = a1,
198 		.a2 = a2,
199 		.a3 = a3,
200 		.a4 = a4,
201 	};
202 
203 	thread_smccc(&args);
204 
205 	return get_ffa_ret_code(&args);
206 }
207 
208 static int __maybe_unused ffa_features(uint32_t id)
209 {
210 	return ffa_simple_call(FFA_FEATURES, id, 0, 0, 0);
211 }
212 
213 static int __maybe_unused ffa_set_notification(uint16_t dst, uint16_t src,
214 					       uint32_t flags, uint64_t bitmap)
215 {
216 	return ffa_simple_call(FFA_NOTIFICATION_SET,
217 			       SHIFT_U32(src, 16) | dst, flags,
218 			       low32_from_64(bitmap), high32_from_64(bitmap));
219 }
220 
221 #if defined(CFG_CORE_SEL1_SPMC)
222 static void handle_features(struct thread_smc_args *args)
223 {
224 	uint32_t ret_fid = FFA_ERROR;
225 	uint32_t ret_w2 = FFA_NOT_SUPPORTED;
226 
227 	switch (args->a1) {
228 	case FFA_FEATURE_SCHEDULE_RECV_INTR:
229 		if (spmc_notif_is_ready) {
230 			ret_fid = FFA_SUCCESS_32;
231 			ret_w2 = notif_intid;
232 		}
233 		break;
234 
235 #ifdef ARM64
236 	case FFA_RXTX_MAP_64:
237 #endif
238 	case FFA_RXTX_MAP_32:
239 		ret_fid = FFA_SUCCESS_32;
240 		ret_w2 = 0; /* 4kB Minimum buffer size and alignment boundary */
241 		break;
242 #ifdef ARM64
243 	case FFA_MEM_SHARE_64:
244 #endif
245 	case FFA_MEM_SHARE_32:
246 		ret_fid = FFA_SUCCESS_32;
247 		/*
248 		 * Partition manager supports transmission of a memory
249 		 * transaction descriptor in a buffer dynamically allocated
250 		 * by the endpoint.
251 		 */
252 		ret_w2 = BIT(0);
253 		break;
254 
255 	case FFA_ERROR:
256 	case FFA_VERSION:
257 	case FFA_SUCCESS_32:
258 #ifdef ARM64
259 	case FFA_SUCCESS_64:
260 #endif
261 	case FFA_FEATURES:
262 	case FFA_SPM_ID_GET:
263 	case FFA_MEM_FRAG_TX:
264 	case FFA_MEM_RECLAIM:
265 	case FFA_MSG_SEND_DIRECT_REQ_64:
266 	case FFA_MSG_SEND_DIRECT_REQ_32:
267 	case FFA_INTERRUPT:
268 	case FFA_PARTITION_INFO_GET:
269 	case FFA_RXTX_UNMAP:
270 	case FFA_RX_RELEASE:
271 	case FFA_FEATURE_MANAGED_EXIT_INTR:
272 	case FFA_NOTIFICATION_BITMAP_CREATE:
273 	case FFA_NOTIFICATION_BITMAP_DESTROY:
274 	case FFA_NOTIFICATION_BIND:
275 	case FFA_NOTIFICATION_UNBIND:
276 	case FFA_NOTIFICATION_SET:
277 	case FFA_NOTIFICATION_GET:
278 	case FFA_NOTIFICATION_INFO_GET_32:
279 #ifdef ARM64
280 	case FFA_NOTIFICATION_INFO_GET_64:
281 #endif
282 		ret_fid = FFA_SUCCESS_32;
283 		ret_w2 = FFA_PARAM_MBZ;
284 		break;
285 	default:
286 		break;
287 	}
288 
289 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, ret_w2, FFA_PARAM_MBZ,
290 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
291 }
292 
293 static int map_buf(paddr_t pa, unsigned int sz, void **va_ret)
294 {
295 	tee_mm_entry_t *mm = NULL;
296 
297 	if (!core_pbuf_is(CORE_MEM_NON_SEC, pa, sz))
298 		return FFA_INVALID_PARAMETERS;
299 
300 	mm = tee_mm_alloc(&core_virt_shm_pool, sz);
301 	if (!mm)
302 		return FFA_NO_MEMORY;
303 
304 	if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pa,
305 					  sz / SMALL_PAGE_SIZE,
306 					  MEM_AREA_NSEC_SHM)) {
307 		tee_mm_free(mm);
308 		return FFA_INVALID_PARAMETERS;
309 	}
310 
311 	*va_ret = (void *)tee_mm_get_smem(mm);
312 	return 0;
313 }
314 
315 void spmc_handle_spm_id_get(struct thread_smc_args *args)
316 {
317 	spmc_set_args(args, FFA_SUCCESS_32, FFA_PARAM_MBZ, spmc_id,
318 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
319 }
320 
321 static void unmap_buf(void *va, size_t sz)
322 {
323 	tee_mm_entry_t *mm = tee_mm_find(&core_virt_shm_pool, (vaddr_t)va);
324 
325 	assert(mm);
326 	core_mmu_unmap_pages(tee_mm_get_smem(mm), sz / SMALL_PAGE_SIZE);
327 	tee_mm_free(mm);
328 }
329 
330 void spmc_handle_rxtx_map(struct thread_smc_args *args, struct ffa_rxtx *rxtx)
331 {
332 	int rc = 0;
333 	unsigned int sz = 0;
334 	paddr_t rx_pa = 0;
335 	paddr_t tx_pa = 0;
336 	void *rx = NULL;
337 	void *tx = NULL;
338 
339 	cpu_spin_lock(&rxtx->spinlock);
340 
341 	if (args->a3 & GENMASK_64(63, 6)) {
342 		rc = FFA_INVALID_PARAMETERS;
343 		goto out;
344 	}
345 
346 	sz = args->a3 * SMALL_PAGE_SIZE;
347 	if (!sz) {
348 		rc = FFA_INVALID_PARAMETERS;
349 		goto out;
350 	}
351 	/* TX/RX are swapped compared to the caller */
352 	tx_pa = args->a2;
353 	rx_pa = args->a1;
354 
355 	if (rxtx->size) {
356 		rc = FFA_DENIED;
357 		goto out;
358 	}
359 
360 	/*
361 	 * If the buffer comes from a SP the address is virtual and already
362 	 * mapped.
363 	 */
364 	if (is_nw_buf(rxtx)) {
365 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
366 			enum teecore_memtypes mt = MEM_AREA_NEX_NSEC_SHM;
367 			bool tx_alloced = false;
368 
369 			/*
370 			 * With virtualization we establish this mapping in
371 			 * the nexus mapping which then is replicated to
372 			 * each partition.
373 			 *
374 			 * This means that this mapping must be done before
375 			 * any partition is created and then must not be
376 			 * changed.
377 			 */
378 
379 			/*
380 			 * core_mmu_add_mapping() may reuse previous
381 			 * mappings. First check if there's any mappings to
382 			 * reuse so we know how to clean up in case of
383 			 * failure.
384 			 */
385 			tx = phys_to_virt(tx_pa, mt, sz);
386 			rx = phys_to_virt(rx_pa, mt, sz);
387 			if (!tx) {
388 				tx = core_mmu_add_mapping(mt, tx_pa, sz);
389 				if (!tx) {
390 					rc = FFA_NO_MEMORY;
391 					goto out;
392 				}
393 				tx_alloced = true;
394 			}
395 			if (!rx)
396 				rx = core_mmu_add_mapping(mt, rx_pa, sz);
397 
398 			if (!rx) {
399 				if (tx_alloced && tx)
400 					core_mmu_remove_mapping(mt, tx, sz);
401 				rc = FFA_NO_MEMORY;
402 				goto out;
403 			}
404 		} else {
405 			rc = map_buf(tx_pa, sz, &tx);
406 			if (rc)
407 				goto out;
408 			rc = map_buf(rx_pa, sz, &rx);
409 			if (rc) {
410 				unmap_buf(tx, sz);
411 				goto out;
412 			}
413 		}
414 		rxtx->tx = tx;
415 		rxtx->rx = rx;
416 	} else {
417 		if ((tx_pa & SMALL_PAGE_MASK) || (rx_pa & SMALL_PAGE_MASK)) {
418 			rc = FFA_INVALID_PARAMETERS;
419 			goto out;
420 		}
421 
422 		if (!virt_to_phys((void *)tx_pa) ||
423 		    !virt_to_phys((void *)rx_pa)) {
424 			rc = FFA_INVALID_PARAMETERS;
425 			goto out;
426 		}
427 
428 		rxtx->tx = (void *)tx_pa;
429 		rxtx->rx = (void *)rx_pa;
430 	}
431 
432 	rxtx->size = sz;
433 	rxtx->tx_is_mine = true;
434 	DMSG("Mapped tx %#"PRIxPA" size %#x @ %p", tx_pa, sz, tx);
435 	DMSG("Mapped rx %#"PRIxPA" size %#x @ %p", rx_pa, sz, rx);
436 out:
437 	cpu_spin_unlock(&rxtx->spinlock);
438 	set_simple_ret_val(args, rc);
439 }
440 
441 void spmc_handle_rxtx_unmap(struct thread_smc_args *args, struct ffa_rxtx *rxtx)
442 {
443 	int rc = FFA_INVALID_PARAMETERS;
444 
445 	cpu_spin_lock(&rxtx->spinlock);
446 
447 	if (!rxtx->size)
448 		goto out;
449 
450 	/*
451 	 * We don't unmap the SP memory as the SP might still use it.
452 	 * We avoid to make changes to nexus mappings at this stage since
453 	 * there currently isn't a way to replicate those changes to all
454 	 * partitions.
455 	 */
456 	if (is_nw_buf(rxtx) && !IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
457 		unmap_buf(rxtx->rx, rxtx->size);
458 		unmap_buf(rxtx->tx, rxtx->size);
459 	}
460 	rxtx->size = 0;
461 	rxtx->rx = NULL;
462 	rxtx->tx = NULL;
463 	rc = 0;
464 out:
465 	cpu_spin_unlock(&rxtx->spinlock);
466 	set_simple_ret_val(args, rc);
467 }
468 
469 void spmc_handle_rx_release(struct thread_smc_args *args, struct ffa_rxtx *rxtx)
470 {
471 	int rc = 0;
472 
473 	cpu_spin_lock(&rxtx->spinlock);
474 	/* The senders RX is our TX */
475 	if (!rxtx->size || rxtx->tx_is_mine) {
476 		rc = FFA_DENIED;
477 	} else {
478 		rc = 0;
479 		rxtx->tx_is_mine = true;
480 	}
481 	cpu_spin_unlock(&rxtx->spinlock);
482 
483 	set_simple_ret_val(args, rc);
484 }
485 
486 static bool is_nil_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3)
487 {
488 	return !w0 && !w1 && !w2 && !w3;
489 }
490 
491 static bool is_my_uuid(uint32_t w0, uint32_t w1, uint32_t w2, uint32_t w3)
492 {
493 	/*
494 	 * This depends on which UUID we have been assigned.
495 	 * TODO add a generic mechanism to obtain our UUID.
496 	 *
497 	 * The test below is for the hard coded UUID
498 	 * 486178e0-e7f8-11e3-bc5e-0002a5d5c51b
499 	 */
500 	return w0 == my_uuid_words[0] && w1 == my_uuid_words[1] &&
501 	       w2 == my_uuid_words[2] && w3 == my_uuid_words[3];
502 }
503 
504 TEE_Result spmc_fill_partition_entry(uint32_t ffa_vers, void *buf, size_t blen,
505 				     size_t idx, uint16_t endpoint_id,
506 				     uint16_t execution_context,
507 				     uint32_t part_props,
508 				     const uint32_t uuid_words[4])
509 {
510 	struct ffa_partition_info_x *fpi = NULL;
511 	size_t fpi_size = sizeof(*fpi);
512 
513 	if (ffa_vers >= FFA_VERSION_1_1)
514 		fpi_size += FFA_UUID_SIZE;
515 
516 	if ((idx + 1) * fpi_size > blen)
517 		return TEE_ERROR_OUT_OF_MEMORY;
518 
519 	fpi = (void *)((vaddr_t)buf + idx * fpi_size);
520 	fpi->id = endpoint_id;
521 	/* Number of execution contexts implemented by this partition */
522 	fpi->execution_context = execution_context;
523 
524 	fpi->partition_properties = part_props;
525 
526 	/* In FF-A 1.0 only bits [2:0] are defined, let's mask others */
527 	if (ffa_vers < FFA_VERSION_1_1)
528 		fpi->partition_properties &= FFA_PART_PROP_DIRECT_REQ_RECV |
529 					     FFA_PART_PROP_DIRECT_REQ_SEND |
530 					     FFA_PART_PROP_INDIRECT_MSGS;
531 
532 	if (ffa_vers >= FFA_VERSION_1_1) {
533 		if (uuid_words)
534 			memcpy(fpi->uuid, uuid_words, FFA_UUID_SIZE);
535 		else
536 			memset(fpi->uuid, 0, FFA_UUID_SIZE);
537 	}
538 
539 	return TEE_SUCCESS;
540 }
541 
542 static int handle_partition_info_get_all(size_t *elem_count,
543 					 struct ffa_rxtx *rxtx, bool count_only)
544 {
545 	if (!count_only) {
546 		/* Add OP-TEE SP */
547 		if (spmc_fill_partition_entry(rxtx->ffa_vers, rxtx->tx,
548 					      rxtx->size, 0, optee_endpoint_id,
549 					      CFG_TEE_CORE_NB_CORE,
550 					      my_part_props, my_uuid_words))
551 			return FFA_NO_MEMORY;
552 	}
553 	*elem_count = 1;
554 
555 	if (IS_ENABLED(CFG_SECURE_PARTITION)) {
556 		if (sp_partition_info_get(rxtx->ffa_vers, rxtx->tx, rxtx->size,
557 					  NULL, elem_count, count_only))
558 			return FFA_NO_MEMORY;
559 	}
560 
561 	return FFA_OK;
562 }
563 
564 void spmc_handle_partition_info_get(struct thread_smc_args *args,
565 				    struct ffa_rxtx *rxtx)
566 {
567 	TEE_Result res = TEE_SUCCESS;
568 	uint32_t ret_fid = FFA_ERROR;
569 	uint32_t fpi_size = 0;
570 	uint32_t rc = 0;
571 	bool count_only = args->a5 & FFA_PARTITION_INFO_GET_COUNT_FLAG;
572 
573 	if (!count_only) {
574 		cpu_spin_lock(&rxtx->spinlock);
575 
576 		if (!rxtx->size || !rxtx->tx_is_mine) {
577 			rc = FFA_BUSY;
578 			goto out;
579 		}
580 	}
581 
582 	if (is_nil_uuid(args->a1, args->a2, args->a3, args->a4)) {
583 		size_t elem_count = 0;
584 
585 		ret_fid = handle_partition_info_get_all(&elem_count, rxtx,
586 							count_only);
587 
588 		if (ret_fid) {
589 			rc = ret_fid;
590 			ret_fid = FFA_ERROR;
591 		} else {
592 			ret_fid = FFA_SUCCESS_32;
593 			rc = elem_count;
594 		}
595 
596 		goto out;
597 	}
598 
599 	if (is_my_uuid(args->a1, args->a2, args->a3, args->a4)) {
600 		if (!count_only) {
601 			res = spmc_fill_partition_entry(rxtx->ffa_vers,
602 							rxtx->tx, rxtx->size, 0,
603 							optee_endpoint_id,
604 							CFG_TEE_CORE_NB_CORE,
605 							my_part_props,
606 							my_uuid_words);
607 			if (res) {
608 				ret_fid = FFA_ERROR;
609 				rc = FFA_INVALID_PARAMETERS;
610 				goto out;
611 			}
612 		}
613 		rc = 1;
614 	} else if (IS_ENABLED(CFG_SECURE_PARTITION)) {
615 		uint32_t uuid_array[4] = { 0 };
616 		TEE_UUID uuid = { };
617 		size_t count = 0;
618 
619 		uuid_array[0] = args->a1;
620 		uuid_array[1] = args->a2;
621 		uuid_array[2] = args->a3;
622 		uuid_array[3] = args->a4;
623 		tee_uuid_from_octets(&uuid, (uint8_t *)uuid_array);
624 
625 		res = sp_partition_info_get(rxtx->ffa_vers, rxtx->tx,
626 					    rxtx->size, &uuid, &count,
627 					    count_only);
628 		if (res != TEE_SUCCESS) {
629 			ret_fid = FFA_ERROR;
630 			rc = FFA_INVALID_PARAMETERS;
631 			goto out;
632 		}
633 		rc = count;
634 	} else {
635 		ret_fid = FFA_ERROR;
636 		rc = FFA_INVALID_PARAMETERS;
637 		goto out;
638 	}
639 
640 	ret_fid = FFA_SUCCESS_32;
641 
642 out:
643 	if (ret_fid == FFA_SUCCESS_32 && !count_only &&
644 	    rxtx->ffa_vers >= FFA_VERSION_1_1)
645 		fpi_size = sizeof(struct ffa_partition_info_x) + FFA_UUID_SIZE;
646 
647 	spmc_set_args(args, ret_fid, FFA_PARAM_MBZ, rc, fpi_size,
648 		      FFA_PARAM_MBZ, FFA_PARAM_MBZ);
649 	if (!count_only) {
650 		rxtx->tx_is_mine = false;
651 		cpu_spin_unlock(&rxtx->spinlock);
652 	}
653 }
654 
655 static void spmc_handle_run(struct thread_smc_args *args)
656 {
657 	uint16_t endpoint = FFA_TARGET_INFO_GET_SP_ID(args->a1);
658 	uint16_t thread_id = FFA_TARGET_INFO_GET_VCPU_ID(args->a1);
659 	uint32_t rc = FFA_OK;
660 
661 	if (endpoint != optee_endpoint_id) {
662 		/*
663 		 * The endpoint should be an SP, try to resume the SP from
664 		 * preempted into busy state.
665 		 */
666 		rc = spmc_sp_resume_from_preempted(endpoint);
667 		if (rc)
668 			goto out;
669 	}
670 
671 	thread_resume_from_rpc(thread_id, 0, 0, 0, 0);
672 
673 	/* thread_resume_from_rpc return only of the thread_id is invalid */
674 	rc = FFA_INVALID_PARAMETERS;
675 
676 out:
677 	set_simple_ret_val(args, rc);
678 }
679 #endif /*CFG_CORE_SEL1_SPMC*/
680 
681 static struct notif_vm_bitmap *get_notif_vm_bitmap(struct guest_partition *prtn,
682 						   uint16_t vm_id)
683 {
684 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
685 		if (!prtn)
686 			return NULL;
687 		assert(vm_id == virt_get_guest_id(prtn));
688 		return virt_get_guest_spec_data(prtn, notif_vm_bitmap_id);
689 	}
690 	if (vm_id)
691 		return NULL;
692 	return &default_notif_vm_bitmap;
693 }
694 
695 static uint32_t spmc_enable_async_notif(uint32_t bottom_half_value,
696 					uint16_t vm_id)
697 {
698 	struct guest_partition *prtn = NULL;
699 	struct notif_vm_bitmap *nvb = NULL;
700 	uint32_t old_itr_status = 0;
701 	uint32_t res = 0;
702 
703 	if (!spmc_notif_is_ready) {
704 		/*
705 		 * This should never happen, not if normal world respects the
706 		 * exchanged capabilities.
707 		 */
708 		EMSG("Asynchronous notifications are not ready");
709 		return TEE_ERROR_NOT_IMPLEMENTED;
710 	}
711 
712 	if (bottom_half_value >= OPTEE_FFA_MAX_ASYNC_NOTIF_VALUE) {
713 		EMSG("Invalid bottom half value %"PRIu32, bottom_half_value);
714 		return TEE_ERROR_BAD_PARAMETERS;
715 	}
716 
717 	prtn = virt_get_guest(vm_id);
718 	nvb = get_notif_vm_bitmap(prtn, vm_id);
719 	if (!nvb) {
720 		res = TEE_ERROR_BAD_PARAMETERS;
721 		goto out;
722 	}
723 
724 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
725 	nvb->do_bottom_half_value = bottom_half_value;
726 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
727 
728 	notif_deliver_atomic_event(NOTIF_EVENT_STARTED, vm_id);
729 	res = TEE_SUCCESS;
730 out:
731 	virt_put_guest(prtn);
732 	return res;
733 }
734 
735 static void handle_yielding_call(struct thread_smc_args *args,
736 				 uint32_t direct_resp_fid)
737 {
738 	TEE_Result res = 0;
739 
740 	thread_check_canaries();
741 
742 #ifdef ARM64
743 	/* Saving this for an eventual RPC */
744 	thread_get_core_local()->direct_resp_fid = direct_resp_fid;
745 #endif
746 
747 	if (args->a3 == OPTEE_FFA_YIELDING_CALL_RESUME) {
748 		/* Note connection to struct thread_rpc_arg::ret */
749 		thread_resume_from_rpc(args->a7, args->a4, args->a5, args->a6,
750 				       0);
751 		res = TEE_ERROR_BAD_PARAMETERS;
752 	} else {
753 		thread_alloc_and_run(args->a1, args->a3, args->a4, args->a5,
754 				     args->a6, args->a7);
755 		res = TEE_ERROR_BUSY;
756 	}
757 	spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1),
758 		      0, res, 0, 0);
759 }
760 
761 static uint32_t handle_unregister_shm(uint32_t a4, uint32_t a5)
762 {
763 	uint64_t cookie = reg_pair_to_64(a5, a4);
764 	uint32_t res = 0;
765 
766 	res = mobj_ffa_unregister_by_cookie(cookie);
767 	switch (res) {
768 	case TEE_SUCCESS:
769 	case TEE_ERROR_ITEM_NOT_FOUND:
770 		return 0;
771 	case TEE_ERROR_BUSY:
772 		EMSG("res %#"PRIx32, res);
773 		return FFA_BUSY;
774 	default:
775 		EMSG("res %#"PRIx32, res);
776 		return FFA_INVALID_PARAMETERS;
777 	}
778 }
779 
780 static void handle_blocking_call(struct thread_smc_args *args,
781 				 uint32_t direct_resp_fid)
782 {
783 	uint32_t sec_caps = 0;
784 
785 	switch (args->a3) {
786 	case OPTEE_FFA_GET_API_VERSION:
787 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
788 			      OPTEE_FFA_VERSION_MAJOR, OPTEE_FFA_VERSION_MINOR,
789 			      0);
790 		break;
791 	case OPTEE_FFA_GET_OS_VERSION:
792 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
793 			      CFG_OPTEE_REVISION_MAJOR,
794 			      CFG_OPTEE_REVISION_MINOR,
795 			      TEE_IMPL_GIT_SHA1 >> 32);
796 		break;
797 	case OPTEE_FFA_EXCHANGE_CAPABILITIES:
798 		sec_caps = OPTEE_FFA_SEC_CAP_ARG_OFFSET;
799 		if (spmc_notif_is_ready)
800 			sec_caps |= OPTEE_FFA_SEC_CAP_ASYNC_NOTIF;
801 		spmc_set_args(args, direct_resp_fid,
802 			      swap_src_dst(args->a1), 0, 0,
803 			      THREAD_RPC_MAX_NUM_PARAMS, sec_caps);
804 		break;
805 	case OPTEE_FFA_UNREGISTER_SHM:
806 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
807 			      handle_unregister_shm(args->a4, args->a5), 0, 0);
808 		break;
809 	case OPTEE_FFA_ENABLE_ASYNC_NOTIF:
810 		spmc_set_args(args, direct_resp_fid,
811 			      swap_src_dst(args->a1), 0,
812 			      spmc_enable_async_notif(args->a4,
813 						      FFA_SRC(args->a1)),
814 			      0, 0);
815 		break;
816 	default:
817 		EMSG("Unhandled blocking service ID %#"PRIx32,
818 		     (uint32_t)args->a3);
819 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
820 			      TEE_ERROR_BAD_PARAMETERS, 0, 0);
821 	}
822 }
823 
824 static void handle_framework_direct_request(struct thread_smc_args *args,
825 					    struct ffa_rxtx *rxtx,
826 					    uint32_t direct_resp_fid)
827 {
828 	uint32_t w0 = FFA_ERROR;
829 	uint32_t w1 = FFA_PARAM_MBZ;
830 	uint32_t w2 = FFA_NOT_SUPPORTED;
831 	uint32_t w3 = FFA_PARAM_MBZ;
832 
833 	switch (args->a2 & FFA_MSG_TYPE_MASK) {
834 	case FFA_MSG_SEND_VM_CREATED:
835 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
836 			uint16_t guest_id = args->a5;
837 			TEE_Result res = virt_guest_created(guest_id);
838 
839 			w0 = direct_resp_fid;
840 			w1 = swap_src_dst(args->a1);
841 			w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_CREATED;
842 			if (res == TEE_SUCCESS)
843 				w3 = FFA_OK;
844 			else if (res == TEE_ERROR_OUT_OF_MEMORY)
845 				w3 = FFA_DENIED;
846 			else
847 				w3 = FFA_INVALID_PARAMETERS;
848 		}
849 		break;
850 	case FFA_MSG_SEND_VM_DESTROYED:
851 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
852 			uint16_t guest_id = args->a5;
853 			TEE_Result res = virt_guest_destroyed(guest_id);
854 
855 			w0 = direct_resp_fid;
856 			w1 = swap_src_dst(args->a1);
857 			w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_RESP_VM_DESTROYED;
858 			if (res == TEE_SUCCESS)
859 				w3 = FFA_OK;
860 			else
861 				w3 = FFA_INVALID_PARAMETERS;
862 		}
863 		break;
864 	case FFA_MSG_VERSION_REQ:
865 		w0 = direct_resp_fid;
866 		w1 = swap_src_dst(args->a1);
867 		w2 = FFA_MSG_FLAG_FRAMEWORK | FFA_MSG_VERSION_RESP;
868 		w3 = spmc_exchange_version(args->a3, rxtx);
869 		break;
870 	default:
871 		break;
872 	}
873 	spmc_set_args(args, w0, w1, w2, w3, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
874 }
875 
876 static void handle_direct_request(struct thread_smc_args *args,
877 				  struct ffa_rxtx *rxtx)
878 {
879 	uint32_t direct_resp_fid = 0;
880 
881 	if (IS_ENABLED(CFG_SECURE_PARTITION) &&
882 	    FFA_DST(args->a1) != spmc_id &&
883 	    FFA_DST(args->a1) != optee_endpoint_id) {
884 		spmc_sp_start_thread(args);
885 		return;
886 	}
887 
888 	if (OPTEE_SMC_IS_64(args->a0))
889 		direct_resp_fid = FFA_MSG_SEND_DIRECT_RESP_64;
890 	else
891 		direct_resp_fid = FFA_MSG_SEND_DIRECT_RESP_32;
892 
893 	if (args->a2 & FFA_MSG_FLAG_FRAMEWORK) {
894 		handle_framework_direct_request(args, rxtx, direct_resp_fid);
895 		return;
896 	}
897 
898 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
899 	    virt_set_guest(get_sender_id(args->a1))) {
900 		spmc_set_args(args, direct_resp_fid, swap_src_dst(args->a1), 0,
901 			      TEE_ERROR_ITEM_NOT_FOUND, 0, 0);
902 		return;
903 	}
904 
905 	if (args->a3 & BIT32(OPTEE_FFA_YIELDING_CALL_BIT))
906 		handle_yielding_call(args, direct_resp_fid);
907 	else
908 		handle_blocking_call(args, direct_resp_fid);
909 
910 	/*
911 	 * Note that handle_yielding_call() typically only returns if a
912 	 * thread cannot be allocated or found. virt_unset_guest() is also
913 	 * called from thread_state_suspend() and thread_state_free().
914 	 */
915 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
916 		virt_unset_guest();
917 }
918 
919 int spmc_read_mem_transaction(uint32_t ffa_vers, void *buf, size_t blen,
920 			      struct ffa_mem_transaction_x *trans)
921 {
922 	uint16_t mem_reg_attr = 0;
923 	uint32_t flags = 0;
924 	uint32_t count = 0;
925 	uint32_t offs = 0;
926 	uint32_t size = 0;
927 	size_t n = 0;
928 
929 	if (!IS_ALIGNED_WITH_TYPE(buf, uint64_t))
930 		return FFA_INVALID_PARAMETERS;
931 
932 	if (ffa_vers >= FFA_VERSION_1_1) {
933 		struct ffa_mem_transaction_1_1 *descr = NULL;
934 
935 		if (blen < sizeof(*descr))
936 			return FFA_INVALID_PARAMETERS;
937 
938 		descr = buf;
939 		trans->sender_id = READ_ONCE(descr->sender_id);
940 		mem_reg_attr = READ_ONCE(descr->mem_reg_attr);
941 		flags = READ_ONCE(descr->flags);
942 		trans->global_handle = READ_ONCE(descr->global_handle);
943 		trans->tag = READ_ONCE(descr->tag);
944 
945 		count = READ_ONCE(descr->mem_access_count);
946 		size = READ_ONCE(descr->mem_access_size);
947 		offs = READ_ONCE(descr->mem_access_offs);
948 	} else {
949 		struct ffa_mem_transaction_1_0 *descr = NULL;
950 
951 		if (blen < sizeof(*descr))
952 			return FFA_INVALID_PARAMETERS;
953 
954 		descr = buf;
955 		trans->sender_id = READ_ONCE(descr->sender_id);
956 		mem_reg_attr = READ_ONCE(descr->mem_reg_attr);
957 		flags = READ_ONCE(descr->flags);
958 		trans->global_handle = READ_ONCE(descr->global_handle);
959 		trans->tag = READ_ONCE(descr->tag);
960 
961 		count = READ_ONCE(descr->mem_access_count);
962 		size = sizeof(struct ffa_mem_access);
963 		offs = offsetof(struct ffa_mem_transaction_1_0,
964 				mem_access_array);
965 	}
966 
967 	if (mem_reg_attr > UINT8_MAX || flags > UINT8_MAX ||
968 	    size > UINT8_MAX || count > UINT8_MAX || offs > UINT16_MAX)
969 		return FFA_INVALID_PARAMETERS;
970 
971 	/* Check that the endpoint memory access descriptor array fits */
972 	if (MUL_OVERFLOW(size, count, &n) || ADD_OVERFLOW(offs, n, &n) ||
973 	    n > blen)
974 		return FFA_INVALID_PARAMETERS;
975 
976 	trans->mem_reg_attr = mem_reg_attr;
977 	trans->flags = flags;
978 	trans->mem_access_size = size;
979 	trans->mem_access_count = count;
980 	trans->mem_access_offs = offs;
981 	return 0;
982 }
983 
984 #if defined(CFG_CORE_SEL1_SPMC)
985 static int get_acc_perms(vaddr_t mem_acc_base, unsigned int mem_access_size,
986 			 unsigned int mem_access_count, uint8_t *acc_perms,
987 			 unsigned int *region_offs)
988 {
989 	struct ffa_mem_access_perm *descr = NULL;
990 	struct ffa_mem_access *mem_acc = NULL;
991 	unsigned int n = 0;
992 
993 	for (n = 0; n < mem_access_count; n++) {
994 		mem_acc = (void *)(mem_acc_base + mem_access_size * n);
995 		descr = &mem_acc->access_perm;
996 		if (READ_ONCE(descr->endpoint_id) == optee_endpoint_id) {
997 			*acc_perms = READ_ONCE(descr->perm);
998 			*region_offs = READ_ONCE(mem_acc[n].region_offs);
999 			return 0;
1000 		}
1001 	}
1002 
1003 	return FFA_INVALID_PARAMETERS;
1004 }
1005 
1006 static int mem_share_init(struct ffa_mem_transaction_x *mem_trans, void *buf,
1007 			  size_t blen, unsigned int *page_count,
1008 			  unsigned int *region_count, size_t *addr_range_offs)
1009 {
1010 	const uint16_t exp_mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
1011 	const uint8_t exp_mem_acc_perm = FFA_MEM_ACC_RW;
1012 	struct ffa_mem_region *region_descr = NULL;
1013 	unsigned int region_descr_offs = 0;
1014 	uint8_t mem_acc_perm = 0;
1015 	size_t n = 0;
1016 
1017 	if (mem_trans->mem_reg_attr != exp_mem_reg_attr)
1018 		return FFA_INVALID_PARAMETERS;
1019 
1020 	/* Check that the access permissions matches what's expected */
1021 	if (get_acc_perms((vaddr_t)buf + mem_trans->mem_access_offs,
1022 			  mem_trans->mem_access_size,
1023 			  mem_trans->mem_access_count,
1024 			  &mem_acc_perm, &region_descr_offs) ||
1025 	    mem_acc_perm != exp_mem_acc_perm)
1026 		return FFA_INVALID_PARAMETERS;
1027 
1028 	/* Check that the Composite memory region descriptor fits */
1029 	if (ADD_OVERFLOW(region_descr_offs, sizeof(*region_descr), &n) ||
1030 	    n > blen)
1031 		return FFA_INVALID_PARAMETERS;
1032 
1033 	if (!IS_ALIGNED_WITH_TYPE((vaddr_t)buf + region_descr_offs,
1034 				  struct ffa_mem_region))
1035 		return FFA_INVALID_PARAMETERS;
1036 
1037 	region_descr = (struct ffa_mem_region *)((vaddr_t)buf +
1038 						 region_descr_offs);
1039 	*page_count = READ_ONCE(region_descr->total_page_count);
1040 	*region_count = READ_ONCE(region_descr->address_range_count);
1041 	*addr_range_offs = n;
1042 	return 0;
1043 }
1044 
1045 static int add_mem_share_helper(struct mem_share_state *s, void *buf,
1046 				size_t flen)
1047 {
1048 	unsigned int region_count = flen / sizeof(struct ffa_address_range);
1049 	struct ffa_address_range *arange = NULL;
1050 	unsigned int n = 0;
1051 
1052 	if (region_count > s->region_count)
1053 		region_count = s->region_count;
1054 
1055 	if (!IS_ALIGNED_WITH_TYPE(buf, struct ffa_address_range))
1056 		return FFA_INVALID_PARAMETERS;
1057 	arange = buf;
1058 
1059 	for (n = 0; n < region_count; n++) {
1060 		unsigned int page_count = READ_ONCE(arange[n].page_count);
1061 		uint64_t addr = READ_ONCE(arange[n].address);
1062 
1063 		if (mobj_ffa_add_pages_at(s->mf, &s->current_page_idx,
1064 					  addr, page_count))
1065 			return FFA_INVALID_PARAMETERS;
1066 	}
1067 
1068 	s->region_count -= region_count;
1069 	if (s->region_count)
1070 		return region_count * sizeof(*arange);
1071 
1072 	if (s->current_page_idx != s->page_count)
1073 		return FFA_INVALID_PARAMETERS;
1074 
1075 	return 0;
1076 }
1077 
1078 static int add_mem_share_frag(struct mem_frag_state *s, void *buf, size_t flen)
1079 {
1080 	int rc = 0;
1081 
1082 	rc = add_mem_share_helper(&s->share, buf, flen);
1083 	if (rc >= 0) {
1084 		if (!ADD_OVERFLOW(s->frag_offset, rc, &s->frag_offset)) {
1085 			/* We're not at the end of the descriptor yet */
1086 			if (s->share.region_count)
1087 				return s->frag_offset;
1088 
1089 			/* We're done */
1090 			rc = 0;
1091 		} else {
1092 			rc = FFA_INVALID_PARAMETERS;
1093 		}
1094 	}
1095 
1096 	SLIST_REMOVE(&frag_state_head, s, mem_frag_state, link);
1097 	if (rc < 0)
1098 		mobj_ffa_sel1_spmc_delete(s->share.mf);
1099 	else
1100 		mobj_ffa_push_to_inactive(s->share.mf);
1101 	free(s);
1102 
1103 	return rc;
1104 }
1105 
1106 static bool is_sp_share(struct ffa_mem_transaction_x *mem_trans,
1107 			void *buf)
1108 {
1109 	struct ffa_mem_access_perm *perm = NULL;
1110 	struct ffa_mem_access *mem_acc = NULL;
1111 
1112 	if (!IS_ENABLED(CFG_SECURE_PARTITION))
1113 		return false;
1114 
1115 	if (mem_trans->mem_access_count < 1)
1116 		return false;
1117 
1118 	mem_acc = (void *)((vaddr_t)buf + mem_trans->mem_access_offs);
1119 	perm = &mem_acc->access_perm;
1120 
1121 	/*
1122 	 * perm->endpoint_id is read here only to check if the endpoint is
1123 	 * OP-TEE. We do read it later on again, but there are some additional
1124 	 * checks there to make sure that the data is correct.
1125 	 */
1126 	return READ_ONCE(perm->endpoint_id) != optee_endpoint_id;
1127 }
1128 
1129 static int add_mem_share(struct ffa_mem_transaction_x *mem_trans,
1130 			 tee_mm_entry_t *mm, void *buf, size_t blen,
1131 			 size_t flen, uint64_t *global_handle)
1132 {
1133 	int rc = 0;
1134 	struct mem_share_state share = { };
1135 	size_t addr_range_offs = 0;
1136 	uint64_t cookie = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID;
1137 	size_t n = 0;
1138 
1139 	rc = mem_share_init(mem_trans, buf, flen, &share.page_count,
1140 			    &share.region_count, &addr_range_offs);
1141 	if (rc)
1142 		return rc;
1143 
1144 	if (!share.page_count || !share.region_count)
1145 		return FFA_INVALID_PARAMETERS;
1146 
1147 	if (MUL_OVERFLOW(share.region_count,
1148 			 sizeof(struct ffa_address_range), &n) ||
1149 	    ADD_OVERFLOW(n, addr_range_offs, &n) || n > blen)
1150 		return FFA_INVALID_PARAMETERS;
1151 
1152 	if (mem_trans->global_handle)
1153 		cookie = mem_trans->global_handle;
1154 	share.mf = mobj_ffa_sel1_spmc_new(cookie, share.page_count);
1155 	if (!share.mf)
1156 		return FFA_NO_MEMORY;
1157 
1158 	if (flen != blen) {
1159 		struct mem_frag_state *s = calloc(1, sizeof(*s));
1160 
1161 		if (!s) {
1162 			rc = FFA_NO_MEMORY;
1163 			goto err;
1164 		}
1165 		s->share = share;
1166 		s->mm = mm;
1167 		s->frag_offset = addr_range_offs;
1168 
1169 		SLIST_INSERT_HEAD(&frag_state_head, s, link);
1170 		rc = add_mem_share_frag(s, (char *)buf + addr_range_offs,
1171 					flen - addr_range_offs);
1172 
1173 		if (rc >= 0)
1174 			*global_handle = mobj_ffa_get_cookie(share.mf);
1175 
1176 		return rc;
1177 	}
1178 
1179 	rc = add_mem_share_helper(&share, (char *)buf + addr_range_offs,
1180 				  flen - addr_range_offs);
1181 	if (rc) {
1182 		/*
1183 		 * Number of consumed bytes may be returned instead of 0 for
1184 		 * done.
1185 		 */
1186 		rc = FFA_INVALID_PARAMETERS;
1187 		goto err;
1188 	}
1189 
1190 	*global_handle = mobj_ffa_push_to_inactive(share.mf);
1191 
1192 	return 0;
1193 err:
1194 	mobj_ffa_sel1_spmc_delete(share.mf);
1195 	return rc;
1196 }
1197 
1198 static int handle_mem_share_tmem(paddr_t pbuf, size_t blen, size_t flen,
1199 				 unsigned int page_count,
1200 				 uint64_t *global_handle, struct ffa_rxtx *rxtx)
1201 {
1202 	struct ffa_mem_transaction_x mem_trans = { };
1203 	int rc = 0;
1204 	size_t len = 0;
1205 	void *buf = NULL;
1206 	tee_mm_entry_t *mm = NULL;
1207 	vaddr_t offs = pbuf & SMALL_PAGE_MASK;
1208 
1209 	if (MUL_OVERFLOW(page_count, SMALL_PAGE_SIZE, &len))
1210 		return FFA_INVALID_PARAMETERS;
1211 	if (!core_pbuf_is(CORE_MEM_NON_SEC, pbuf, len))
1212 		return FFA_INVALID_PARAMETERS;
1213 
1214 	/*
1215 	 * Check that the length reported in flen is covered by len even
1216 	 * if the offset is taken into account.
1217 	 */
1218 	if (len < flen || len - offs < flen)
1219 		return FFA_INVALID_PARAMETERS;
1220 
1221 	mm = tee_mm_alloc(&core_virt_shm_pool, len);
1222 	if (!mm)
1223 		return FFA_NO_MEMORY;
1224 
1225 	if (core_mmu_map_contiguous_pages(tee_mm_get_smem(mm), pbuf,
1226 					  page_count, MEM_AREA_NSEC_SHM)) {
1227 		rc = FFA_INVALID_PARAMETERS;
1228 		goto out;
1229 	}
1230 	buf = (void *)(tee_mm_get_smem(mm) + offs);
1231 
1232 	cpu_spin_lock(&rxtx->spinlock);
1233 	rc = spmc_read_mem_transaction(rxtx->ffa_vers, buf, flen, &mem_trans);
1234 	if (rc)
1235 		goto unlock;
1236 
1237 	if (is_sp_share(&mem_trans, buf)) {
1238 		rc = spmc_sp_add_share(&mem_trans, buf, blen, flen,
1239 				       global_handle, NULL);
1240 		goto unlock;
1241 	}
1242 
1243 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
1244 	    virt_set_guest(mem_trans.sender_id)) {
1245 		rc = FFA_DENIED;
1246 		goto unlock;
1247 	}
1248 
1249 	rc = add_mem_share(&mem_trans, mm, buf, blen, flen, global_handle);
1250 
1251 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1252 		virt_unset_guest();
1253 
1254 unlock:
1255 	cpu_spin_unlock(&rxtx->spinlock);
1256 	if (rc > 0)
1257 		return rc;
1258 
1259 	core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count);
1260 out:
1261 	tee_mm_free(mm);
1262 	return rc;
1263 }
1264 
1265 static int handle_mem_share_rxbuf(size_t blen, size_t flen,
1266 				  uint64_t *global_handle,
1267 				  struct ffa_rxtx *rxtx)
1268 {
1269 	struct ffa_mem_transaction_x mem_trans = { };
1270 	int rc = FFA_DENIED;
1271 
1272 	cpu_spin_lock(&rxtx->spinlock);
1273 
1274 	if (!rxtx->rx || flen > rxtx->size)
1275 		goto out;
1276 
1277 	rc = spmc_read_mem_transaction(rxtx->ffa_vers, rxtx->rx, flen,
1278 				       &mem_trans);
1279 	if (rc)
1280 		goto out;
1281 	if (is_sp_share(&mem_trans, rxtx->rx)) {
1282 		rc = spmc_sp_add_share(&mem_trans, rxtx, blen, flen,
1283 				       global_handle, NULL);
1284 		goto out;
1285 	}
1286 
1287 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
1288 	    virt_set_guest(mem_trans.sender_id))
1289 		goto out;
1290 
1291 	rc = add_mem_share(&mem_trans, NULL, rxtx->rx, blen, flen,
1292 			   global_handle);
1293 
1294 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1295 		virt_unset_guest();
1296 
1297 out:
1298 	cpu_spin_unlock(&rxtx->spinlock);
1299 
1300 	return rc;
1301 }
1302 
1303 static void handle_mem_share(struct thread_smc_args *args,
1304 			     struct ffa_rxtx *rxtx)
1305 {
1306 	uint32_t tot_len = args->a1;
1307 	uint32_t frag_len = args->a2;
1308 	uint64_t addr = args->a3;
1309 	uint32_t page_count = args->a4;
1310 	uint32_t ret_w1 = 0;
1311 	uint32_t ret_w2 = FFA_INVALID_PARAMETERS;
1312 	uint32_t ret_w3 = 0;
1313 	uint32_t ret_fid = FFA_ERROR;
1314 	uint64_t global_handle = 0;
1315 	int rc = 0;
1316 
1317 	/* Check that the MBZs are indeed 0 */
1318 	if (args->a5 || args->a6 || args->a7)
1319 		goto out;
1320 
1321 	/* Check that fragment length doesn't exceed total length */
1322 	if (frag_len > tot_len)
1323 		goto out;
1324 
1325 	/* Check for 32-bit calling convention */
1326 	if (args->a0 == FFA_MEM_SHARE_32)
1327 		addr &= UINT32_MAX;
1328 
1329 	if (!addr) {
1330 		/*
1331 		 * The memory transaction descriptor is passed via our rx
1332 		 * buffer.
1333 		 */
1334 		if (page_count)
1335 			goto out;
1336 		rc = handle_mem_share_rxbuf(tot_len, frag_len, &global_handle,
1337 					    rxtx);
1338 	} else {
1339 		rc = handle_mem_share_tmem(addr, tot_len, frag_len, page_count,
1340 					   &global_handle, rxtx);
1341 	}
1342 	if (rc < 0) {
1343 		ret_w2 = rc;
1344 	} else if (rc > 0) {
1345 		ret_fid = FFA_MEM_FRAG_RX;
1346 		ret_w3 = rc;
1347 		reg_pair_from_64(global_handle, &ret_w2, &ret_w1);
1348 	} else {
1349 		ret_fid = FFA_SUCCESS_32;
1350 		reg_pair_from_64(global_handle, &ret_w3, &ret_w2);
1351 	}
1352 out:
1353 	spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0);
1354 }
1355 
1356 static struct mem_frag_state *get_frag_state(uint64_t global_handle)
1357 {
1358 	struct mem_frag_state *s = NULL;
1359 
1360 	SLIST_FOREACH(s, &frag_state_head, link)
1361 		if (mobj_ffa_get_cookie(s->share.mf) == global_handle)
1362 			return s;
1363 
1364 	return NULL;
1365 }
1366 
1367 static void handle_mem_frag_tx(struct thread_smc_args *args,
1368 			       struct ffa_rxtx *rxtx)
1369 {
1370 	uint64_t global_handle = reg_pair_to_64(args->a2, args->a1);
1371 	size_t flen = args->a3;
1372 	uint32_t endpoint_id = args->a4;
1373 	struct mem_frag_state *s = NULL;
1374 	tee_mm_entry_t *mm = NULL;
1375 	unsigned int page_count = 0;
1376 	void *buf = NULL;
1377 	uint32_t ret_w1 = 0;
1378 	uint32_t ret_w2 = 0;
1379 	uint32_t ret_w3 = 0;
1380 	uint32_t ret_fid = 0;
1381 	int rc = 0;
1382 
1383 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1384 		uint16_t guest_id = endpoint_id >> 16;
1385 
1386 		if (!guest_id || virt_set_guest(guest_id)) {
1387 			rc = FFA_INVALID_PARAMETERS;
1388 			goto out_set_rc;
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * Currently we're only doing this for fragmented FFA_MEM_SHARE_*
1394 	 * requests.
1395 	 */
1396 
1397 	cpu_spin_lock(&rxtx->spinlock);
1398 
1399 	s = get_frag_state(global_handle);
1400 	if (!s) {
1401 		rc = FFA_INVALID_PARAMETERS;
1402 		goto out;
1403 	}
1404 
1405 	mm = s->mm;
1406 	if (mm) {
1407 		if (flen > tee_mm_get_bytes(mm)) {
1408 			rc = FFA_INVALID_PARAMETERS;
1409 			goto out;
1410 		}
1411 		page_count = s->share.page_count;
1412 		buf = (void *)tee_mm_get_smem(mm);
1413 	} else {
1414 		if (flen > rxtx->size) {
1415 			rc = FFA_INVALID_PARAMETERS;
1416 			goto out;
1417 		}
1418 		buf = rxtx->rx;
1419 	}
1420 
1421 	rc = add_mem_share_frag(s, buf, flen);
1422 out:
1423 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1424 		virt_unset_guest();
1425 
1426 	cpu_spin_unlock(&rxtx->spinlock);
1427 
1428 	if (rc <= 0 && mm) {
1429 		core_mmu_unmap_pages(tee_mm_get_smem(mm), page_count);
1430 		tee_mm_free(mm);
1431 	}
1432 
1433 out_set_rc:
1434 	if (rc < 0) {
1435 		ret_fid = FFA_ERROR;
1436 		ret_w2 = rc;
1437 	} else if (rc > 0) {
1438 		ret_fid = FFA_MEM_FRAG_RX;
1439 		ret_w3 = rc;
1440 		reg_pair_from_64(global_handle, &ret_w2, &ret_w1);
1441 	} else {
1442 		ret_fid = FFA_SUCCESS_32;
1443 		reg_pair_from_64(global_handle, &ret_w3, &ret_w2);
1444 	}
1445 
1446 	spmc_set_args(args, ret_fid, ret_w1, ret_w2, ret_w3, 0, 0);
1447 }
1448 
1449 static void handle_mem_reclaim(struct thread_smc_args *args)
1450 {
1451 	int rc = FFA_INVALID_PARAMETERS;
1452 	uint64_t cookie = 0;
1453 
1454 	if (args->a3 || args->a4 || args->a5 || args->a6 || args->a7)
1455 		goto out;
1456 
1457 	cookie = reg_pair_to_64(args->a2, args->a1);
1458 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1459 		uint16_t guest_id = 0;
1460 
1461 		if (cookie & FFA_MEMORY_HANDLE_HYPERVISOR_BIT) {
1462 			guest_id = virt_find_guest_by_cookie(cookie);
1463 		} else {
1464 			guest_id = (cookie >> FFA_MEMORY_HANDLE_PRTN_SHIFT) &
1465 				   FFA_MEMORY_HANDLE_PRTN_MASK;
1466 		}
1467 		if (!guest_id)
1468 			goto out;
1469 		if (virt_set_guest(guest_id)) {
1470 			if (!virt_reclaim_cookie_from_destroyed_guest(guest_id,
1471 								      cookie))
1472 				rc = FFA_OK;
1473 			goto out;
1474 		}
1475 	}
1476 
1477 	switch (mobj_ffa_sel1_spmc_reclaim(cookie)) {
1478 	case TEE_SUCCESS:
1479 		rc = FFA_OK;
1480 		break;
1481 	case TEE_ERROR_ITEM_NOT_FOUND:
1482 		DMSG("cookie %#"PRIx64" not found", cookie);
1483 		rc = FFA_INVALID_PARAMETERS;
1484 		break;
1485 	default:
1486 		DMSG("cookie %#"PRIx64" busy", cookie);
1487 		rc = FFA_DENIED;
1488 		break;
1489 	}
1490 
1491 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1492 		virt_unset_guest();
1493 
1494 out:
1495 	set_simple_ret_val(args, rc);
1496 }
1497 
1498 static void handle_notification_bitmap_create(struct thread_smc_args *args)
1499 {
1500 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1501 	uint32_t ret_fid = FFA_ERROR;
1502 	uint32_t old_itr_status = 0;
1503 
1504 	if (!FFA_TARGET_INFO_GET_SP_ID(args->a1) && !args->a3 && !args->a4 &&
1505 	    !args->a5 && !args->a6 && !args->a7) {
1506 		struct guest_partition *prtn = NULL;
1507 		struct notif_vm_bitmap *nvb = NULL;
1508 		uint16_t vm_id = args->a1;
1509 
1510 		prtn = virt_get_guest(vm_id);
1511 		nvb = get_notif_vm_bitmap(prtn, vm_id);
1512 		if (!nvb) {
1513 			ret_val = FFA_INVALID_PARAMETERS;
1514 			goto out_virt_put;
1515 		}
1516 
1517 		old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1518 
1519 		if (nvb->initialized) {
1520 			ret_val = FFA_DENIED;
1521 			goto out_unlock;
1522 		}
1523 
1524 		nvb->initialized = true;
1525 		nvb->do_bottom_half_value = -1;
1526 		ret_val = FFA_OK;
1527 		ret_fid = FFA_SUCCESS_32;
1528 out_unlock:
1529 		cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1530 out_virt_put:
1531 		virt_put_guest(prtn);
1532 	}
1533 
1534 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1535 }
1536 
1537 static void handle_notification_bitmap_destroy(struct thread_smc_args *args)
1538 {
1539 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1540 	uint32_t ret_fid = FFA_ERROR;
1541 	uint32_t old_itr_status = 0;
1542 
1543 	if (!FFA_TARGET_INFO_GET_SP_ID(args->a1) && !args->a3 && !args->a4 &&
1544 	    !args->a5 && !args->a6 && !args->a7) {
1545 		struct guest_partition *prtn = NULL;
1546 		struct notif_vm_bitmap *nvb = NULL;
1547 		uint16_t vm_id = args->a1;
1548 
1549 		prtn = virt_get_guest(vm_id);
1550 		nvb = get_notif_vm_bitmap(prtn, vm_id);
1551 		if (!nvb) {
1552 			ret_val = FFA_INVALID_PARAMETERS;
1553 			goto out_virt_put;
1554 		}
1555 
1556 		old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1557 
1558 		if (nvb->pending || nvb->bound) {
1559 			ret_val = FFA_DENIED;
1560 			goto out_unlock;
1561 		}
1562 
1563 		memset(nvb, 0, sizeof(*nvb));
1564 		ret_val = FFA_OK;
1565 		ret_fid = FFA_SUCCESS_32;
1566 out_unlock:
1567 		cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1568 out_virt_put:
1569 		virt_put_guest(prtn);
1570 	}
1571 
1572 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1573 }
1574 
1575 static void handle_notification_bind(struct thread_smc_args *args)
1576 {
1577 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1578 	struct guest_partition *prtn = NULL;
1579 	struct notif_vm_bitmap *nvb = NULL;
1580 	uint32_t ret_fid = FFA_ERROR;
1581 	uint32_t old_itr_status = 0;
1582 	uint64_t bitmap = 0;
1583 	uint16_t vm_id = 0;
1584 
1585 	if (args->a5 || args->a6 || args->a7)
1586 		goto out;
1587 	if (args->a2) {
1588 		/* We only deal with global notifications */
1589 		ret_val = FFA_DENIED;
1590 		goto out;
1591 	}
1592 
1593 	/* The destination of the eventual notification */
1594 	vm_id = FFA_DST(args->a1);
1595 	bitmap = reg_pair_to_64(args->a4, args->a3);
1596 
1597 	prtn = virt_get_guest(vm_id);
1598 	nvb = get_notif_vm_bitmap(prtn, vm_id);
1599 	if (!nvb) {
1600 		ret_val = FFA_INVALID_PARAMETERS;
1601 		goto out_virt_put;
1602 	}
1603 
1604 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1605 
1606 	if ((bitmap & nvb->bound)) {
1607 		ret_val = FFA_DENIED;
1608 	} else {
1609 		nvb->bound |= bitmap;
1610 		ret_val = FFA_OK;
1611 		ret_fid = FFA_SUCCESS_32;
1612 	}
1613 
1614 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1615 out_virt_put:
1616 	virt_put_guest(prtn);
1617 out:
1618 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1619 }
1620 
1621 static void handle_notification_unbind(struct thread_smc_args *args)
1622 {
1623 	uint32_t ret_val = FFA_INVALID_PARAMETERS;
1624 	struct guest_partition *prtn = NULL;
1625 	struct notif_vm_bitmap *nvb = NULL;
1626 	uint32_t ret_fid = FFA_ERROR;
1627 	uint32_t old_itr_status = 0;
1628 	uint64_t bitmap = 0;
1629 	uint16_t vm_id = 0;
1630 
1631 	if (args->a2 || args->a5 || args->a6 || args->a7)
1632 		goto out;
1633 
1634 	/* The destination of the eventual notification */
1635 	vm_id = FFA_DST(args->a1);
1636 	bitmap = reg_pair_to_64(args->a4, args->a3);
1637 
1638 	prtn = virt_get_guest(vm_id);
1639 	nvb = get_notif_vm_bitmap(prtn, vm_id);
1640 	if (!nvb) {
1641 		ret_val = FFA_INVALID_PARAMETERS;
1642 		goto out_virt_put;
1643 	}
1644 
1645 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1646 
1647 	if (bitmap & nvb->pending) {
1648 		ret_val = FFA_DENIED;
1649 	} else {
1650 		nvb->bound &= ~bitmap;
1651 		ret_val = FFA_OK;
1652 		ret_fid = FFA_SUCCESS_32;
1653 	}
1654 
1655 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1656 out_virt_put:
1657 	virt_put_guest(prtn);
1658 out:
1659 	spmc_set_args(args, ret_fid, 0, ret_val, 0, 0, 0);
1660 }
1661 
1662 static void handle_notification_get(struct thread_smc_args *args)
1663 {
1664 	uint32_t w2 = FFA_INVALID_PARAMETERS;
1665 	struct guest_partition *prtn = NULL;
1666 	struct notif_vm_bitmap *nvb = NULL;
1667 	uint32_t ret_fid = FFA_ERROR;
1668 	uint32_t old_itr_status = 0;
1669 	uint16_t vm_id = 0;
1670 	uint32_t w3 = 0;
1671 
1672 	if (args->a5 || args->a6 || args->a7)
1673 		goto out;
1674 	if (!(args->a2 & 0x1)) {
1675 		ret_fid = FFA_SUCCESS_32;
1676 		w2 = 0;
1677 		goto out;
1678 	}
1679 	vm_id = FFA_DST(args->a1);
1680 
1681 	prtn = virt_get_guest(vm_id);
1682 	nvb = get_notif_vm_bitmap(prtn, vm_id);
1683 	if (!nvb)
1684 		goto out_virt_put;
1685 
1686 	old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1687 
1688 	reg_pair_from_64(nvb->pending, &w3, &w2);
1689 	nvb->pending = 0;
1690 	ret_fid = FFA_SUCCESS_32;
1691 
1692 	cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1693 out_virt_put:
1694 	virt_put_guest(prtn);
1695 out:
1696 	spmc_set_args(args, ret_fid, 0, w2, w3, 0, 0);
1697 }
1698 
1699 struct notif_info_get_state {
1700 	struct thread_smc_args *args;
1701 	unsigned int ids_per_reg;
1702 	unsigned int ids_count;
1703 	unsigned int id_pos;
1704 	unsigned int count;
1705 	unsigned int max_list_count;
1706 	unsigned int list_count;
1707 };
1708 
1709 static unsigned long get_smc_arg(struct thread_smc_args *args, unsigned int idx)
1710 {
1711 	switch (idx) {
1712 	case 0:
1713 		return args->a0;
1714 	case 1:
1715 		return args->a1;
1716 	case 2:
1717 		return args->a2;
1718 	case 3:
1719 		return args->a3;
1720 	case 4:
1721 		return args->a4;
1722 	case 5:
1723 		return args->a5;
1724 	case 6:
1725 		return args->a6;
1726 	case 7:
1727 		return args->a7;
1728 	default:
1729 		assert(0);
1730 		return 0;
1731 	}
1732 }
1733 
1734 static void set_smc_arg(struct thread_smc_args *args, unsigned int idx,
1735 			unsigned long val)
1736 {
1737 	switch (idx) {
1738 	case 0:
1739 		args->a0 = val;
1740 		break;
1741 	case 1:
1742 		args->a1 = val;
1743 		break;
1744 	case 2:
1745 		args->a2 = val;
1746 		break;
1747 	case 3:
1748 		args->a3 = val;
1749 		break;
1750 	case 4:
1751 		args->a4 = val;
1752 		break;
1753 	case 5:
1754 		args->a5 = val;
1755 		break;
1756 	case 6:
1757 		args->a6 = val;
1758 		break;
1759 	case 7:
1760 		args->a7 = val;
1761 		break;
1762 	default:
1763 		assert(0);
1764 	}
1765 }
1766 
1767 static bool add_id_in_regs(struct notif_info_get_state *state,
1768 			   uint16_t id)
1769 {
1770 	unsigned int reg_idx = state->id_pos / state->ids_per_reg + 3;
1771 	unsigned int reg_shift = (state->id_pos % state->ids_per_reg) * 16;
1772 	unsigned long v;
1773 
1774 	if (reg_idx > 7)
1775 		return false;
1776 
1777 	v = get_smc_arg(state->args, reg_idx);
1778 	v &= ~(0xffffUL << reg_shift);
1779 	v |= (unsigned long)id << reg_shift;
1780 	set_smc_arg(state->args, reg_idx, v);
1781 
1782 	state->id_pos++;
1783 	state->count++;
1784 	return true;
1785 }
1786 
1787 static bool add_id_count(struct notif_info_get_state *state)
1788 {
1789 	assert(state->list_count < state->max_list_count &&
1790 	       state->count >= 1 && state->count <= 4);
1791 
1792 	state->ids_count |= (state->count - 1) << (state->list_count * 2 + 12);
1793 	state->list_count++;
1794 	state->count = 0;
1795 
1796 	return state->list_count < state->max_list_count;
1797 }
1798 
1799 static bool add_nvb_to_state(struct notif_info_get_state *state,
1800 			     uint16_t guest_id, struct notif_vm_bitmap *nvb)
1801 {
1802 	if (!nvb->pending)
1803 		return true;
1804 	/*
1805 	 * Add only the guest_id, meaning a global notification for this
1806 	 * guest.
1807 	 *
1808 	 * If notifications for one or more specific vCPUs we'd add those
1809 	 * before calling add_id_count(), but that's not supported.
1810 	 */
1811 	return add_id_in_regs(state, guest_id) && add_id_count(state);
1812 }
1813 
1814 static void handle_notification_info_get(struct thread_smc_args *args)
1815 {
1816 	struct notif_info_get_state state = { .args = args };
1817 	uint32_t ffa_res = FFA_INVALID_PARAMETERS;
1818 	struct guest_partition *prtn = NULL;
1819 	struct notif_vm_bitmap *nvb = NULL;
1820 	uint32_t more_pending_flag = 0;
1821 	uint32_t itr_state = 0;
1822 	uint16_t guest_id = 0;
1823 
1824 	if (args->a1 || args->a2 || args->a3 || args->a4 || args->a5 ||
1825 	    args->a6 || args->a7)
1826 		goto err;
1827 
1828 	if (OPTEE_SMC_IS_64(args->a0)) {
1829 		spmc_set_args(args, FFA_SUCCESS_64, 0, 0, 0, 0, 0);
1830 		state.ids_per_reg = 4;
1831 		state.max_list_count = 31;
1832 	} else {
1833 		spmc_set_args(args, FFA_SUCCESS_32, 0, 0, 0, 0, 0);
1834 		state.ids_per_reg = 2;
1835 		state.max_list_count = 15;
1836 	}
1837 
1838 	while (true) {
1839 		/*
1840 		 * With NS-Virtualization we need to go through all
1841 		 * partitions to collect the notification bitmaps, without
1842 		 * we just check the only notification bitmap we have.
1843 		 */
1844 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1845 			prtn = virt_next_guest(prtn);
1846 			if (!prtn)
1847 				break;
1848 			guest_id = virt_get_guest_id(prtn);
1849 		}
1850 		nvb = get_notif_vm_bitmap(prtn, guest_id);
1851 
1852 		itr_state = cpu_spin_lock_xsave(&spmc_notif_lock);
1853 		if (!add_nvb_to_state(&state, guest_id, nvb))
1854 			more_pending_flag = BIT(0);
1855 		cpu_spin_unlock_xrestore(&spmc_notif_lock, itr_state);
1856 
1857 		if (!IS_ENABLED(CFG_NS_VIRTUALIZATION) || more_pending_flag)
1858 			break;
1859 	}
1860 	virt_put_guest(prtn);
1861 
1862 	if (!state.id_pos) {
1863 		ffa_res = FFA_NO_DATA;
1864 		goto err;
1865 	}
1866 	args->a2 = (state.list_count << FFA_NOTIF_INFO_GET_ID_COUNT_SHIFT) |
1867 		   (state.ids_count << FFA_NOTIF_INFO_GET_ID_LIST_SHIFT) |
1868 		   more_pending_flag;
1869 	return;
1870 err:
1871 	spmc_set_args(args, FFA_ERROR, 0, ffa_res, 0, 0, 0);
1872 }
1873 
1874 void thread_spmc_set_async_notif_intid(int intid)
1875 {
1876 	assert(interrupt_can_raise_sgi(interrupt_get_main_chip()));
1877 	notif_intid = intid;
1878 	spmc_notif_is_ready = true;
1879 	DMSG("Asynchronous notifications are ready");
1880 }
1881 
1882 void notif_send_async(uint32_t value, uint16_t guest_id)
1883 {
1884 	struct guest_partition *prtn = NULL;
1885 	struct notif_vm_bitmap *nvb = NULL;
1886 	uint32_t old_itr_status = 0;
1887 
1888 	prtn = virt_get_guest(guest_id);
1889 	nvb = get_notif_vm_bitmap(prtn, guest_id);
1890 
1891 	if (nvb) {
1892 		old_itr_status = cpu_spin_lock_xsave(&spmc_notif_lock);
1893 		assert(value == NOTIF_VALUE_DO_BOTTOM_HALF &&
1894 		       spmc_notif_is_ready && nvb->do_bottom_half_value >= 0 &&
1895 		       notif_intid >= 0);
1896 		nvb->pending |= BIT64(nvb->do_bottom_half_value);
1897 		interrupt_raise_sgi(interrupt_get_main_chip(), notif_intid,
1898 				    ITR_CPU_MASK_TO_THIS_CPU);
1899 		cpu_spin_unlock_xrestore(&spmc_notif_lock, old_itr_status);
1900 	}
1901 
1902 	virt_put_guest(prtn);
1903 }
1904 #else
1905 void notif_send_async(uint32_t value, uint16_t guest_id)
1906 {
1907 	struct guest_partition *prtn = NULL;
1908 	struct notif_vm_bitmap *nvb = NULL;
1909 	/* global notification, delay notification interrupt */
1910 	uint32_t flags = BIT32(1);
1911 	int res = 0;
1912 
1913 	prtn = virt_get_guest(guest_id);
1914 	nvb = get_notif_vm_bitmap(prtn, guest_id);
1915 
1916 	if (nvb) {
1917 		assert(value == NOTIF_VALUE_DO_BOTTOM_HALF &&
1918 		       spmc_notif_is_ready && nvb->do_bottom_half_value >= 0);
1919 		res = ffa_set_notification(guest_id, optee_endpoint_id, flags,
1920 					   BIT64(nvb->do_bottom_half_value));
1921 		if (res) {
1922 			EMSG("notification set failed with error %d", res);
1923 			panic();
1924 		}
1925 	}
1926 
1927 	virt_put_guest(prtn);
1928 }
1929 #endif
1930 
1931 /* Only called from assembly */
1932 void thread_spmc_msg_recv(struct thread_smc_args *args);
1933 void thread_spmc_msg_recv(struct thread_smc_args *args)
1934 {
1935 	assert((thread_get_exceptions() & THREAD_EXCP_ALL) == THREAD_EXCP_ALL);
1936 	switch (args->a0) {
1937 #if defined(CFG_CORE_SEL1_SPMC)
1938 	case FFA_FEATURES:
1939 		handle_features(args);
1940 		break;
1941 	case FFA_SPM_ID_GET:
1942 		spmc_handle_spm_id_get(args);
1943 		break;
1944 #ifdef ARM64
1945 	case FFA_RXTX_MAP_64:
1946 #endif
1947 	case FFA_RXTX_MAP_32:
1948 		spmc_handle_rxtx_map(args, &my_rxtx);
1949 		break;
1950 	case FFA_RXTX_UNMAP:
1951 		spmc_handle_rxtx_unmap(args, &my_rxtx);
1952 		break;
1953 	case FFA_RX_RELEASE:
1954 		spmc_handle_rx_release(args, &my_rxtx);
1955 		break;
1956 	case FFA_PARTITION_INFO_GET:
1957 		spmc_handle_partition_info_get(args, &my_rxtx);
1958 		break;
1959 	case FFA_RUN:
1960 		spmc_handle_run(args);
1961 		break;
1962 #endif /*CFG_CORE_SEL1_SPMC*/
1963 	case FFA_INTERRUPT:
1964 		if (IS_ENABLED(CFG_CORE_SEL1_SPMC))
1965 			spmc_set_args(args, FFA_NORMAL_WORLD_RESUME, 0, 0, 0,
1966 				      0, 0);
1967 		else
1968 			spmc_set_args(args, FFA_MSG_WAIT, 0, 0, 0, 0, 0);
1969 		break;
1970 #ifdef ARM64
1971 	case FFA_MSG_SEND_DIRECT_REQ_64:
1972 #endif
1973 	case FFA_MSG_SEND_DIRECT_REQ_32:
1974 		handle_direct_request(args, &my_rxtx);
1975 		break;
1976 #if defined(CFG_CORE_SEL1_SPMC)
1977 #ifdef ARM64
1978 	case FFA_MEM_SHARE_64:
1979 #endif
1980 	case FFA_MEM_SHARE_32:
1981 		handle_mem_share(args, &my_rxtx);
1982 		break;
1983 	case FFA_MEM_RECLAIM:
1984 		if (!IS_ENABLED(CFG_SECURE_PARTITION) ||
1985 		    !ffa_mem_reclaim(args, NULL))
1986 			handle_mem_reclaim(args);
1987 		break;
1988 	case FFA_MEM_FRAG_TX:
1989 		handle_mem_frag_tx(args, &my_rxtx);
1990 		break;
1991 	case FFA_NOTIFICATION_BITMAP_CREATE:
1992 		handle_notification_bitmap_create(args);
1993 		break;
1994 	case FFA_NOTIFICATION_BITMAP_DESTROY:
1995 		handle_notification_bitmap_destroy(args);
1996 		break;
1997 	case FFA_NOTIFICATION_BIND:
1998 		handle_notification_bind(args);
1999 		break;
2000 	case FFA_NOTIFICATION_UNBIND:
2001 		handle_notification_unbind(args);
2002 		break;
2003 	case FFA_NOTIFICATION_GET:
2004 		handle_notification_get(args);
2005 		break;
2006 #ifdef ARM64
2007 	case FFA_NOTIFICATION_INFO_GET_64:
2008 #endif
2009 	case FFA_NOTIFICATION_INFO_GET_32:
2010 		handle_notification_info_get(args);
2011 		break;
2012 #endif /*CFG_CORE_SEL1_SPMC*/
2013 	case FFA_ERROR:
2014 		EMSG("Cannot handle FFA_ERROR(%d)", (int)args->a2);
2015 		if (!IS_ENABLED(CFG_CORE_SEL1_SPMC)) {
2016 			/*
2017 			 * The SPMC will return an FFA_ERROR back so better
2018 			 * panic() now than flooding the log.
2019 			 */
2020 			panic("FFA_ERROR from SPMC is fatal");
2021 		}
2022 		spmc_set_args(args, FFA_ERROR, FFA_PARAM_MBZ, FFA_NOT_SUPPORTED,
2023 			      FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ);
2024 		break;
2025 	default:
2026 		EMSG("Unhandled FFA function ID %#"PRIx32, (uint32_t)args->a0);
2027 		set_simple_ret_val(args, FFA_NOT_SUPPORTED);
2028 	}
2029 }
2030 
2031 static TEE_Result yielding_call_with_arg(uint64_t cookie, uint32_t offset)
2032 {
2033 	size_t sz_rpc = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS);
2034 	struct thread_ctx *thr = threads + thread_get_id();
2035 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
2036 	struct optee_msg_arg *arg = NULL;
2037 	struct mobj *mobj = NULL;
2038 	uint32_t num_params = 0;
2039 	size_t sz = 0;
2040 
2041 	mobj = mobj_ffa_get_by_cookie(cookie, 0);
2042 	if (!mobj) {
2043 		EMSG("Can't find cookie %#"PRIx64, cookie);
2044 		return TEE_ERROR_BAD_PARAMETERS;
2045 	}
2046 
2047 	res = mobj_inc_map(mobj);
2048 	if (res)
2049 		goto out_put_mobj;
2050 
2051 	res = TEE_ERROR_BAD_PARAMETERS;
2052 	arg = mobj_get_va(mobj, offset, sizeof(*arg));
2053 	if (!arg)
2054 		goto out_dec_map;
2055 
2056 	num_params = READ_ONCE(arg->num_params);
2057 	if (num_params > OPTEE_MSG_MAX_NUM_PARAMS)
2058 		goto out_dec_map;
2059 
2060 	sz = OPTEE_MSG_GET_ARG_SIZE(num_params);
2061 
2062 	thr->rpc_arg = mobj_get_va(mobj, offset + sz, sz_rpc);
2063 	if (!thr->rpc_arg)
2064 		goto out_dec_map;
2065 
2066 	virt_on_stdcall();
2067 	res = tee_entry_std(arg, num_params);
2068 
2069 	thread_rpc_shm_cache_clear(&thr->shm_cache);
2070 	thr->rpc_arg = NULL;
2071 
2072 out_dec_map:
2073 	mobj_dec_map(mobj);
2074 out_put_mobj:
2075 	mobj_put(mobj);
2076 	return res;
2077 }
2078 
2079 /*
2080  * Helper routine for the assembly function thread_std_smc_entry()
2081  *
2082  * Note: this function is weak just to make link_dummies_paged.c happy.
2083  */
2084 uint32_t __weak __thread_std_smc_entry(uint32_t a0, uint32_t a1,
2085 				       uint32_t a2, uint32_t a3,
2086 				       uint32_t a4, uint32_t a5 __unused)
2087 {
2088 	/*
2089 	 * Arguments are supplied from handle_yielding_call() as:
2090 	 * a0 <- w1
2091 	 * a1 <- w3
2092 	 * a2 <- w4
2093 	 * a3 <- w5
2094 	 * a4 <- w6
2095 	 * a5 <- w7
2096 	 */
2097 	thread_get_tsd()->rpc_target_info = swap_src_dst(a0);
2098 	if (a1 == OPTEE_FFA_YIELDING_CALL_WITH_ARG)
2099 		return yielding_call_with_arg(reg_pair_to_64(a3, a2), a4);
2100 	return FFA_DENIED;
2101 }
2102 
2103 static bool set_fmem(struct optee_msg_param *param, struct thread_param *tpm)
2104 {
2105 	uint64_t offs = tpm->u.memref.offs;
2106 
2107 	param->attr = tpm->attr - THREAD_PARAM_ATTR_MEMREF_IN +
2108 		      OPTEE_MSG_ATTR_TYPE_FMEM_INPUT;
2109 
2110 	param->u.fmem.offs_low = offs;
2111 	param->u.fmem.offs_high = offs >> 32;
2112 	if (param->u.fmem.offs_high != offs >> 32)
2113 		return false;
2114 
2115 	param->u.fmem.size = tpm->u.memref.size;
2116 	if (tpm->u.memref.mobj) {
2117 		uint64_t cookie = mobj_get_cookie(tpm->u.memref.mobj);
2118 
2119 		/* If a mobj is passed it better be one with a valid cookie. */
2120 		if (cookie == OPTEE_MSG_FMEM_INVALID_GLOBAL_ID)
2121 			return false;
2122 		param->u.fmem.global_id = cookie;
2123 	} else {
2124 		param->u.fmem.global_id = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID;
2125 	}
2126 
2127 	return true;
2128 }
2129 
2130 static uint32_t get_rpc_arg(uint32_t cmd, size_t num_params,
2131 			    struct thread_param *params,
2132 			    struct optee_msg_arg **arg_ret)
2133 {
2134 	size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS);
2135 	struct thread_ctx *thr = threads + thread_get_id();
2136 	struct optee_msg_arg *arg = thr->rpc_arg;
2137 
2138 	if (num_params > THREAD_RPC_MAX_NUM_PARAMS)
2139 		return TEE_ERROR_BAD_PARAMETERS;
2140 
2141 	if (!arg) {
2142 		EMSG("rpc_arg not set");
2143 		return TEE_ERROR_GENERIC;
2144 	}
2145 
2146 	memset(arg, 0, sz);
2147 	arg->cmd = cmd;
2148 	arg->num_params = num_params;
2149 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
2150 
2151 	for (size_t n = 0; n < num_params; n++) {
2152 		switch (params[n].attr) {
2153 		case THREAD_PARAM_ATTR_NONE:
2154 			arg->params[n].attr = OPTEE_MSG_ATTR_TYPE_NONE;
2155 			break;
2156 		case THREAD_PARAM_ATTR_VALUE_IN:
2157 		case THREAD_PARAM_ATTR_VALUE_OUT:
2158 		case THREAD_PARAM_ATTR_VALUE_INOUT:
2159 			arg->params[n].attr = params[n].attr -
2160 					      THREAD_PARAM_ATTR_VALUE_IN +
2161 					      OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
2162 			arg->params[n].u.value.a = params[n].u.value.a;
2163 			arg->params[n].u.value.b = params[n].u.value.b;
2164 			arg->params[n].u.value.c = params[n].u.value.c;
2165 			break;
2166 		case THREAD_PARAM_ATTR_MEMREF_IN:
2167 		case THREAD_PARAM_ATTR_MEMREF_OUT:
2168 		case THREAD_PARAM_ATTR_MEMREF_INOUT:
2169 			if (!set_fmem(arg->params + n, params + n))
2170 				return TEE_ERROR_BAD_PARAMETERS;
2171 			break;
2172 		default:
2173 			return TEE_ERROR_BAD_PARAMETERS;
2174 		}
2175 	}
2176 
2177 	if (arg_ret)
2178 		*arg_ret = arg;
2179 
2180 	return TEE_SUCCESS;
2181 }
2182 
2183 static uint32_t get_rpc_arg_res(struct optee_msg_arg *arg, size_t num_params,
2184 				struct thread_param *params)
2185 {
2186 	for (size_t n = 0; n < num_params; n++) {
2187 		switch (params[n].attr) {
2188 		case THREAD_PARAM_ATTR_VALUE_OUT:
2189 		case THREAD_PARAM_ATTR_VALUE_INOUT:
2190 			params[n].u.value.a = arg->params[n].u.value.a;
2191 			params[n].u.value.b = arg->params[n].u.value.b;
2192 			params[n].u.value.c = arg->params[n].u.value.c;
2193 			break;
2194 		case THREAD_PARAM_ATTR_MEMREF_OUT:
2195 		case THREAD_PARAM_ATTR_MEMREF_INOUT:
2196 			params[n].u.memref.size = arg->params[n].u.fmem.size;
2197 			break;
2198 		default:
2199 			break;
2200 		}
2201 	}
2202 
2203 	return arg->ret;
2204 }
2205 
2206 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params,
2207 			struct thread_param *params)
2208 {
2209 	struct thread_rpc_arg rpc_arg = { .call = {
2210 			.w1 = thread_get_tsd()->rpc_target_info,
2211 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
2212 		},
2213 	};
2214 	struct optee_msg_arg *arg = NULL;
2215 	uint32_t ret = 0;
2216 
2217 	ret = get_rpc_arg(cmd, num_params, params, &arg);
2218 	if (ret)
2219 		return ret;
2220 
2221 	thread_rpc(&rpc_arg);
2222 
2223 	return get_rpc_arg_res(arg, num_params, params);
2224 }
2225 
2226 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj)
2227 {
2228 	struct thread_rpc_arg rpc_arg = { .call = {
2229 			.w1 = thread_get_tsd()->rpc_target_info,
2230 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
2231 		},
2232 	};
2233 	struct thread_param param = THREAD_PARAM_VALUE(IN, bt, cookie, 0);
2234 	uint32_t res2 = 0;
2235 	uint32_t res = 0;
2236 
2237 	DMSG("freeing cookie %#"PRIx64, cookie);
2238 
2239 	res = get_rpc_arg(OPTEE_RPC_CMD_SHM_FREE, 1, &param, NULL);
2240 
2241 	mobj_put(mobj);
2242 	res2 = mobj_ffa_unregister_by_cookie(cookie);
2243 	if (res2)
2244 		DMSG("mobj_ffa_unregister_by_cookie(%#"PRIx64"): %#"PRIx32,
2245 		     cookie, res2);
2246 	if (!res)
2247 		thread_rpc(&rpc_arg);
2248 }
2249 
2250 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt)
2251 {
2252 	struct thread_rpc_arg rpc_arg = { .call = {
2253 			.w1 = thread_get_tsd()->rpc_target_info,
2254 			.w4 = OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD,
2255 		},
2256 	};
2257 	struct thread_param param = THREAD_PARAM_VALUE(IN, bt, size, align);
2258 	struct optee_msg_arg *arg = NULL;
2259 	unsigned int internal_offset = 0;
2260 	struct mobj *mobj = NULL;
2261 	uint64_t cookie = 0;
2262 
2263 	if (get_rpc_arg(OPTEE_RPC_CMD_SHM_ALLOC, 1, &param, &arg))
2264 		return NULL;
2265 
2266 	thread_rpc(&rpc_arg);
2267 
2268 	if (arg->num_params != 1 ||
2269 	    arg->params->attr != OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT)
2270 		return NULL;
2271 
2272 	internal_offset = READ_ONCE(arg->params->u.fmem.internal_offs);
2273 	cookie = READ_ONCE(arg->params->u.fmem.global_id);
2274 	mobj = mobj_ffa_get_by_cookie(cookie, internal_offset);
2275 	if (!mobj) {
2276 		DMSG("mobj_ffa_get_by_cookie(%#"PRIx64", %#x): failed",
2277 		     cookie, internal_offset);
2278 		return NULL;
2279 	}
2280 
2281 	assert(mobj_is_nonsec(mobj));
2282 
2283 	if (mobj->size < size) {
2284 		DMSG("Mobj %#"PRIx64": wrong size", cookie);
2285 		mobj_put(mobj);
2286 		return NULL;
2287 	}
2288 
2289 	if (mobj_inc_map(mobj)) {
2290 		DMSG("mobj_inc_map(%#"PRIx64"): failed", cookie);
2291 		mobj_put(mobj);
2292 		return NULL;
2293 	}
2294 
2295 	return mobj;
2296 }
2297 
2298 struct mobj *thread_rpc_alloc_payload(size_t size)
2299 {
2300 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_APPL);
2301 }
2302 
2303 struct mobj *thread_rpc_alloc_kernel_payload(size_t size)
2304 {
2305 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_KERNEL);
2306 }
2307 
2308 void thread_rpc_free_kernel_payload(struct mobj *mobj)
2309 {
2310 	if (mobj)
2311 		thread_rpc_free(OPTEE_RPC_SHM_TYPE_KERNEL,
2312 				mobj_get_cookie(mobj), mobj);
2313 }
2314 
2315 void thread_rpc_free_payload(struct mobj *mobj)
2316 {
2317 	if (mobj)
2318 		thread_rpc_free(OPTEE_RPC_SHM_TYPE_APPL, mobj_get_cookie(mobj),
2319 				mobj);
2320 }
2321 
2322 struct mobj *thread_rpc_alloc_global_payload(size_t size)
2323 {
2324 	return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_GLOBAL);
2325 }
2326 
2327 void thread_rpc_free_global_payload(struct mobj *mobj)
2328 {
2329 	if (mobj)
2330 		thread_rpc_free(OPTEE_RPC_SHM_TYPE_GLOBAL,
2331 				mobj_get_cookie(mobj), mobj);
2332 }
2333 
2334 void thread_spmc_register_secondary_ep(vaddr_t ep)
2335 {
2336 	unsigned long ret = 0;
2337 
2338 	/* Let the SPM know the entry point for secondary CPUs */
2339 	ret = thread_smc(FFA_SECONDARY_EP_REGISTER_64, ep, 0, 0);
2340 
2341 	if (ret != FFA_SUCCESS_32 && ret != FFA_SUCCESS_64)
2342 		EMSG("FFA_SECONDARY_EP_REGISTER_64 ret %#lx", ret);
2343 }
2344 
2345 static uint16_t ffa_id_get(void)
2346 {
2347 	/*
2348 	 * Ask the SPM component running at a higher EL to return our FF-A ID.
2349 	 * This can either be the SPMC ID (if the SPMC is enabled in OP-TEE) or
2350 	 * the partition ID (if not).
2351 	 */
2352 	struct thread_smc_args args = {
2353 		.a0 = FFA_ID_GET,
2354 	};
2355 
2356 	thread_smccc(&args);
2357 	if (!is_ffa_success(args.a0)) {
2358 		if (args.a0 == FFA_ERROR)
2359 			EMSG("Get id failed with error %ld", args.a2);
2360 		else
2361 			EMSG("Get id failed");
2362 		panic();
2363 	}
2364 
2365 	return args.a2;
2366 }
2367 
2368 static uint16_t ffa_spm_id_get(void)
2369 {
2370 	/*
2371 	 * Ask the SPM component running at a higher EL to return its ID.
2372 	 * If OP-TEE implements the S-EL1 SPMC, this will get the SPMD ID.
2373 	 * If not, the ID of the SPMC will be returned.
2374 	 */
2375 	struct thread_smc_args args = {
2376 		.a0 = FFA_SPM_ID_GET,
2377 	};
2378 
2379 	thread_smccc(&args);
2380 	if (!is_ffa_success(args.a0)) {
2381 		if (args.a0 == FFA_ERROR)
2382 			EMSG("Get spm id failed with error %ld", args.a2);
2383 		else
2384 			EMSG("Get spm id failed");
2385 		panic();
2386 	}
2387 
2388 	return args.a2;
2389 }
2390 
2391 #if defined(CFG_CORE_SEL1_SPMC)
2392 static TEE_Result spmc_init(void)
2393 {
2394 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION) &&
2395 	    virt_add_guest_spec_data(&notif_vm_bitmap_id,
2396 				     sizeof(struct notif_vm_bitmap), NULL))
2397 		panic("virt_add_guest_spec_data");
2398 	spmd_id = ffa_spm_id_get();
2399 	DMSG("SPMD ID %#"PRIx16, spmd_id);
2400 
2401 	spmc_id = ffa_id_get();
2402 	DMSG("SPMC ID %#"PRIx16, spmc_id);
2403 
2404 	optee_endpoint_id = FFA_SWD_ID_MIN;
2405 	while (optee_endpoint_id == spmd_id || optee_endpoint_id == spmc_id)
2406 		optee_endpoint_id++;
2407 
2408 	DMSG("OP-TEE endpoint ID %#"PRIx16, optee_endpoint_id);
2409 
2410 	/*
2411 	 * If SPMD think we are version 1.0 it will report version 1.0 to
2412 	 * normal world regardless of what version we query the SPM with.
2413 	 * However, if SPMD think we are version 1.1 it will forward
2414 	 * queries from normal world to let us negotiate version. So by
2415 	 * setting version 1.0 here we should be compatible.
2416 	 *
2417 	 * Note that disagreement on negotiated version means that we'll
2418 	 * have communication problems with normal world.
2419 	 */
2420 	my_rxtx.ffa_vers = FFA_VERSION_1_0;
2421 
2422 	return TEE_SUCCESS;
2423 }
2424 #else /* !defined(CFG_CORE_SEL1_SPMC) */
2425 static void spmc_rxtx_map(struct ffa_rxtx *rxtx)
2426 {
2427 	struct thread_smc_args args = {
2428 #ifdef ARM64
2429 		.a0 = FFA_RXTX_MAP_64,
2430 #else
2431 		.a0 = FFA_RXTX_MAP_32,
2432 #endif
2433 		.a1 = virt_to_phys(rxtx->tx),
2434 		.a2 = virt_to_phys(rxtx->rx),
2435 		.a3 = 1,
2436 	};
2437 
2438 	thread_smccc(&args);
2439 	if (!is_ffa_success(args.a0)) {
2440 		if (args.a0 == FFA_ERROR)
2441 			EMSG("rxtx map failed with error %ld", args.a2);
2442 		else
2443 			EMSG("rxtx map failed");
2444 		panic();
2445 	}
2446 }
2447 
2448 static uint32_t get_ffa_version(uint32_t my_version)
2449 {
2450 	struct thread_smc_args args = {
2451 		.a0 = FFA_VERSION,
2452 		.a1 = my_version,
2453 	};
2454 
2455 	thread_smccc(&args);
2456 	if (args.a0 & BIT(31)) {
2457 		EMSG("FF-A version failed with error %ld", args.a0);
2458 		panic();
2459 	}
2460 
2461 	return args.a0;
2462 }
2463 
2464 static void *spmc_retrieve_req(uint64_t cookie,
2465 			       struct ffa_mem_transaction_x *trans)
2466 {
2467 	struct ffa_mem_access *acc_descr_array = NULL;
2468 	struct ffa_mem_access_perm *perm_descr = NULL;
2469 	struct thread_smc_args args = {
2470 		.a0 = FFA_MEM_RETRIEVE_REQ_32,
2471 		.a3 =	0,	/* Address, Using TX -> MBZ */
2472 		.a4 =   0,	/* Using TX -> MBZ */
2473 	};
2474 	size_t size = 0;
2475 	int rc = 0;
2476 
2477 	if (my_rxtx.ffa_vers == FFA_VERSION_1_0) {
2478 		struct ffa_mem_transaction_1_0 *trans_descr = my_rxtx.tx;
2479 
2480 		size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access);
2481 		memset(trans_descr, 0, size);
2482 		trans_descr->sender_id = thread_get_tsd()->rpc_target_info;
2483 		trans_descr->mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
2484 		trans_descr->global_handle = cookie;
2485 		trans_descr->flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE |
2486 				     FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT;
2487 		trans_descr->mem_access_count = 1;
2488 		acc_descr_array = trans_descr->mem_access_array;
2489 	} else {
2490 		struct ffa_mem_transaction_1_1 *trans_descr = my_rxtx.tx;
2491 
2492 		size = sizeof(*trans_descr) + 1 * sizeof(struct ffa_mem_access);
2493 		memset(trans_descr, 0, size);
2494 		trans_descr->sender_id = thread_get_tsd()->rpc_target_info;
2495 		trans_descr->mem_reg_attr = FFA_NORMAL_MEM_REG_ATTR;
2496 		trans_descr->global_handle = cookie;
2497 		trans_descr->flags = FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE |
2498 				     FFA_MEMORY_REGION_FLAG_ANY_ALIGNMENT;
2499 		trans_descr->mem_access_count = 1;
2500 		trans_descr->mem_access_offs = sizeof(*trans_descr);
2501 		trans_descr->mem_access_size = sizeof(struct ffa_mem_access);
2502 		acc_descr_array = (void *)((vaddr_t)my_rxtx.tx +
2503 					   sizeof(*trans_descr));
2504 	}
2505 	acc_descr_array->region_offs = 0;
2506 	acc_descr_array->reserved = 0;
2507 	perm_descr = &acc_descr_array->access_perm;
2508 	perm_descr->endpoint_id = optee_endpoint_id;
2509 	perm_descr->perm = FFA_MEM_ACC_RW;
2510 	perm_descr->flags = 0;
2511 
2512 	args.a1 = size; /* Total Length */
2513 	args.a2 = size; /* Frag Length == Total length */
2514 	thread_smccc(&args);
2515 	if (args.a0 != FFA_MEM_RETRIEVE_RESP) {
2516 		if (args.a0 == FFA_ERROR)
2517 			EMSG("Failed to fetch cookie %#"PRIx64" error code %d",
2518 			     cookie, (int)args.a2);
2519 		else
2520 			EMSG("Failed to fetch cookie %#"PRIx64" a0 %#"PRIx64,
2521 			     cookie, args.a0);
2522 		return NULL;
2523 	}
2524 	rc = spmc_read_mem_transaction(my_rxtx.ffa_vers, my_rxtx.rx,
2525 				       my_rxtx.size, trans);
2526 	if (rc) {
2527 		EMSG("Memory transaction failure for cookie %#"PRIx64" rc %d",
2528 		     cookie, rc);
2529 		return NULL;
2530 	}
2531 
2532 	return my_rxtx.rx;
2533 }
2534 
2535 void thread_spmc_relinquish(uint64_t cookie)
2536 {
2537 	struct ffa_mem_relinquish *relinquish_desc = my_rxtx.tx;
2538 	struct thread_smc_args args = {
2539 		.a0 = FFA_MEM_RELINQUISH,
2540 	};
2541 
2542 	memset(relinquish_desc, 0, sizeof(*relinquish_desc));
2543 	relinquish_desc->handle = cookie;
2544 	relinquish_desc->flags = 0;
2545 	relinquish_desc->endpoint_count = 1;
2546 	relinquish_desc->endpoint_id_array[0] = optee_endpoint_id;
2547 	thread_smccc(&args);
2548 	if (!is_ffa_success(args.a0))
2549 		EMSG("Failed to relinquish cookie %#"PRIx64, cookie);
2550 }
2551 
2552 static int set_pages(struct ffa_address_range *regions,
2553 		     unsigned int num_regions, unsigned int num_pages,
2554 		     struct mobj_ffa *mf)
2555 {
2556 	unsigned int n = 0;
2557 	unsigned int idx = 0;
2558 
2559 	for (n = 0; n < num_regions; n++) {
2560 		unsigned int page_count = READ_ONCE(regions[n].page_count);
2561 		uint64_t addr = READ_ONCE(regions[n].address);
2562 
2563 		if (mobj_ffa_add_pages_at(mf, &idx, addr, page_count))
2564 			return FFA_INVALID_PARAMETERS;
2565 	}
2566 
2567 	if (idx != num_pages)
2568 		return FFA_INVALID_PARAMETERS;
2569 
2570 	return 0;
2571 }
2572 
2573 struct mobj_ffa *thread_spmc_populate_mobj_from_rx(uint64_t cookie)
2574 {
2575 	struct mobj_ffa *ret = NULL;
2576 	struct ffa_mem_transaction_x retrieve_desc = { };
2577 	struct ffa_mem_access *descr_array = NULL;
2578 	struct ffa_mem_region *descr = NULL;
2579 	struct mobj_ffa *mf = NULL;
2580 	unsigned int num_pages = 0;
2581 	unsigned int offs = 0;
2582 	void *buf = NULL;
2583 	struct thread_smc_args ffa_rx_release_args = {
2584 		.a0 = FFA_RX_RELEASE
2585 	};
2586 
2587 	/*
2588 	 * OP-TEE is only supporting a single mem_region while the
2589 	 * specification allows for more than one.
2590 	 */
2591 	buf = spmc_retrieve_req(cookie, &retrieve_desc);
2592 	if (!buf) {
2593 		EMSG("Failed to retrieve cookie from rx buffer %#"PRIx64,
2594 		     cookie);
2595 		return NULL;
2596 	}
2597 
2598 	descr_array = (void *)((vaddr_t)buf + retrieve_desc.mem_access_offs);
2599 	offs = READ_ONCE(descr_array->region_offs);
2600 	descr = (struct ffa_mem_region *)((vaddr_t)buf + offs);
2601 
2602 	num_pages = READ_ONCE(descr->total_page_count);
2603 	mf = mobj_ffa_spmc_new(cookie, num_pages);
2604 	if (!mf)
2605 		goto out;
2606 
2607 	if (set_pages(descr->address_range_array,
2608 		      READ_ONCE(descr->address_range_count), num_pages, mf)) {
2609 		mobj_ffa_spmc_delete(mf);
2610 		goto out;
2611 	}
2612 
2613 	ret = mf;
2614 
2615 out:
2616 	/* Release RX buffer after the mem retrieve request. */
2617 	thread_smccc(&ffa_rx_release_args);
2618 
2619 	return ret;
2620 }
2621 
2622 static TEE_Result spmc_init(void)
2623 {
2624 	unsigned int major = 0;
2625 	unsigned int minor __maybe_unused = 0;
2626 	uint32_t my_vers = 0;
2627 	uint32_t vers = 0;
2628 
2629 	my_vers = MAKE_FFA_VERSION(FFA_VERSION_MAJOR, FFA_VERSION_MINOR);
2630 	vers = get_ffa_version(my_vers);
2631 	major = (vers >> FFA_VERSION_MAJOR_SHIFT) & FFA_VERSION_MAJOR_MASK;
2632 	minor = (vers >> FFA_VERSION_MINOR_SHIFT) & FFA_VERSION_MINOR_MASK;
2633 	DMSG("SPMC reported version %u.%u", major, minor);
2634 	if (major != FFA_VERSION_MAJOR) {
2635 		EMSG("Incompatible major version %u, expected %u",
2636 		     major, FFA_VERSION_MAJOR);
2637 		panic();
2638 	}
2639 	if (vers < my_vers)
2640 		my_vers = vers;
2641 	DMSG("Using version %u.%u",
2642 	     (my_vers >> FFA_VERSION_MAJOR_SHIFT) & FFA_VERSION_MAJOR_MASK,
2643 	     (my_vers >> FFA_VERSION_MINOR_SHIFT) & FFA_VERSION_MINOR_MASK);
2644 	my_rxtx.ffa_vers = my_vers;
2645 
2646 	spmc_rxtx_map(&my_rxtx);
2647 
2648 	spmc_id = ffa_spm_id_get();
2649 	DMSG("SPMC ID %#"PRIx16, spmc_id);
2650 
2651 	optee_endpoint_id = ffa_id_get();
2652 	DMSG("OP-TEE endpoint ID %#"PRIx16, optee_endpoint_id);
2653 
2654 	if (!ffa_features(FFA_NOTIFICATION_SET)) {
2655 		spmc_notif_is_ready = true;
2656 		DMSG("Asynchronous notifications are ready");
2657 	}
2658 
2659 	return TEE_SUCCESS;
2660 }
2661 #endif /* !defined(CFG_CORE_SEL1_SPMC) */
2662 
2663 nex_service_init(spmc_init);
2664