1 /* 2 * Copyright (c) 2016, Linaro Limited 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * 2. Redistributions in binary form must reproduce the above copyright notice, 13 * this list of conditions and the following disclaimer in the documentation 14 * and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <platform_config.h> 30 31 #include <arm.h> 32 #include <assert.h> 33 #include <keep.h> 34 #include <kernel/asan.h> 35 #include <kernel/misc.h> 36 #include <kernel/msg_param.h> 37 #include <kernel/panic.h> 38 #include <kernel/spinlock.h> 39 #include <kernel/tee_ta_manager.h> 40 #include <kernel/thread_defs.h> 41 #include <kernel/thread.h> 42 #include <mm/core_memprot.h> 43 #include <mm/mobj.h> 44 #include <mm/tee_mm.h> 45 #include <mm/tee_mmu.h> 46 #include <mm/tee_pager.h> 47 #include <optee_msg.h> 48 #include <sm/optee_smc.h> 49 #include <sm/sm.h> 50 #include <tee/tee_cryp_utl.h> 51 #include <tee/tee_fs_rpc.h> 52 #include <trace.h> 53 #include <util.h> 54 55 #include "thread_private.h" 56 57 #ifdef CFG_WITH_ARM_TRUSTED_FW 58 #define STACK_TMP_OFFS 0 59 #else 60 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE 61 #endif 62 63 64 #ifdef ARM32 65 #ifdef CFG_CORE_SANITIZE_KADDRESS 66 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) 67 #else 68 #define STACK_TMP_SIZE (1536 + STACK_TMP_OFFS) 69 #endif 70 #define STACK_THREAD_SIZE 8192 71 72 #ifdef CFG_CORE_SANITIZE_KADDRESS 73 #define STACK_ABT_SIZE 3072 74 #else 75 #define STACK_ABT_SIZE 2048 76 #endif 77 78 #endif /*ARM32*/ 79 80 #ifdef ARM64 81 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 82 #define STACK_THREAD_SIZE 8192 83 84 #if TRACE_LEVEL > 0 85 #define STACK_ABT_SIZE 3072 86 #else 87 #define STACK_ABT_SIZE 1024 88 #endif 89 #endif /*ARM64*/ 90 91 struct thread_ctx threads[CFG_NUM_THREADS]; 92 93 struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE]; 94 95 #ifdef CFG_WITH_STACK_CANARIES 96 #ifdef ARM32 97 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 98 #endif 99 #ifdef ARM64 100 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 101 #endif 102 #define START_CANARY_VALUE 0xdededede 103 #define END_CANARY_VALUE 0xabababab 104 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 105 #define GET_END_CANARY(name, stack_num) \ 106 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 107 #else 108 #define STACK_CANARY_SIZE 0 109 #endif 110 111 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 112 linkage uint32_t name[num_stacks] \ 113 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 114 sizeof(uint32_t)] \ 115 __attribute__((section(".nozi_stack"), \ 116 aligned(STACK_ALIGNMENT))) 117 118 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 119 120 #define GET_STACK(stack) \ 121 ((vaddr_t)(stack) + STACK_SIZE(stack)) 122 123 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, static); 124 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 125 #ifndef CFG_WITH_PAGER 126 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 127 #endif 128 129 const void *stack_tmp_export = (uint8_t *)stack_tmp + sizeof(stack_tmp[0]) - 130 (STACK_TMP_OFFS + STACK_CANARY_SIZE / 2); 131 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]); 132 133 /* 134 * These stack setup info are required by secondary boot cores before they 135 * each locally enable the pager (the mmu). Hence kept in pager sections. 136 */ 137 KEEP_PAGER(stack_tmp_export); 138 KEEP_PAGER(stack_tmp_stride); 139 140 thread_smc_handler_t thread_std_smc_handler_ptr; 141 static thread_smc_handler_t thread_fast_smc_handler_ptr; 142 thread_nintr_handler_t thread_nintr_handler_ptr; 143 thread_pm_handler_t thread_cpu_on_handler_ptr; 144 thread_pm_handler_t thread_cpu_off_handler_ptr; 145 thread_pm_handler_t thread_cpu_suspend_handler_ptr; 146 thread_pm_handler_t thread_cpu_resume_handler_ptr; 147 thread_pm_handler_t thread_system_off_handler_ptr; 148 thread_pm_handler_t thread_system_reset_handler_ptr; 149 150 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 151 static vaddr_t thread_user_kcode_va; 152 long thread_user_kcode_offset; 153 static size_t thread_user_kcode_size; 154 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/ 155 156 static unsigned int thread_global_lock = SPINLOCK_UNLOCK; 157 static bool thread_prealloc_rpc_cache; 158 159 static void init_canaries(void) 160 { 161 #ifdef CFG_WITH_STACK_CANARIES 162 size_t n; 163 #define INIT_CANARY(name) \ 164 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 165 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 166 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 167 \ 168 *start_canary = START_CANARY_VALUE; \ 169 *end_canary = END_CANARY_VALUE; \ 170 DMSG("#Stack canaries for %s[%zu] with top at %p\n", \ 171 #name, n, (void *)(end_canary - 1)); \ 172 DMSG("watch *%p\n", (void *)end_canary); \ 173 } 174 175 INIT_CANARY(stack_tmp); 176 INIT_CANARY(stack_abt); 177 #ifndef CFG_WITH_PAGER 178 INIT_CANARY(stack_thread); 179 #endif 180 #endif/*CFG_WITH_STACK_CANARIES*/ 181 } 182 183 #define CANARY_DIED(stack, loc, n) \ 184 do { \ 185 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 186 panic(); \ 187 } while (0) 188 189 void thread_check_canaries(void) 190 { 191 #ifdef CFG_WITH_STACK_CANARIES 192 size_t n; 193 194 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 195 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 196 CANARY_DIED(stack_tmp, start, n); 197 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 198 CANARY_DIED(stack_tmp, end, n); 199 } 200 201 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 202 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 203 CANARY_DIED(stack_abt, start, n); 204 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 205 CANARY_DIED(stack_abt, end, n); 206 207 } 208 #ifndef CFG_WITH_PAGER 209 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 210 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 211 CANARY_DIED(stack_thread, start, n); 212 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 213 CANARY_DIED(stack_thread, end, n); 214 } 215 #endif 216 #endif/*CFG_WITH_STACK_CANARIES*/ 217 } 218 219 static void lock_global(void) 220 { 221 cpu_spin_lock(&thread_global_lock); 222 } 223 224 static void unlock_global(void) 225 { 226 cpu_spin_unlock(&thread_global_lock); 227 } 228 229 #ifdef ARM32 230 uint32_t thread_get_exceptions(void) 231 { 232 uint32_t cpsr = read_cpsr(); 233 234 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 235 } 236 237 void thread_set_exceptions(uint32_t exceptions) 238 { 239 uint32_t cpsr = read_cpsr(); 240 241 /* Foreign interrupts must not be unmasked while holding a spinlock */ 242 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 243 assert_have_no_spinlock(); 244 245 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 246 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 247 write_cpsr(cpsr); 248 } 249 #endif /*ARM32*/ 250 251 #ifdef ARM64 252 uint32_t thread_get_exceptions(void) 253 { 254 uint32_t daif = read_daif(); 255 256 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 257 } 258 259 void thread_set_exceptions(uint32_t exceptions) 260 { 261 uint32_t daif = read_daif(); 262 263 /* Foreign interrupts must not be unmasked while holding a spinlock */ 264 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 265 assert_have_no_spinlock(); 266 267 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 268 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 269 write_daif(daif); 270 } 271 #endif /*ARM64*/ 272 273 uint32_t thread_mask_exceptions(uint32_t exceptions) 274 { 275 uint32_t state = thread_get_exceptions(); 276 277 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 278 return state; 279 } 280 281 void thread_unmask_exceptions(uint32_t state) 282 { 283 thread_set_exceptions(state & THREAD_EXCP_ALL); 284 } 285 286 287 struct thread_core_local *thread_get_core_local(void) 288 { 289 uint32_t cpu_id = get_core_pos(); 290 291 /* 292 * Foreign interrupts must be disabled before playing with core_local 293 * since we otherwise may be rescheduled to a different core in the 294 * middle of this function. 295 */ 296 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 297 298 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 299 return &thread_core_local[cpu_id]; 300 } 301 302 static void thread_lazy_save_ns_vfp(void) 303 { 304 #ifdef CFG_WITH_VFP 305 struct thread_ctx *thr = threads + thread_get_id(); 306 307 thr->vfp_state.ns_saved = false; 308 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW) 309 /* 310 * ARM TF saves and restores CPACR_EL1, so we must assume NS world 311 * uses VFP and always preserve the register file when secure world 312 * is about to use it 313 */ 314 thr->vfp_state.ns.force_save = true; 315 #endif 316 vfp_lazy_save_state_init(&thr->vfp_state.ns); 317 #endif /*CFG_WITH_VFP*/ 318 } 319 320 static void thread_lazy_restore_ns_vfp(void) 321 { 322 #ifdef CFG_WITH_VFP 323 struct thread_ctx *thr = threads + thread_get_id(); 324 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 325 326 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 327 328 if (tuv && tuv->lazy_saved && !tuv->saved) { 329 vfp_lazy_save_state_final(&tuv->vfp); 330 tuv->saved = true; 331 } 332 333 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 334 thr->vfp_state.ns_saved = false; 335 #endif /*CFG_WITH_VFP*/ 336 } 337 338 #ifdef ARM32 339 static void init_regs(struct thread_ctx *thread, 340 struct thread_smc_args *args) 341 { 342 thread->regs.pc = (uint32_t)thread_std_smc_entry; 343 344 /* 345 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 346 * Asynchronous abort and unmasked native interrupts. 347 */ 348 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 349 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A | 350 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT); 351 /* Enable thumb mode if it's a thumb instruction */ 352 if (thread->regs.pc & 1) 353 thread->regs.cpsr |= CPSR_T; 354 /* Reinitialize stack pointer */ 355 thread->regs.svc_sp = thread->stack_va_end; 356 357 /* 358 * Copy arguments into context. This will make the 359 * arguments appear in r0-r7 when thread is started. 360 */ 361 thread->regs.r0 = args->a0; 362 thread->regs.r1 = args->a1; 363 thread->regs.r2 = args->a2; 364 thread->regs.r3 = args->a3; 365 thread->regs.r4 = args->a4; 366 thread->regs.r5 = args->a5; 367 thread->regs.r6 = args->a6; 368 thread->regs.r7 = args->a7; 369 } 370 #endif /*ARM32*/ 371 372 #ifdef ARM64 373 static void init_regs(struct thread_ctx *thread, 374 struct thread_smc_args *args) 375 { 376 thread->regs.pc = (uint64_t)thread_std_smc_entry; 377 378 /* 379 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 380 * Asynchronous abort and unmasked native interrupts. 381 */ 382 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 383 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT); 384 /* Reinitialize stack pointer */ 385 thread->regs.sp = thread->stack_va_end; 386 387 /* 388 * Copy arguments into context. This will make the 389 * arguments appear in x0-x7 when thread is started. 390 */ 391 thread->regs.x[0] = args->a0; 392 thread->regs.x[1] = args->a1; 393 thread->regs.x[2] = args->a2; 394 thread->regs.x[3] = args->a3; 395 thread->regs.x[4] = args->a4; 396 thread->regs.x[5] = args->a5; 397 thread->regs.x[6] = args->a6; 398 thread->regs.x[7] = args->a7; 399 400 /* Set up frame pointer as per the Aarch64 AAPCS */ 401 thread->regs.x[29] = 0; 402 } 403 #endif /*ARM64*/ 404 405 void thread_init_boot_thread(void) 406 { 407 struct thread_core_local *l = thread_get_core_local(); 408 size_t n; 409 410 for (n = 0; n < CFG_NUM_THREADS; n++) { 411 TAILQ_INIT(&threads[n].mutexes); 412 TAILQ_INIT(&threads[n].tsd.sess_stack); 413 SLIST_INIT(&threads[n].tsd.pgt_cache); 414 } 415 416 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 417 thread_core_local[n].curr_thread = -1; 418 419 l->curr_thread = 0; 420 threads[0].state = THREAD_STATE_ACTIVE; 421 } 422 423 void thread_clr_boot_thread(void) 424 { 425 struct thread_core_local *l = thread_get_core_local(); 426 427 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 428 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 429 assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes)); 430 threads[l->curr_thread].state = THREAD_STATE_FREE; 431 l->curr_thread = -1; 432 } 433 434 static void thread_alloc_and_run(struct thread_smc_args *args) 435 { 436 size_t n; 437 struct thread_core_local *l = thread_get_core_local(); 438 bool found_thread = false; 439 440 assert(l->curr_thread == -1); 441 442 lock_global(); 443 444 for (n = 0; n < CFG_NUM_THREADS; n++) { 445 if (threads[n].state == THREAD_STATE_FREE) { 446 threads[n].state = THREAD_STATE_ACTIVE; 447 found_thread = true; 448 break; 449 } 450 } 451 452 unlock_global(); 453 454 if (!found_thread) { 455 args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT; 456 return; 457 } 458 459 l->curr_thread = n; 460 461 threads[n].flags = 0; 462 init_regs(threads + n, args); 463 464 /* Save Hypervisor Client ID */ 465 threads[n].hyp_clnt_id = args->a7; 466 467 thread_lazy_save_ns_vfp(); 468 thread_resume(&threads[n].regs); 469 } 470 471 #ifdef ARM32 472 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 473 struct thread_smc_args *args) 474 { 475 /* 476 * Update returned values from RPC, values will appear in 477 * r0-r3 when thread is resumed. 478 */ 479 regs->r0 = args->a0; 480 regs->r1 = args->a1; 481 regs->r2 = args->a2; 482 regs->r3 = args->a3; 483 regs->r4 = args->a4; 484 regs->r5 = args->a5; 485 } 486 #endif /*ARM32*/ 487 488 #ifdef ARM64 489 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 490 struct thread_smc_args *args) 491 { 492 /* 493 * Update returned values from RPC, values will appear in 494 * x0-x3 when thread is resumed. 495 */ 496 regs->x[0] = args->a0; 497 regs->x[1] = args->a1; 498 regs->x[2] = args->a2; 499 regs->x[3] = args->a3; 500 regs->x[4] = args->a4; 501 regs->x[5] = args->a5; 502 } 503 #endif /*ARM64*/ 504 505 #ifdef ARM32 506 static bool is_from_user(uint32_t cpsr) 507 { 508 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 509 } 510 #endif 511 512 #ifdef ARM64 513 static bool is_from_user(uint32_t cpsr) 514 { 515 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 516 return true; 517 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 518 SPSR_64_MODE_EL0) 519 return true; 520 return false; 521 } 522 #endif 523 524 static bool is_user_mode(struct thread_ctx_regs *regs) 525 { 526 return is_from_user((uint32_t)regs->cpsr); 527 } 528 529 static void thread_resume_from_rpc(struct thread_smc_args *args) 530 { 531 size_t n = args->a3; /* thread id */ 532 struct thread_core_local *l = thread_get_core_local(); 533 uint32_t rv = 0; 534 535 assert(l->curr_thread == -1); 536 537 lock_global(); 538 539 if (n < CFG_NUM_THREADS && 540 threads[n].state == THREAD_STATE_SUSPENDED && 541 args->a7 == threads[n].hyp_clnt_id) 542 threads[n].state = THREAD_STATE_ACTIVE; 543 else 544 rv = OPTEE_SMC_RETURN_ERESUME; 545 546 unlock_global(); 547 548 if (rv) { 549 args->a0 = rv; 550 return; 551 } 552 553 l->curr_thread = n; 554 555 if (is_user_mode(&threads[n].regs)) 556 tee_ta_update_session_utime_resume(); 557 558 if (threads[n].have_user_map) 559 core_mmu_set_user_map(&threads[n].user_map); 560 561 /* 562 * Return from RPC to request service of a foreign interrupt must not 563 * get parameters from non-secure world. 564 */ 565 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 566 copy_a0_to_a5(&threads[n].regs, args); 567 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 568 } 569 570 thread_lazy_save_ns_vfp(); 571 thread_resume(&threads[n].regs); 572 } 573 574 void thread_handle_fast_smc(struct thread_smc_args *args) 575 { 576 thread_check_canaries(); 577 thread_fast_smc_handler_ptr(args); 578 /* Fast handlers must not unmask any exceptions */ 579 assert(thread_get_exceptions() == THREAD_EXCP_ALL); 580 } 581 582 void thread_handle_std_smc(struct thread_smc_args *args) 583 { 584 thread_check_canaries(); 585 586 if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC) 587 thread_resume_from_rpc(args); 588 else 589 thread_alloc_and_run(args); 590 } 591 592 /* 593 * Helper routine for the assembly function thread_std_smc_entry() 594 * 595 * Note: this function is weak just to make it possible to exclude it from 596 * the unpaged area. 597 */ 598 void __weak __thread_std_smc_entry(struct thread_smc_args *args) 599 { 600 thread_std_smc_handler_ptr(args); 601 602 if (args->a0 == OPTEE_SMC_RETURN_OK) { 603 struct thread_ctx *thr = threads + thread_get_id(); 604 605 tee_fs_rpc_cache_clear(&thr->tsd); 606 if (!thread_prealloc_rpc_cache) { 607 thread_rpc_free_arg(thr->rpc_carg); 608 mobj_free(thr->rpc_mobj); 609 thr->rpc_carg = 0; 610 thr->rpc_arg = 0; 611 thr->rpc_mobj = NULL; 612 } 613 } 614 } 615 616 void *thread_get_tmp_sp(void) 617 { 618 struct thread_core_local *l = thread_get_core_local(); 619 620 return (void *)l->tmp_stack_va_end; 621 } 622 623 #ifdef ARM64 624 vaddr_t thread_get_saved_thread_sp(void) 625 { 626 struct thread_core_local *l = thread_get_core_local(); 627 int ct = l->curr_thread; 628 629 assert(ct != -1); 630 return threads[ct].kern_sp; 631 } 632 #endif /*ARM64*/ 633 634 vaddr_t thread_stack_start(void) 635 { 636 struct thread_ctx *thr; 637 int ct = thread_get_id_may_fail(); 638 639 if (ct == -1) 640 return 0; 641 642 thr = threads + ct; 643 return thr->stack_va_end - STACK_THREAD_SIZE; 644 } 645 646 size_t thread_stack_size(void) 647 { 648 return STACK_THREAD_SIZE; 649 } 650 651 bool thread_is_from_abort_mode(void) 652 { 653 struct thread_core_local *l = thread_get_core_local(); 654 655 return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT; 656 } 657 658 #ifdef ARM32 659 bool thread_is_in_normal_mode(void) 660 { 661 return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC; 662 } 663 #endif 664 665 #ifdef ARM64 666 bool thread_is_in_normal_mode(void) 667 { 668 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 669 struct thread_core_local *l = thread_get_core_local(); 670 bool ret; 671 672 /* If any bit in l->flags is set we're handling some exception. */ 673 ret = !l->flags; 674 thread_unmask_exceptions(exceptions); 675 676 return ret; 677 } 678 #endif 679 680 void thread_state_free(void) 681 { 682 struct thread_core_local *l = thread_get_core_local(); 683 int ct = l->curr_thread; 684 685 assert(ct != -1); 686 assert(TAILQ_EMPTY(&threads[ct].mutexes)); 687 688 thread_lazy_restore_ns_vfp(); 689 tee_pager_release_phys( 690 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 691 STACK_THREAD_SIZE); 692 693 lock_global(); 694 695 assert(threads[ct].state == THREAD_STATE_ACTIVE); 696 threads[ct].state = THREAD_STATE_FREE; 697 threads[ct].flags = 0; 698 l->curr_thread = -1; 699 700 unlock_global(); 701 } 702 703 #ifdef CFG_WITH_PAGER 704 static void release_unused_kernel_stack(struct thread_ctx *thr, 705 uint32_t cpsr __maybe_unused) 706 { 707 #ifdef ARM64 708 /* 709 * If we're from user mode then thr->regs.sp is the saved user 710 * stack pointer and thr->kern_sp holds the last kernel stack 711 * pointer. But if we're from kernel mode then thr->kern_sp isn't 712 * up to date so we need to read from thr->regs.sp instead. 713 */ 714 vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp; 715 #else 716 vaddr_t sp = thr->regs.svc_sp; 717 #endif 718 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 719 size_t len = sp - base; 720 721 tee_pager_release_phys((void *)base, len); 722 } 723 #else 724 static void release_unused_kernel_stack(struct thread_ctx *thr __unused, 725 uint32_t cpsr __unused) 726 { 727 } 728 #endif 729 730 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 731 { 732 struct thread_core_local *l = thread_get_core_local(); 733 int ct = l->curr_thread; 734 735 assert(ct != -1); 736 737 thread_check_canaries(); 738 739 release_unused_kernel_stack(threads + ct, cpsr); 740 741 if (is_from_user(cpsr)) { 742 thread_user_save_vfp(); 743 tee_ta_update_session_utime_suspend(); 744 tee_ta_gprof_sample_pc(pc); 745 } 746 thread_lazy_restore_ns_vfp(); 747 748 lock_global(); 749 750 assert(threads[ct].state == THREAD_STATE_ACTIVE); 751 threads[ct].flags |= flags; 752 threads[ct].regs.cpsr = cpsr; 753 threads[ct].regs.pc = pc; 754 threads[ct].state = THREAD_STATE_SUSPENDED; 755 756 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 757 if (threads[ct].have_user_map) { 758 core_mmu_get_user_map(&threads[ct].user_map); 759 core_mmu_set_user_map(NULL); 760 } 761 762 l->curr_thread = -1; 763 764 unlock_global(); 765 766 return ct; 767 } 768 769 #ifdef ARM32 770 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 771 { 772 l->tmp_stack_va_end = sp; 773 thread_set_irq_sp(sp); 774 thread_set_fiq_sp(sp); 775 } 776 777 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 778 { 779 l->abt_stack_va_end = sp; 780 thread_set_abt_sp((vaddr_t)l); 781 thread_set_und_sp((vaddr_t)l); 782 } 783 #endif /*ARM32*/ 784 785 #ifdef ARM64 786 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 787 { 788 /* 789 * We're already using the tmp stack when this function is called 790 * so there's no need to assign it to any stack pointer. However, 791 * we'll need to restore it at different times so store it here. 792 */ 793 l->tmp_stack_va_end = sp; 794 } 795 796 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 797 { 798 l->abt_stack_va_end = sp; 799 } 800 #endif /*ARM64*/ 801 802 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 803 { 804 if (thread_id >= CFG_NUM_THREADS) 805 return false; 806 threads[thread_id].stack_va_end = sp; 807 return true; 808 } 809 810 int thread_get_id_may_fail(void) 811 { 812 /* 813 * thread_get_core_local() requires foreign interrupts to be disabled 814 */ 815 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 816 struct thread_core_local *l = thread_get_core_local(); 817 int ct = l->curr_thread; 818 819 thread_unmask_exceptions(exceptions); 820 return ct; 821 } 822 823 int thread_get_id(void) 824 { 825 int ct = thread_get_id_may_fail(); 826 827 assert(ct >= 0 && ct < CFG_NUM_THREADS); 828 return ct; 829 } 830 831 static void init_handlers(const struct thread_handlers *handlers) 832 { 833 thread_std_smc_handler_ptr = handlers->std_smc; 834 thread_fast_smc_handler_ptr = handlers->fast_smc; 835 thread_nintr_handler_ptr = handlers->nintr; 836 thread_cpu_on_handler_ptr = handlers->cpu_on; 837 thread_cpu_off_handler_ptr = handlers->cpu_off; 838 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 839 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 840 thread_system_off_handler_ptr = handlers->system_off; 841 thread_system_reset_handler_ptr = handlers->system_reset; 842 } 843 844 #ifdef CFG_WITH_PAGER 845 static void init_thread_stacks(void) 846 { 847 size_t n; 848 849 /* 850 * Allocate virtual memory for thread stacks. 851 */ 852 for (n = 0; n < CFG_NUM_THREADS; n++) { 853 tee_mm_entry_t *mm; 854 vaddr_t sp; 855 856 /* Find vmem for thread stack and its protection gap */ 857 mm = tee_mm_alloc(&tee_mm_vcore, 858 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 859 assert(mm); 860 861 /* Claim eventual physical page */ 862 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 863 true); 864 865 /* Add the area to the pager */ 866 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 867 tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE, 868 TEE_MATTR_PRW | TEE_MATTR_LOCKED, 869 NULL, NULL); 870 871 /* init effective stack */ 872 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 873 asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp); 874 if (!thread_init_stack(n, sp)) 875 panic("init stack failed"); 876 } 877 } 878 #else 879 static void init_thread_stacks(void) 880 { 881 size_t n; 882 883 /* Assign the thread stacks */ 884 for (n = 0; n < CFG_NUM_THREADS; n++) { 885 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 886 panic("thread_init_stack failed"); 887 } 888 } 889 #endif /*CFG_WITH_PAGER*/ 890 891 static void init_user_kcode(void) 892 { 893 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 894 vaddr_t v; 895 896 v = (vaddr_t)thread_vect_table; 897 thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE); 898 /* 899 * The maximum size of the exception vector and associated code is 900 * something slightly larger than 2 KiB. Worst case the exception 901 * vector can span two pages. 902 */ 903 thread_user_kcode_size = CORE_MMU_USER_CODE_SIZE * 2; 904 905 core_mmu_get_user_va_range(&v, NULL); 906 thread_user_kcode_offset = thread_user_kcode_va - v; 907 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/ 908 } 909 910 void thread_init_primary(const struct thread_handlers *handlers) 911 { 912 init_handlers(handlers); 913 914 /* Initialize canaries around the stacks */ 915 init_canaries(); 916 917 init_thread_stacks(); 918 pgt_init(); 919 920 init_user_kcode(); 921 } 922 923 static void init_sec_mon(size_t pos __maybe_unused) 924 { 925 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 926 /* Initialize secure monitor */ 927 sm_init(GET_STACK(stack_tmp[pos])); 928 #endif 929 } 930 931 void thread_init_per_cpu(void) 932 { 933 size_t pos = get_core_pos(); 934 struct thread_core_local *l = thread_get_core_local(); 935 936 init_sec_mon(pos); 937 938 set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); 939 set_abt_stack(l, GET_STACK(stack_abt[pos])); 940 941 thread_init_vbar(); 942 } 943 944 struct thread_specific_data *thread_get_tsd(void) 945 { 946 return &threads[thread_get_id()].tsd; 947 } 948 949 struct thread_ctx_regs *thread_get_ctx_regs(void) 950 { 951 struct thread_core_local *l = thread_get_core_local(); 952 953 assert(l->curr_thread != -1); 954 return &threads[l->curr_thread].regs; 955 } 956 957 void thread_set_foreign_intr(bool enable) 958 { 959 /* thread_get_core_local() requires foreign interrupts to be disabled */ 960 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 961 struct thread_core_local *l; 962 963 l = thread_get_core_local(); 964 965 assert(l->curr_thread != -1); 966 967 if (enable) { 968 threads[l->curr_thread].flags |= 969 THREAD_FLAGS_FOREIGN_INTR_ENABLE; 970 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 971 } else { 972 /* 973 * No need to disable foreign interrupts here since they're 974 * already disabled above. 975 */ 976 threads[l->curr_thread].flags &= 977 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; 978 } 979 } 980 981 void thread_restore_foreign_intr(void) 982 { 983 /* thread_get_core_local() requires foreign interrupts to be disabled */ 984 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 985 struct thread_core_local *l; 986 987 l = thread_get_core_local(); 988 989 assert(l->curr_thread != -1); 990 991 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) 992 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 993 } 994 995 #ifdef CFG_WITH_VFP 996 uint32_t thread_kernel_enable_vfp(void) 997 { 998 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 999 struct thread_ctx *thr = threads + thread_get_id(); 1000 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1001 1002 assert(!vfp_is_enabled()); 1003 1004 if (!thr->vfp_state.ns_saved) { 1005 vfp_lazy_save_state_final(&thr->vfp_state.ns); 1006 thr->vfp_state.ns_saved = true; 1007 } else if (thr->vfp_state.sec_lazy_saved && 1008 !thr->vfp_state.sec_saved) { 1009 /* 1010 * This happens when we're handling an abort while the 1011 * thread was using the VFP state. 1012 */ 1013 vfp_lazy_save_state_final(&thr->vfp_state.sec); 1014 thr->vfp_state.sec_saved = true; 1015 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 1016 /* 1017 * This can happen either during syscall or abort 1018 * processing (while processing a syscall). 1019 */ 1020 vfp_lazy_save_state_final(&tuv->vfp); 1021 tuv->saved = true; 1022 } 1023 1024 vfp_enable(); 1025 return exceptions; 1026 } 1027 1028 void thread_kernel_disable_vfp(uint32_t state) 1029 { 1030 uint32_t exceptions; 1031 1032 assert(vfp_is_enabled()); 1033 1034 vfp_disable(); 1035 exceptions = thread_get_exceptions(); 1036 assert(exceptions & THREAD_EXCP_FOREIGN_INTR); 1037 exceptions &= ~THREAD_EXCP_FOREIGN_INTR; 1038 exceptions |= state & THREAD_EXCP_FOREIGN_INTR; 1039 thread_set_exceptions(exceptions); 1040 } 1041 1042 void thread_kernel_save_vfp(void) 1043 { 1044 struct thread_ctx *thr = threads + thread_get_id(); 1045 1046 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1047 if (vfp_is_enabled()) { 1048 vfp_lazy_save_state_init(&thr->vfp_state.sec); 1049 thr->vfp_state.sec_lazy_saved = true; 1050 } 1051 } 1052 1053 void thread_kernel_restore_vfp(void) 1054 { 1055 struct thread_ctx *thr = threads + thread_get_id(); 1056 1057 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1058 assert(!vfp_is_enabled()); 1059 if (thr->vfp_state.sec_lazy_saved) { 1060 vfp_lazy_restore_state(&thr->vfp_state.sec, 1061 thr->vfp_state.sec_saved); 1062 thr->vfp_state.sec_saved = false; 1063 thr->vfp_state.sec_lazy_saved = false; 1064 } 1065 } 1066 1067 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 1068 { 1069 struct thread_ctx *thr = threads + thread_get_id(); 1070 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1071 1072 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1073 assert(!vfp_is_enabled()); 1074 1075 if (!thr->vfp_state.ns_saved) { 1076 vfp_lazy_save_state_final(&thr->vfp_state.ns); 1077 thr->vfp_state.ns_saved = true; 1078 } else if (tuv && uvfp != tuv) { 1079 if (tuv->lazy_saved && !tuv->saved) { 1080 vfp_lazy_save_state_final(&tuv->vfp); 1081 tuv->saved = true; 1082 } 1083 } 1084 1085 if (uvfp->lazy_saved) 1086 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 1087 uvfp->lazy_saved = false; 1088 uvfp->saved = false; 1089 1090 thr->vfp_state.uvfp = uvfp; 1091 vfp_enable(); 1092 } 1093 1094 void thread_user_save_vfp(void) 1095 { 1096 struct thread_ctx *thr = threads + thread_get_id(); 1097 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1098 1099 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1100 if (!vfp_is_enabled()) 1101 return; 1102 1103 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1104 vfp_lazy_save_state_init(&tuv->vfp); 1105 tuv->lazy_saved = true; 1106 } 1107 1108 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1109 { 1110 struct thread_ctx *thr = threads + thread_get_id(); 1111 1112 if (uvfp == thr->vfp_state.uvfp) 1113 thr->vfp_state.uvfp = NULL; 1114 uvfp->lazy_saved = false; 1115 uvfp->saved = false; 1116 } 1117 #endif /*CFG_WITH_VFP*/ 1118 1119 #ifdef ARM32 1120 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1121 { 1122 uint32_t s; 1123 1124 if (!is_32bit) 1125 return false; 1126 1127 s = read_spsr(); 1128 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1129 s |= CPSR_MODE_USR; 1130 if (entry_func & 1) 1131 s |= CPSR_T; 1132 *spsr = s; 1133 return true; 1134 } 1135 #endif 1136 1137 #ifdef ARM64 1138 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1139 { 1140 uint32_t s; 1141 1142 if (is_32bit) { 1143 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1144 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1145 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1146 } else { 1147 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1148 } 1149 1150 *spsr = s; 1151 return true; 1152 } 1153 #endif 1154 1155 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1156 unsigned long a2, unsigned long a3, unsigned long user_sp, 1157 unsigned long entry_func, bool is_32bit, 1158 uint32_t *exit_status0, uint32_t *exit_status1) 1159 { 1160 uint32_t spsr; 1161 1162 tee_ta_update_session_utime_resume(); 1163 1164 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1165 *exit_status0 = 1; /* panic */ 1166 *exit_status1 = 0xbadbadba; 1167 return 0; 1168 } 1169 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1170 spsr, exit_status0, exit_status1); 1171 } 1172 1173 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 1174 void thread_get_user_kcode(struct mobj **mobj, size_t *offset, 1175 vaddr_t *va, size_t *sz) 1176 { 1177 core_mmu_get_user_va_range(va, NULL); 1178 *mobj = mobj_tee_ram; 1179 *offset = thread_user_kcode_va - CFG_TEE_RAM_START; 1180 *sz = thread_user_kcode_size; 1181 } 1182 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/ 1183 1184 void thread_add_mutex(struct mutex *m) 1185 { 1186 struct thread_core_local *l = thread_get_core_local(); 1187 int ct = l->curr_thread; 1188 1189 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1190 assert(m->owner_id == MUTEX_OWNER_ID_NONE); 1191 m->owner_id = ct; 1192 TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link); 1193 } 1194 1195 void thread_rem_mutex(struct mutex *m) 1196 { 1197 struct thread_core_local *l = thread_get_core_local(); 1198 int ct = l->curr_thread; 1199 1200 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1201 assert(m->owner_id == ct); 1202 m->owner_id = MUTEX_OWNER_ID_NONE; 1203 TAILQ_REMOVE(&threads[ct].mutexes, m, link); 1204 } 1205 1206 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie) 1207 { 1208 bool rv; 1209 size_t n; 1210 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1211 1212 lock_global(); 1213 1214 for (n = 0; n < CFG_NUM_THREADS; n++) { 1215 if (threads[n].state != THREAD_STATE_FREE) { 1216 rv = false; 1217 goto out; 1218 } 1219 } 1220 1221 rv = true; 1222 for (n = 0; n < CFG_NUM_THREADS; n++) { 1223 if (threads[n].rpc_arg) { 1224 mobj_free(threads[n].rpc_mobj); 1225 *cookie = threads[n].rpc_carg; 1226 threads[n].rpc_carg = 0; 1227 threads[n].rpc_arg = NULL; 1228 goto out; 1229 } 1230 } 1231 1232 *cookie = 0; 1233 thread_prealloc_rpc_cache = false; 1234 out: 1235 unlock_global(); 1236 thread_unmask_exceptions(exceptions); 1237 return rv; 1238 } 1239 1240 bool thread_enable_prealloc_rpc_cache(void) 1241 { 1242 bool rv; 1243 size_t n; 1244 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1245 1246 lock_global(); 1247 1248 for (n = 0; n < CFG_NUM_THREADS; n++) { 1249 if (threads[n].state != THREAD_STATE_FREE) { 1250 rv = false; 1251 goto out; 1252 } 1253 } 1254 1255 rv = true; 1256 thread_prealloc_rpc_cache = true; 1257 out: 1258 unlock_global(); 1259 thread_unmask_exceptions(exceptions); 1260 return rv; 1261 } 1262 1263 void thread_rpc_free_arg(uint64_t cookie) 1264 { 1265 if (cookie) { 1266 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1267 OPTEE_SMC_RETURN_RPC_FREE 1268 }; 1269 1270 reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2); 1271 thread_rpc(rpc_args); 1272 } 1273 } 1274 1275 struct mobj *thread_rpc_alloc_arg(size_t size, uint64_t *cookie) 1276 { 1277 paddr_t pa; 1278 uint64_t co; 1279 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1280 OPTEE_SMC_RETURN_RPC_ALLOC, size 1281 }; 1282 struct mobj *mobj = NULL; 1283 1284 thread_rpc(rpc_args); 1285 1286 pa = reg_pair_to_64(rpc_args[1], rpc_args[2]); 1287 co = reg_pair_to_64(rpc_args[4], rpc_args[5]); 1288 1289 if (!ALIGNMENT_IS_OK(pa, struct optee_msg_arg)) 1290 goto err; 1291 1292 /* Check if this region is in static shared space */ 1293 if (core_pbuf_is(CORE_MEM_NSEC_SHM, pa, size)) 1294 mobj = mobj_shm_alloc(pa, size); 1295 else if ((!(pa & SMALL_PAGE_MASK)) && size <= SMALL_PAGE_SIZE) 1296 mobj = mobj_mapped_shm_alloc(&pa, 1, 0, co); 1297 1298 if (!mobj) 1299 goto err; 1300 1301 *cookie = co; 1302 return mobj; 1303 err: 1304 thread_rpc_free_arg(co); 1305 mobj_free(mobj); 1306 *cookie = 0; 1307 return NULL; 1308 } 1309 1310 static bool get_rpc_arg(uint32_t cmd, size_t num_params, 1311 struct optee_msg_arg **arg_ret, uint64_t *carg_ret) 1312 { 1313 struct thread_ctx *thr = threads + thread_get_id(); 1314 struct optee_msg_arg *arg = thr->rpc_arg; 1315 struct mobj *mobj; 1316 size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS); 1317 uint64_t c; 1318 1319 if (num_params > THREAD_RPC_MAX_NUM_PARAMS) 1320 return false; 1321 1322 if (!arg) { 1323 mobj = thread_rpc_alloc_arg(sz, &c); 1324 if (!mobj) 1325 return false; 1326 1327 arg = mobj_get_va(mobj, 0); 1328 if (!arg) 1329 goto bad; 1330 1331 thr->rpc_arg = arg; 1332 thr->rpc_carg = c; 1333 thr->rpc_mobj = mobj; 1334 } 1335 1336 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); 1337 arg->cmd = cmd; 1338 arg->num_params = num_params; 1339 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1340 1341 *arg_ret = arg; 1342 *carg_ret = thr->rpc_carg; 1343 return true; 1344 1345 bad: 1346 thread_rpc_free_arg(c); 1347 return false; 1348 } 1349 1350 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1351 struct optee_msg_param *params) 1352 { 1353 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1354 struct optee_msg_arg *arg; 1355 uint64_t carg; 1356 size_t n; 1357 1358 /* 1359 * Break recursion in case plat_prng_add_jitter_entropy_norpc() 1360 * sleeps on a mutex or unlocks a mutex with a sleeper (contended 1361 * mutex). 1362 */ 1363 if (cmd != OPTEE_MSG_RPC_CMD_WAIT_QUEUE) 1364 plat_prng_add_jitter_entropy_norpc(); 1365 1366 if (!get_rpc_arg(cmd, num_params, &arg, &carg)) 1367 return TEE_ERROR_OUT_OF_MEMORY; 1368 1369 memcpy(arg->params, params, sizeof(*params) * num_params); 1370 1371 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1372 thread_rpc(rpc_args); 1373 for (n = 0; n < num_params; n++) { 1374 switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) { 1375 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 1376 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 1377 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 1378 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 1379 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 1380 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 1381 params[n] = arg->params[n]; 1382 break; 1383 default: 1384 break; 1385 } 1386 } 1387 return arg->ret; 1388 } 1389 1390 /** 1391 * Free physical memory previously allocated with thread_rpc_alloc() 1392 * 1393 * @cookie: cookie received when allocating the buffer 1394 * @bt: must be the same as supplied when allocating 1395 * @mobj: mobj that describes allocated buffer 1396 * 1397 * This function also frees corresponding mobj. 1398 */ 1399 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj) 1400 { 1401 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1402 struct optee_msg_arg *arg; 1403 uint64_t carg; 1404 1405 if (!get_rpc_arg(OPTEE_MSG_RPC_CMD_SHM_FREE, 1, &arg, &carg)) 1406 return; 1407 1408 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1409 arg->params[0].u.value.a = bt; 1410 arg->params[0].u.value.b = cookie; 1411 arg->params[0].u.value.c = 0; 1412 1413 mobj_free(mobj); 1414 1415 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1416 thread_rpc(rpc_args); 1417 } 1418 1419 /** 1420 * Allocates shared memory buffer via RPC 1421 * 1422 * @size: size in bytes of shared memory buffer 1423 * @align: required alignment of buffer 1424 * @bt: buffer type OPTEE_MSG_RPC_SHM_TYPE_* 1425 * @payload: returned physical pointer to buffer, 0 if allocation 1426 * failed. 1427 * @cookie: returned cookie used when freeing the buffer 1428 */ 1429 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt, 1430 uint64_t *cookie) 1431 { 1432 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1433 struct optee_msg_arg *arg; 1434 uint64_t carg; 1435 struct mobj *mobj = NULL; 1436 1437 if (!get_rpc_arg(OPTEE_MSG_RPC_CMD_SHM_ALLOC, 1, &arg, &carg)) 1438 goto fail; 1439 1440 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1441 arg->params[0].u.value.a = bt; 1442 arg->params[0].u.value.b = size; 1443 arg->params[0].u.value.c = align; 1444 1445 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1446 thread_rpc(rpc_args); 1447 1448 if (arg->ret != TEE_SUCCESS) 1449 goto fail; 1450 1451 if (arg->num_params != 1) 1452 goto fail; 1453 1454 if (arg->params[0].attr == OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT) { 1455 *cookie = arg->params[0].u.tmem.shm_ref; 1456 mobj = mobj_shm_alloc(arg->params[0].u.tmem.buf_ptr, 1457 arg->params[0].u.tmem.size); 1458 } else if (arg->params[0].attr == (OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 1459 OPTEE_MSG_ATTR_NONCONTIG)) { 1460 *cookie = arg->params[0].u.tmem.shm_ref; 1461 mobj = msg_param_mobj_from_noncontig( 1462 arg->params[0].u.tmem.buf_ptr, 1463 arg->params[0].u.tmem.size, 1464 *cookie, 1465 true); 1466 } else 1467 goto fail; 1468 1469 if (!mobj) 1470 goto free_first; 1471 1472 assert(mobj_is_nonsec(mobj)); 1473 return mobj; 1474 1475 free_first: 1476 thread_rpc_free(bt, *cookie, mobj); 1477 fail: 1478 *cookie = 0; 1479 return NULL; 1480 } 1481 1482 struct mobj *thread_rpc_alloc_payload(size_t size, uint64_t *cookie) 1483 { 1484 return thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie); 1485 } 1486 1487 void thread_rpc_free_payload(uint64_t cookie, struct mobj *mobj) 1488 { 1489 thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie, mobj); 1490 } 1491