1 /* 2 * Copyright (c) 2016, Linaro Limited 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * 2. Redistributions in binary form must reproduce the above copyright notice, 13 * this list of conditions and the following disclaimer in the documentation 14 * and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 #include <platform_config.h> 29 #include <kernel/panic.h> 30 #include <kernel/thread.h> 31 #include <kernel/thread_defs.h> 32 #include "thread_private.h" 33 #include <sm/sm_defs.h> 34 #include <sm/sm.h> 35 #include <optee_msg.h> 36 #include <sm/optee_smc.h> 37 #include <arm.h> 38 #include <kernel/tz_proc_def.h> 39 #include <kernel/tz_proc.h> 40 #include <kernel/misc.h> 41 #include <mm/tee_mmu.h> 42 #include <mm/core_memprot.h> 43 #include <mm/tee_mmu_defs.h> 44 #include <mm/tee_mm.h> 45 #include <mm/tee_pager.h> 46 #include <kernel/tee_ta_manager.h> 47 #include <util.h> 48 #include <trace.h> 49 #include <assert.h> 50 #include <keep.h> 51 52 #ifdef ARM32 53 #define STACK_TMP_SIZE 1024 54 #define STACK_THREAD_SIZE 8192 55 56 #if TRACE_LEVEL > 0 57 #define STACK_ABT_SIZE 2048 58 #else 59 #define STACK_ABT_SIZE 1024 60 #endif 61 62 #endif /*ARM32*/ 63 64 #ifdef ARM64 65 #define STACK_TMP_SIZE 2048 66 #define STACK_THREAD_SIZE 8192 67 68 #if TRACE_LEVEL > 0 69 #define STACK_ABT_SIZE 3072 70 #else 71 #define STACK_ABT_SIZE 1024 72 #endif 73 #endif /*ARM64*/ 74 75 #define RPC_MAX_NUM_PARAMS 2 76 77 struct thread_ctx threads[CFG_NUM_THREADS]; 78 79 static struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE]; 80 81 #ifdef CFG_WITH_STACK_CANARIES 82 #ifdef ARM32 83 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 84 #endif 85 #ifdef ARM64 86 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 87 #endif 88 #define START_CANARY_VALUE 0xdededede 89 #define END_CANARY_VALUE 0xabababab 90 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 91 #define GET_END_CANARY(name, stack_num) \ 92 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 93 #else 94 #define STACK_CANARY_SIZE 0 95 #endif 96 97 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 98 linkage uint32_t name[num_stacks] \ 99 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 100 sizeof(uint32_t)] \ 101 __attribute__((section(".nozi.stack"), \ 102 aligned(STACK_ALIGNMENT))) 103 104 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 105 106 #define GET_STACK(stack) \ 107 ((vaddr_t)(stack) + STACK_SIZE(stack)) 108 109 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, /* global */); 110 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 111 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 112 DECLARE_STACK(stack_sm, CFG_TEE_CORE_NB_CORE, SM_STACK_SIZE, static); 113 #endif 114 #ifndef CFG_WITH_PAGER 115 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 116 #endif 117 118 const uint32_t stack_tmp_stride = STACK_SIZE(stack_tmp[0]); 119 120 KEEP_PAGER(stack_tmp); 121 KEEP_PAGER(stack_tmp_stride); 122 123 thread_smc_handler_t thread_std_smc_handler_ptr; 124 static thread_smc_handler_t thread_fast_smc_handler_ptr; 125 thread_fiq_handler_t thread_fiq_handler_ptr; 126 thread_pm_handler_t thread_cpu_on_handler_ptr; 127 thread_pm_handler_t thread_cpu_off_handler_ptr; 128 thread_pm_handler_t thread_cpu_suspend_handler_ptr; 129 thread_pm_handler_t thread_cpu_resume_handler_ptr; 130 thread_pm_handler_t thread_system_off_handler_ptr; 131 thread_pm_handler_t thread_system_reset_handler_ptr; 132 133 134 static unsigned int thread_global_lock = SPINLOCK_UNLOCK; 135 static bool thread_prealloc_rpc_cache; 136 137 static void init_canaries(void) 138 { 139 #ifdef CFG_WITH_STACK_CANARIES 140 size_t n; 141 #define INIT_CANARY(name) \ 142 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 143 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 144 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 145 \ 146 *start_canary = START_CANARY_VALUE; \ 147 *end_canary = END_CANARY_VALUE; \ 148 DMSG("#Stack canaries for %s[%zu] with top at %p\n", \ 149 #name, n, (void *)(end_canary - 1)); \ 150 DMSG("watch *%p\n", (void *)end_canary); \ 151 } 152 153 INIT_CANARY(stack_tmp); 154 INIT_CANARY(stack_abt); 155 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 156 INIT_CANARY(stack_sm); 157 #endif 158 #ifndef CFG_WITH_PAGER 159 INIT_CANARY(stack_thread); 160 #endif 161 #endif/*CFG_WITH_STACK_CANARIES*/ 162 } 163 164 void thread_check_canaries(void) 165 { 166 #ifdef CFG_WITH_STACK_CANARIES 167 size_t n; 168 169 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 170 assert(GET_START_CANARY(stack_tmp, n) == START_CANARY_VALUE); 171 assert(GET_END_CANARY(stack_tmp, n) == END_CANARY_VALUE); 172 } 173 174 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 175 assert(GET_START_CANARY(stack_abt, n) == START_CANARY_VALUE); 176 assert(GET_END_CANARY(stack_abt, n) == END_CANARY_VALUE); 177 } 178 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 179 for (n = 0; n < ARRAY_SIZE(stack_sm); n++) { 180 assert(GET_START_CANARY(stack_sm, n) == START_CANARY_VALUE); 181 assert(GET_END_CANARY(stack_sm, n) == END_CANARY_VALUE); 182 } 183 #endif 184 #ifndef CFG_WITH_PAGER 185 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 186 assert(GET_START_CANARY(stack_thread, n) == START_CANARY_VALUE); 187 assert(GET_END_CANARY(stack_thread, n) == END_CANARY_VALUE); 188 } 189 #endif 190 #endif/*CFG_WITH_STACK_CANARIES*/ 191 } 192 193 static void lock_global(void) 194 { 195 cpu_spin_lock(&thread_global_lock); 196 } 197 198 static void unlock_global(void) 199 { 200 cpu_spin_unlock(&thread_global_lock); 201 } 202 203 #ifdef ARM32 204 uint32_t thread_get_exceptions(void) 205 { 206 uint32_t cpsr = read_cpsr(); 207 208 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 209 } 210 211 void thread_set_exceptions(uint32_t exceptions) 212 { 213 uint32_t cpsr = read_cpsr(); 214 215 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 216 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 217 write_cpsr(cpsr); 218 } 219 #endif /*ARM32*/ 220 221 #ifdef ARM64 222 uint32_t thread_get_exceptions(void) 223 { 224 uint32_t daif = read_daif(); 225 226 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 227 } 228 229 void thread_set_exceptions(uint32_t exceptions) 230 { 231 uint32_t daif = read_daif(); 232 233 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 234 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 235 write_daif(daif); 236 } 237 #endif /*ARM64*/ 238 239 uint32_t thread_mask_exceptions(uint32_t exceptions) 240 { 241 uint32_t state = thread_get_exceptions(); 242 243 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 244 return state; 245 } 246 247 void thread_unmask_exceptions(uint32_t state) 248 { 249 thread_set_exceptions(state & THREAD_EXCP_ALL); 250 } 251 252 253 struct thread_core_local *thread_get_core_local(void) 254 { 255 uint32_t cpu_id = get_core_pos(); 256 257 /* 258 * IRQs must be disabled before playing with core_local since 259 * we otherwise may be rescheduled to a different core in the 260 * middle of this function. 261 */ 262 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 263 264 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 265 return &thread_core_local[cpu_id]; 266 } 267 268 static void thread_lazy_save_ns_vfp(void) 269 { 270 #ifdef CFG_WITH_VFP 271 struct thread_ctx *thr = threads + thread_get_id(); 272 273 thr->vfp_state.ns_saved = false; 274 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW) 275 /* 276 * ARM TF saves and restores CPACR_EL1, so we must assume NS world 277 * uses VFP and always preserve the register file when secure world 278 * is about to use it 279 */ 280 thr->vfp_state.ns.force_save = true; 281 #endif 282 vfp_lazy_save_state_init(&thr->vfp_state.ns); 283 #endif /*CFG_WITH_VFP*/ 284 } 285 286 static void thread_lazy_restore_ns_vfp(void) 287 { 288 #ifdef CFG_WITH_VFP 289 struct thread_ctx *thr = threads + thread_get_id(); 290 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 291 292 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 293 294 if (tuv && tuv->lazy_saved && !tuv->saved) { 295 vfp_lazy_save_state_final(&tuv->vfp); 296 tuv->saved = true; 297 } 298 299 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 300 thr->vfp_state.ns_saved = false; 301 #endif /*CFG_WITH_VFP*/ 302 } 303 304 #ifdef ARM32 305 static void init_regs(struct thread_ctx *thread, 306 struct thread_smc_args *args) 307 { 308 thread->regs.pc = (uint32_t)thread_std_smc_entry; 309 310 /* 311 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous 312 * abort and unmasked FIQ. 313 */ 314 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 315 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_I | CPSR_A; 316 /* Enable thumb mode if it's a thumb instruction */ 317 if (thread->regs.pc & 1) 318 thread->regs.cpsr |= CPSR_T; 319 /* Reinitialize stack pointer */ 320 thread->regs.svc_sp = thread->stack_va_end; 321 322 /* 323 * Copy arguments into context. This will make the 324 * arguments appear in r0-r7 when thread is started. 325 */ 326 thread->regs.r0 = args->a0; 327 thread->regs.r1 = args->a1; 328 thread->regs.r2 = args->a2; 329 thread->regs.r3 = args->a3; 330 thread->regs.r4 = args->a4; 331 thread->regs.r5 = args->a5; 332 thread->regs.r6 = args->a6; 333 thread->regs.r7 = args->a7; 334 } 335 #endif /*ARM32*/ 336 337 #ifdef ARM64 338 static void init_regs(struct thread_ctx *thread, 339 struct thread_smc_args *args) 340 { 341 thread->regs.pc = (uint64_t)thread_std_smc_entry; 342 343 /* 344 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous 345 * abort and unmasked FIQ. 346 */ 347 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 348 DAIFBIT_IRQ | DAIFBIT_ABT); 349 /* Reinitialize stack pointer */ 350 thread->regs.sp = thread->stack_va_end; 351 352 /* 353 * Copy arguments into context. This will make the 354 * arguments appear in x0-x7 when thread is started. 355 */ 356 thread->regs.x[0] = args->a0; 357 thread->regs.x[1] = args->a1; 358 thread->regs.x[2] = args->a2; 359 thread->regs.x[3] = args->a3; 360 thread->regs.x[4] = args->a4; 361 thread->regs.x[5] = args->a5; 362 thread->regs.x[6] = args->a6; 363 thread->regs.x[7] = args->a7; 364 } 365 #endif /*ARM64*/ 366 367 void thread_init_boot_thread(void) 368 { 369 struct thread_core_local *l = thread_get_core_local(); 370 size_t n; 371 372 for (n = 0; n < CFG_NUM_THREADS; n++) { 373 TAILQ_INIT(&threads[n].mutexes); 374 TAILQ_INIT(&threads[n].tsd.sess_stack); 375 #ifdef CFG_SMALL_PAGE_USER_TA 376 SLIST_INIT(&threads[n].tsd.pgt_cache); 377 #endif 378 } 379 380 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 381 thread_core_local[n].curr_thread = -1; 382 383 l->curr_thread = 0; 384 threads[0].state = THREAD_STATE_ACTIVE; 385 } 386 387 void thread_clr_boot_thread(void) 388 { 389 struct thread_core_local *l = thread_get_core_local(); 390 391 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 392 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 393 assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes)); 394 threads[l->curr_thread].state = THREAD_STATE_FREE; 395 l->curr_thread = -1; 396 } 397 398 static void thread_alloc_and_run(struct thread_smc_args *args) 399 { 400 size_t n; 401 struct thread_core_local *l = thread_get_core_local(); 402 bool found_thread = false; 403 404 assert(l->curr_thread == -1); 405 406 lock_global(); 407 408 for (n = 0; n < CFG_NUM_THREADS; n++) { 409 if (threads[n].state == THREAD_STATE_FREE) { 410 threads[n].state = THREAD_STATE_ACTIVE; 411 found_thread = true; 412 break; 413 } 414 } 415 416 unlock_global(); 417 418 if (!found_thread) { 419 args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT; 420 return; 421 } 422 423 l->curr_thread = n; 424 425 threads[n].flags = 0; 426 init_regs(threads + n, args); 427 428 /* Save Hypervisor Client ID */ 429 threads[n].hyp_clnt_id = args->a7; 430 431 thread_lazy_save_ns_vfp(); 432 thread_resume(&threads[n].regs); 433 } 434 435 #ifdef ARM32 436 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 437 struct thread_smc_args *args) 438 { 439 /* 440 * Update returned values from RPC, values will appear in 441 * r0-r3 when thread is resumed. 442 */ 443 regs->r0 = args->a0; 444 regs->r1 = args->a1; 445 regs->r2 = args->a2; 446 regs->r3 = args->a3; 447 regs->r4 = args->a4; 448 regs->r5 = args->a5; 449 } 450 #endif /*ARM32*/ 451 452 #ifdef ARM64 453 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 454 struct thread_smc_args *args) 455 { 456 /* 457 * Update returned values from RPC, values will appear in 458 * x0-x3 when thread is resumed. 459 */ 460 regs->x[0] = args->a0; 461 regs->x[1] = args->a1; 462 regs->x[2] = args->a2; 463 regs->x[3] = args->a3; 464 regs->x[4] = args->a4; 465 regs->x[5] = args->a5; 466 } 467 #endif /*ARM64*/ 468 469 static void thread_resume_from_rpc(struct thread_smc_args *args) 470 { 471 size_t n = args->a3; /* thread id */ 472 struct thread_core_local *l = thread_get_core_local(); 473 uint32_t rv = 0; 474 475 assert(l->curr_thread == -1); 476 477 lock_global(); 478 479 if (n < CFG_NUM_THREADS && 480 threads[n].state == THREAD_STATE_SUSPENDED && 481 args->a7 == threads[n].hyp_clnt_id) 482 threads[n].state = THREAD_STATE_ACTIVE; 483 else 484 rv = OPTEE_SMC_RETURN_ERESUME; 485 486 unlock_global(); 487 488 if (rv) { 489 args->a0 = rv; 490 return; 491 } 492 493 l->curr_thread = n; 494 495 if (threads[n].have_user_map) 496 core_mmu_set_user_map(&threads[n].user_map); 497 498 /* 499 * Return from RPC to request service of an IRQ must not 500 * get parameters from non-secure world. 501 */ 502 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 503 copy_a0_to_a5(&threads[n].regs, args); 504 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 505 } 506 507 thread_lazy_save_ns_vfp(); 508 thread_resume(&threads[n].regs); 509 } 510 511 void thread_handle_fast_smc(struct thread_smc_args *args) 512 { 513 thread_check_canaries(); 514 thread_fast_smc_handler_ptr(args); 515 /* Fast handlers must not unmask any exceptions */ 516 assert(thread_get_exceptions() == THREAD_EXCP_ALL); 517 } 518 519 void thread_handle_std_smc(struct thread_smc_args *args) 520 { 521 thread_check_canaries(); 522 523 if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC) 524 thread_resume_from_rpc(args); 525 else 526 thread_alloc_and_run(args); 527 } 528 529 /* Helper routine for the assembly function thread_std_smc_entry() */ 530 void __thread_std_smc_entry(struct thread_smc_args *args) 531 { 532 struct thread_ctx *thr = threads + thread_get_id(); 533 534 if (!thr->rpc_arg) { 535 paddr_t parg; 536 uint64_t carg; 537 void *arg; 538 539 thread_rpc_alloc_arg( 540 OPTEE_MSG_GET_ARG_SIZE(RPC_MAX_NUM_PARAMS), 541 &parg, &carg); 542 if (!parg || !ALIGNMENT_IS_OK(parg, struct optee_msg_arg) || 543 !(arg = phys_to_virt(parg, CORE_MEM_NSEC_SHM))) { 544 thread_rpc_free_arg(carg); 545 args->a0 = OPTEE_SMC_RETURN_ENOMEM; 546 return; 547 } 548 549 thr->rpc_arg = arg; 550 thr->rpc_carg = carg; 551 } 552 553 thread_std_smc_handler_ptr(args); 554 555 if (!thread_prealloc_rpc_cache) { 556 thread_rpc_free_arg(thr->rpc_carg); 557 thr->rpc_carg = 0; 558 thr->rpc_arg = 0; 559 } 560 } 561 562 void *thread_get_tmp_sp(void) 563 { 564 struct thread_core_local *l = thread_get_core_local(); 565 566 return (void *)l->tmp_stack_va_end; 567 } 568 569 #ifdef ARM64 570 vaddr_t thread_get_saved_thread_sp(void) 571 { 572 struct thread_core_local *l = thread_get_core_local(); 573 int ct = l->curr_thread; 574 575 assert(ct != -1); 576 return threads[ct].kern_sp; 577 } 578 #endif /*ARM64*/ 579 580 bool thread_addr_is_in_stack(vaddr_t va) 581 { 582 struct thread_ctx *thr = threads + thread_get_id(); 583 584 return va < thr->stack_va_end && 585 va >= (thr->stack_va_end - STACK_THREAD_SIZE); 586 } 587 588 void thread_state_free(void) 589 { 590 struct thread_core_local *l = thread_get_core_local(); 591 int ct = l->curr_thread; 592 593 assert(ct != -1); 594 assert(TAILQ_EMPTY(&threads[ct].mutexes)); 595 596 thread_lazy_restore_ns_vfp(); 597 tee_pager_release_phys( 598 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 599 STACK_THREAD_SIZE); 600 601 lock_global(); 602 603 assert(threads[ct].state == THREAD_STATE_ACTIVE); 604 threads[ct].state = THREAD_STATE_FREE; 605 threads[ct].flags = 0; 606 l->curr_thread = -1; 607 608 unlock_global(); 609 } 610 611 #ifdef ARM32 612 static bool is_from_user(uint32_t cpsr) 613 { 614 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 615 } 616 #endif 617 618 #ifdef ARM64 619 static bool is_from_user(uint32_t cpsr) 620 { 621 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 622 return true; 623 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 624 SPSR_64_MODE_EL0) 625 return true; 626 return false; 627 } 628 #endif 629 630 #ifdef CFG_WITH_PAGER 631 static void release_unused_kernel_stack(struct thread_ctx *thr) 632 { 633 vaddr_t sp = thr->regs.svc_sp; 634 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 635 size_t len = sp - base; 636 637 tee_pager_release_phys((void *)base, len); 638 } 639 #else 640 static void release_unused_kernel_stack(struct thread_ctx *thr __unused) 641 { 642 } 643 #endif 644 645 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 646 { 647 struct thread_core_local *l = thread_get_core_local(); 648 int ct = l->curr_thread; 649 650 assert(ct != -1); 651 652 thread_check_canaries(); 653 654 release_unused_kernel_stack(threads + ct); 655 656 if (is_from_user(cpsr)) 657 thread_user_save_vfp(); 658 thread_lazy_restore_ns_vfp(); 659 660 lock_global(); 661 662 assert(threads[ct].state == THREAD_STATE_ACTIVE); 663 threads[ct].flags |= flags; 664 threads[ct].regs.cpsr = cpsr; 665 threads[ct].regs.pc = pc; 666 threads[ct].state = THREAD_STATE_SUSPENDED; 667 668 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 669 if (threads[ct].have_user_map) { 670 core_mmu_get_user_map(&threads[ct].user_map); 671 core_mmu_set_user_map(NULL); 672 } 673 674 l->curr_thread = -1; 675 676 unlock_global(); 677 678 return ct; 679 } 680 681 #ifdef ARM32 682 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 683 { 684 l->tmp_stack_va_end = sp; 685 thread_set_irq_sp(sp); 686 thread_set_fiq_sp(sp); 687 } 688 689 static void set_abt_stack(struct thread_core_local *l __unused, vaddr_t sp) 690 { 691 thread_set_abt_sp(sp); 692 } 693 #endif /*ARM32*/ 694 695 #ifdef ARM64 696 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 697 { 698 /* 699 * We're already using the tmp stack when this function is called 700 * so there's no need to assign it to any stack pointer. However, 701 * we'll need to restore it at different times so store it here. 702 */ 703 l->tmp_stack_va_end = sp; 704 } 705 706 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 707 { 708 l->abt_stack_va_end = sp; 709 } 710 #endif /*ARM64*/ 711 712 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 713 { 714 if (thread_id >= CFG_NUM_THREADS) 715 return false; 716 threads[thread_id].stack_va_end = sp; 717 return true; 718 } 719 720 int thread_get_id_may_fail(void) 721 { 722 /* thread_get_core_local() requires IRQs to be disabled */ 723 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 724 struct thread_core_local *l = thread_get_core_local(); 725 int ct = l->curr_thread; 726 727 thread_unmask_exceptions(exceptions); 728 return ct; 729 } 730 731 int thread_get_id(void) 732 { 733 int ct = thread_get_id_may_fail(); 734 735 assert((ct >= 0) && (ct < CFG_NUM_THREADS)); 736 return ct; 737 } 738 739 static void init_handlers(const struct thread_handlers *handlers) 740 { 741 thread_std_smc_handler_ptr = handlers->std_smc; 742 thread_fast_smc_handler_ptr = handlers->fast_smc; 743 thread_fiq_handler_ptr = handlers->fiq; 744 thread_cpu_on_handler_ptr = handlers->cpu_on; 745 thread_cpu_off_handler_ptr = handlers->cpu_off; 746 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 747 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 748 thread_system_off_handler_ptr = handlers->system_off; 749 thread_system_reset_handler_ptr = handlers->system_reset; 750 } 751 752 #ifdef CFG_WITH_PAGER 753 static void init_thread_stacks(void) 754 { 755 size_t n; 756 757 /* 758 * Allocate virtual memory for thread stacks. 759 */ 760 for (n = 0; n < CFG_NUM_THREADS; n++) { 761 tee_mm_entry_t *mm; 762 vaddr_t sp; 763 764 /* Find vmem for thread stack and its protection gap */ 765 mm = tee_mm_alloc(&tee_mm_vcore, 766 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 767 TEE_ASSERT(mm); 768 769 /* Claim eventual physical page */ 770 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 771 true); 772 773 /* Add the area to the pager */ 774 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 775 tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE, 776 TEE_MATTR_PRW | TEE_MATTR_LOCKED, 777 NULL, NULL); 778 779 /* init effective stack */ 780 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 781 if (!thread_init_stack(n, sp)) 782 panic(); 783 } 784 } 785 #else 786 static void init_thread_stacks(void) 787 { 788 size_t n; 789 790 /* Assign the thread stacks */ 791 for (n = 0; n < CFG_NUM_THREADS; n++) { 792 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 793 panic(); 794 } 795 } 796 #endif /*CFG_WITH_PAGER*/ 797 798 void thread_init_primary(const struct thread_handlers *handlers) 799 { 800 init_handlers(handlers); 801 802 /* Initialize canaries around the stacks */ 803 init_canaries(); 804 805 init_thread_stacks(); 806 pgt_init(); 807 } 808 809 static void init_sec_mon(size_t pos __maybe_unused) 810 { 811 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 812 /* Initialize secure monitor */ 813 sm_init(GET_STACK(stack_sm[pos])); 814 sm_set_entry_vector(thread_vector_table); 815 #endif 816 } 817 818 void thread_init_per_cpu(void) 819 { 820 size_t pos = get_core_pos(); 821 struct thread_core_local *l = thread_get_core_local(); 822 823 init_sec_mon(pos); 824 825 set_tmp_stack(l, GET_STACK(stack_tmp[pos])); 826 set_abt_stack(l, GET_STACK(stack_abt[pos])); 827 828 thread_init_vbar(); 829 } 830 831 struct thread_specific_data *thread_get_tsd(void) 832 { 833 return &threads[thread_get_id()].tsd; 834 } 835 836 struct thread_ctx_regs *thread_get_ctx_regs(void) 837 { 838 struct thread_core_local *l = thread_get_core_local(); 839 840 assert(l->curr_thread != -1); 841 return &threads[l->curr_thread].regs; 842 } 843 844 void thread_set_irq(bool enable) 845 { 846 /* thread_get_core_local() requires IRQs to be disabled */ 847 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 848 struct thread_core_local *l; 849 850 l = thread_get_core_local(); 851 852 assert(l->curr_thread != -1); 853 854 if (enable) { 855 threads[l->curr_thread].flags |= THREAD_FLAGS_IRQ_ENABLE; 856 thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ); 857 } else { 858 /* 859 * No need to disable IRQ here since it's already disabled 860 * above. 861 */ 862 threads[l->curr_thread].flags &= ~THREAD_FLAGS_IRQ_ENABLE; 863 } 864 } 865 866 void thread_restore_irq(void) 867 { 868 /* thread_get_core_local() requires IRQs to be disabled */ 869 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 870 struct thread_core_local *l; 871 872 l = thread_get_core_local(); 873 874 assert(l->curr_thread != -1); 875 876 if (threads[l->curr_thread].flags & THREAD_FLAGS_IRQ_ENABLE) 877 thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ); 878 } 879 880 #ifdef CFG_WITH_VFP 881 uint32_t thread_kernel_enable_vfp(void) 882 { 883 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 884 struct thread_ctx *thr = threads + thread_get_id(); 885 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 886 887 assert(!vfp_is_enabled()); 888 889 if (!thr->vfp_state.ns_saved) { 890 vfp_lazy_save_state_final(&thr->vfp_state.ns); 891 thr->vfp_state.ns_saved = true; 892 } else if (thr->vfp_state.sec_lazy_saved && 893 !thr->vfp_state.sec_saved) { 894 /* 895 * This happens when we're handling an abort while the 896 * thread was using the VFP state. 897 */ 898 vfp_lazy_save_state_final(&thr->vfp_state.sec); 899 thr->vfp_state.sec_saved = true; 900 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 901 /* 902 * This can happen either during syscall or abort 903 * processing (while processing a syscall). 904 */ 905 vfp_lazy_save_state_final(&tuv->vfp); 906 tuv->saved = true; 907 } 908 909 vfp_enable(); 910 return exceptions; 911 } 912 913 void thread_kernel_disable_vfp(uint32_t state) 914 { 915 uint32_t exceptions; 916 917 assert(vfp_is_enabled()); 918 919 vfp_disable(); 920 exceptions = thread_get_exceptions(); 921 assert(exceptions & THREAD_EXCP_IRQ); 922 exceptions &= ~THREAD_EXCP_IRQ; 923 exceptions |= state & THREAD_EXCP_IRQ; 924 thread_set_exceptions(exceptions); 925 } 926 927 void thread_kernel_save_vfp(void) 928 { 929 struct thread_ctx *thr = threads + thread_get_id(); 930 931 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 932 if (vfp_is_enabled()) { 933 vfp_lazy_save_state_init(&thr->vfp_state.sec); 934 thr->vfp_state.sec_lazy_saved = true; 935 } 936 } 937 938 void thread_kernel_restore_vfp(void) 939 { 940 struct thread_ctx *thr = threads + thread_get_id(); 941 942 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 943 assert(!vfp_is_enabled()); 944 if (thr->vfp_state.sec_lazy_saved) { 945 vfp_lazy_restore_state(&thr->vfp_state.sec, 946 thr->vfp_state.sec_saved); 947 thr->vfp_state.sec_saved = false; 948 thr->vfp_state.sec_lazy_saved = false; 949 } 950 } 951 952 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 953 { 954 struct thread_ctx *thr = threads + thread_get_id(); 955 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 956 957 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 958 assert(!vfp_is_enabled()); 959 960 if (!thr->vfp_state.ns_saved) { 961 vfp_lazy_save_state_final(&thr->vfp_state.ns); 962 thr->vfp_state.ns_saved = true; 963 } else if (tuv && uvfp != tuv) { 964 if (tuv->lazy_saved && !tuv->saved) { 965 vfp_lazy_save_state_final(&tuv->vfp); 966 tuv->saved = true; 967 } 968 } 969 970 if (uvfp->lazy_saved) 971 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 972 uvfp->lazy_saved = false; 973 uvfp->saved = false; 974 975 thr->vfp_state.uvfp = uvfp; 976 vfp_enable(); 977 } 978 979 void thread_user_save_vfp(void) 980 { 981 struct thread_ctx *thr = threads + thread_get_id(); 982 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 983 984 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 985 if (!vfp_is_enabled()) 986 return; 987 988 assert(tuv && !tuv->lazy_saved && !tuv->saved); 989 vfp_lazy_save_state_init(&tuv->vfp); 990 tuv->lazy_saved = true; 991 } 992 993 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 994 { 995 struct thread_ctx *thr = threads + thread_get_id(); 996 997 if (uvfp == thr->vfp_state.uvfp) 998 thr->vfp_state.uvfp = NULL; 999 uvfp->lazy_saved = false; 1000 uvfp->saved = false; 1001 } 1002 #endif /*CFG_WITH_VFP*/ 1003 1004 #ifdef ARM32 1005 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1006 { 1007 uint32_t s; 1008 1009 if (!is_32bit) 1010 return false; 1011 1012 s = read_spsr(); 1013 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1014 s |= CPSR_MODE_USR; 1015 if (entry_func & 1) 1016 s |= CPSR_T; 1017 *spsr = s; 1018 return true; 1019 } 1020 #endif 1021 1022 #ifdef ARM64 1023 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1024 { 1025 uint32_t s; 1026 1027 if (is_32bit) { 1028 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1029 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1030 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1031 } else { 1032 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1033 } 1034 1035 *spsr = s; 1036 return true; 1037 } 1038 #endif 1039 1040 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1041 unsigned long a2, unsigned long a3, unsigned long user_sp, 1042 unsigned long entry_func, bool is_32bit, 1043 uint32_t *exit_status0, uint32_t *exit_status1) 1044 { 1045 uint32_t spsr; 1046 1047 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1048 *exit_status0 = 1; /* panic */ 1049 *exit_status1 = 0xbadbadba; 1050 return 0; 1051 } 1052 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1053 spsr, exit_status0, exit_status1); 1054 } 1055 1056 void thread_add_mutex(struct mutex *m) 1057 { 1058 struct thread_core_local *l = thread_get_core_local(); 1059 int ct = l->curr_thread; 1060 1061 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1062 assert(m->owner_id == -1); 1063 m->owner_id = ct; 1064 TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link); 1065 } 1066 1067 void thread_rem_mutex(struct mutex *m) 1068 { 1069 struct thread_core_local *l = thread_get_core_local(); 1070 int ct = l->curr_thread; 1071 1072 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1073 assert(m->owner_id == ct); 1074 m->owner_id = -1; 1075 TAILQ_REMOVE(&threads[ct].mutexes, m, link); 1076 } 1077 1078 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie) 1079 { 1080 bool rv; 1081 size_t n; 1082 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 1083 1084 lock_global(); 1085 1086 for (n = 0; n < CFG_NUM_THREADS; n++) { 1087 if (threads[n].state != THREAD_STATE_FREE) { 1088 rv = false; 1089 goto out; 1090 } 1091 } 1092 1093 rv = true; 1094 for (n = 0; n < CFG_NUM_THREADS; n++) { 1095 if (threads[n].rpc_arg) { 1096 *cookie = threads[n].rpc_carg; 1097 threads[n].rpc_carg = 0; 1098 threads[n].rpc_arg = NULL; 1099 goto out; 1100 } 1101 } 1102 1103 *cookie = 0; 1104 thread_prealloc_rpc_cache = false; 1105 out: 1106 unlock_global(); 1107 thread_unmask_exceptions(exceptions); 1108 return rv; 1109 } 1110 1111 bool thread_enable_prealloc_rpc_cache(void) 1112 { 1113 bool rv; 1114 size_t n; 1115 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 1116 1117 lock_global(); 1118 1119 for (n = 0; n < CFG_NUM_THREADS; n++) { 1120 if (threads[n].state != THREAD_STATE_FREE) { 1121 rv = false; 1122 goto out; 1123 } 1124 } 1125 1126 rv = true; 1127 thread_prealloc_rpc_cache = true; 1128 out: 1129 unlock_global(); 1130 thread_unmask_exceptions(exceptions); 1131 return rv; 1132 } 1133 1134 static uint32_t rpc_cmd_nolock(uint32_t cmd, size_t num_params, 1135 struct optee_msg_param *params) 1136 { 1137 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1138 struct thread_ctx *thr = threads + thread_get_id(); 1139 struct optee_msg_arg *arg = thr->rpc_arg; 1140 uint64_t carg = thr->rpc_carg; 1141 const size_t params_size = sizeof(struct optee_msg_param) * num_params; 1142 size_t n; 1143 1144 TEE_ASSERT(arg && carg && num_params <= RPC_MAX_NUM_PARAMS); 1145 1146 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(RPC_MAX_NUM_PARAMS)); 1147 arg->cmd = cmd; 1148 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1149 arg->num_params = num_params; 1150 memcpy(OPTEE_MSG_GET_PARAMS(arg), params, params_size); 1151 1152 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1153 thread_rpc(rpc_args); 1154 for (n = 0; n < num_params; n++) { 1155 switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) { 1156 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 1157 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 1158 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 1159 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 1160 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 1161 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 1162 memcpy(params + n, OPTEE_MSG_GET_PARAMS(arg) + n, 1163 sizeof(struct optee_msg_param)); 1164 break; 1165 default: 1166 break; 1167 } 1168 } 1169 return arg->ret; 1170 } 1171 1172 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1173 struct optee_msg_param *params) 1174 { 1175 uint32_t ret; 1176 1177 ret = rpc_cmd_nolock(cmd, num_params, params); 1178 1179 return ret; 1180 } 1181 1182 static bool check_alloced_shm(paddr_t pa, size_t len, size_t align) 1183 { 1184 if (pa & (align - 1)) 1185 return false; 1186 return core_pbuf_is(CORE_MEM_NSEC_SHM, pa, len); 1187 } 1188 1189 void thread_rpc_free_arg(uint64_t cookie) 1190 { 1191 if (cookie) { 1192 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1193 OPTEE_SMC_RETURN_RPC_FREE 1194 }; 1195 1196 reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2); 1197 thread_rpc(rpc_args); 1198 } 1199 } 1200 1201 void thread_rpc_alloc_arg(size_t size, paddr_t *arg, uint64_t *cookie) 1202 { 1203 paddr_t pa; 1204 uint64_t co; 1205 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1206 OPTEE_SMC_RETURN_RPC_ALLOC, size 1207 }; 1208 1209 thread_rpc(rpc_args); 1210 1211 pa = reg_pair_to_64(rpc_args[1], rpc_args[2]); 1212 co = reg_pair_to_64(rpc_args[4], rpc_args[5]); 1213 if (!check_alloced_shm(pa, size, sizeof(uint64_t))) { 1214 thread_rpc_free_arg(co); 1215 pa = 0; 1216 co = 0; 1217 } 1218 1219 *arg = pa; 1220 *cookie = co; 1221 } 1222 1223 /** 1224 * Free physical memory previously allocated with thread_rpc_alloc() 1225 * 1226 * @cookie: cookie received when allocating the buffer 1227 * @bt: must be the same as supplied when allocating 1228 */ 1229 static void thread_rpc_free(unsigned int bt, uint64_t cookie) 1230 { 1231 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1232 struct thread_ctx *thr = threads + thread_get_id(); 1233 struct optee_msg_arg *arg = thr->rpc_arg; 1234 uint64_t carg = thr->rpc_carg; 1235 struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg); 1236 1237 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); 1238 arg->cmd = OPTEE_MSG_RPC_CMD_SHM_FREE; 1239 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1240 arg->num_params = 1; 1241 1242 params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1243 params[0].u.value.a = bt; 1244 params[0].u.value.b = cookie; 1245 params[0].u.value.c = 0; 1246 1247 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1248 thread_rpc(rpc_args); 1249 } 1250 1251 /** 1252 * Allocates shared memory buffer via RPC 1253 * 1254 * @size: size in bytes of shared memory buffer 1255 * @align: required alignment of buffer 1256 * @bt: buffer type OPTEE_MSG_RPC_SHM_TYPE_* 1257 * @payload: returned physical pointer to buffer, 0 if allocation 1258 * failed. 1259 * @cookie: returned cookie used when freeing the buffer 1260 */ 1261 static void thread_rpc_alloc(size_t size, size_t align, unsigned int bt, 1262 paddr_t *payload, uint64_t *cookie) 1263 { 1264 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1265 struct thread_ctx *thr = threads + thread_get_id(); 1266 struct optee_msg_arg *arg = thr->rpc_arg; 1267 uint64_t carg = thr->rpc_carg; 1268 struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg); 1269 1270 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); 1271 arg->cmd = OPTEE_MSG_RPC_CMD_SHM_ALLOC; 1272 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1273 arg->num_params = 1; 1274 1275 params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1276 params[0].u.value.a = bt; 1277 params[0].u.value.b = size; 1278 params[0].u.value.c = align; 1279 1280 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1281 thread_rpc(rpc_args); 1282 if (arg->ret != TEE_SUCCESS) 1283 goto fail; 1284 1285 if (arg->num_params != 1) 1286 goto fail; 1287 1288 if (params[0].attr != OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT) 1289 goto fail; 1290 1291 if (!check_alloced_shm(params[0].u.tmem.buf_ptr, size, align)) { 1292 thread_rpc_free(bt, params[0].u.tmem.shm_ref); 1293 goto fail; 1294 } 1295 1296 *payload = params[0].u.tmem.buf_ptr; 1297 *cookie = params[0].u.tmem.shm_ref; 1298 return; 1299 fail: 1300 *payload = 0; 1301 *cookie = 0; 1302 } 1303 1304 void thread_rpc_alloc_payload(size_t size, paddr_t *payload, uint64_t *cookie) 1305 { 1306 thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, payload, cookie); 1307 } 1308 1309 void thread_rpc_free_payload(uint64_t cookie) 1310 { 1311 thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie); 1312 } 1313