1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 */ 6 7 #include <platform_config.h> 8 9 #include <arm.h> 10 #include <assert.h> 11 #include <keep.h> 12 #include <kernel/asan.h> 13 #include <kernel/misc.h> 14 #include <kernel/msg_param.h> 15 #include <kernel/panic.h> 16 #include <kernel/spinlock.h> 17 #include <kernel/tee_ta_manager.h> 18 #include <kernel/thread_defs.h> 19 #include <kernel/thread.h> 20 #include <mm/core_memprot.h> 21 #include <mm/mobj.h> 22 #include <mm/tee_mm.h> 23 #include <mm/tee_mmu.h> 24 #include <mm/tee_pager.h> 25 #include <optee_msg.h> 26 #include <smccc.h> 27 #include <sm/optee_smc.h> 28 #include <sm/sm.h> 29 #include <tee/tee_cryp_utl.h> 30 #include <tee/tee_fs_rpc.h> 31 #include <trace.h> 32 #include <util.h> 33 34 #include "thread_private.h" 35 36 #ifdef CFG_WITH_ARM_TRUSTED_FW 37 #define STACK_TMP_OFFS 0 38 #else 39 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE 40 #endif 41 42 43 #ifdef ARM32 44 #ifdef CFG_CORE_SANITIZE_KADDRESS 45 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) 46 #else 47 #define STACK_TMP_SIZE (1536 + STACK_TMP_OFFS) 48 #endif 49 #define STACK_THREAD_SIZE 8192 50 51 #ifdef CFG_CORE_SANITIZE_KADDRESS 52 #define STACK_ABT_SIZE 3072 53 #else 54 #define STACK_ABT_SIZE 2048 55 #endif 56 57 #endif /*ARM32*/ 58 59 #ifdef ARM64 60 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 61 #define STACK_THREAD_SIZE 8192 62 63 #if TRACE_LEVEL > 0 64 #define STACK_ABT_SIZE 3072 65 #else 66 #define STACK_ABT_SIZE 1024 67 #endif 68 #endif /*ARM64*/ 69 70 struct thread_ctx threads[CFG_NUM_THREADS]; 71 72 struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE]; 73 74 #ifdef CFG_WITH_STACK_CANARIES 75 #ifdef ARM32 76 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 77 #endif 78 #ifdef ARM64 79 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 80 #endif 81 #define START_CANARY_VALUE 0xdededede 82 #define END_CANARY_VALUE 0xabababab 83 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 84 #define GET_END_CANARY(name, stack_num) \ 85 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 86 #else 87 #define STACK_CANARY_SIZE 0 88 #endif 89 90 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 91 linkage uint32_t name[num_stacks] \ 92 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 93 sizeof(uint32_t)] \ 94 __attribute__((section(".nozi_stack." # name), \ 95 aligned(STACK_ALIGNMENT))) 96 97 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 98 99 #define GET_STACK(stack) \ 100 ((vaddr_t)(stack) + STACK_SIZE(stack)) 101 102 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, static); 103 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 104 #ifndef CFG_WITH_PAGER 105 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 106 #endif 107 108 const void *stack_tmp_export = (uint8_t *)stack_tmp + sizeof(stack_tmp[0]) - 109 (STACK_TMP_OFFS + STACK_CANARY_SIZE / 2); 110 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]); 111 112 /* 113 * These stack setup info are required by secondary boot cores before they 114 * each locally enable the pager (the mmu). Hence kept in pager sections. 115 */ 116 KEEP_PAGER(stack_tmp_export); 117 KEEP_PAGER(stack_tmp_stride); 118 119 thread_smc_handler_t thread_std_smc_handler_ptr; 120 static thread_smc_handler_t thread_fast_smc_handler_ptr; 121 thread_nintr_handler_t thread_nintr_handler_ptr; 122 thread_pm_handler_t thread_cpu_on_handler_ptr; 123 thread_pm_handler_t thread_cpu_off_handler_ptr; 124 thread_pm_handler_t thread_cpu_suspend_handler_ptr; 125 thread_pm_handler_t thread_cpu_resume_handler_ptr; 126 thread_pm_handler_t thread_system_off_handler_ptr; 127 thread_pm_handler_t thread_system_reset_handler_ptr; 128 129 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 130 static vaddr_t thread_user_kcode_va; 131 long thread_user_kcode_offset; 132 static size_t thread_user_kcode_size; 133 #endif 134 135 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 136 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 137 long thread_user_kdata_sp_offset; 138 static uint8_t thread_user_kdata_page[ 139 ROUNDUP(sizeof(thread_core_local), SMALL_PAGE_SIZE)] 140 __aligned(SMALL_PAGE_SIZE) __section(".nozi.kdata_page"); 141 #endif 142 143 static unsigned int thread_global_lock = SPINLOCK_UNLOCK; 144 static bool thread_prealloc_rpc_cache; 145 146 static unsigned int thread_rpc_pnum; 147 148 static void init_canaries(void) 149 { 150 #ifdef CFG_WITH_STACK_CANARIES 151 size_t n; 152 #define INIT_CANARY(name) \ 153 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 154 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 155 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 156 \ 157 *start_canary = START_CANARY_VALUE; \ 158 *end_canary = END_CANARY_VALUE; \ 159 DMSG("#Stack canaries for %s[%zu] with top at %p\n", \ 160 #name, n, (void *)(end_canary - 1)); \ 161 DMSG("watch *%p\n", (void *)end_canary); \ 162 } 163 164 INIT_CANARY(stack_tmp); 165 INIT_CANARY(stack_abt); 166 #ifndef CFG_WITH_PAGER 167 INIT_CANARY(stack_thread); 168 #endif 169 #endif/*CFG_WITH_STACK_CANARIES*/ 170 } 171 172 #define CANARY_DIED(stack, loc, n) \ 173 do { \ 174 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 175 panic(); \ 176 } while (0) 177 178 void thread_check_canaries(void) 179 { 180 #ifdef CFG_WITH_STACK_CANARIES 181 size_t n; 182 183 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 184 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 185 CANARY_DIED(stack_tmp, start, n); 186 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 187 CANARY_DIED(stack_tmp, end, n); 188 } 189 190 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 191 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 192 CANARY_DIED(stack_abt, start, n); 193 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 194 CANARY_DIED(stack_abt, end, n); 195 196 } 197 #ifndef CFG_WITH_PAGER 198 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 199 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 200 CANARY_DIED(stack_thread, start, n); 201 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 202 CANARY_DIED(stack_thread, end, n); 203 } 204 #endif 205 #endif/*CFG_WITH_STACK_CANARIES*/ 206 } 207 208 static void lock_global(void) 209 { 210 cpu_spin_lock(&thread_global_lock); 211 } 212 213 static void unlock_global(void) 214 { 215 cpu_spin_unlock(&thread_global_lock); 216 } 217 218 #ifdef ARM32 219 uint32_t thread_get_exceptions(void) 220 { 221 uint32_t cpsr = read_cpsr(); 222 223 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 224 } 225 226 void thread_set_exceptions(uint32_t exceptions) 227 { 228 uint32_t cpsr = read_cpsr(); 229 230 /* Foreign interrupts must not be unmasked while holding a spinlock */ 231 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 232 assert_have_no_spinlock(); 233 234 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 235 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 236 write_cpsr(cpsr); 237 } 238 #endif /*ARM32*/ 239 240 #ifdef ARM64 241 uint32_t thread_get_exceptions(void) 242 { 243 uint32_t daif = read_daif(); 244 245 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 246 } 247 248 void thread_set_exceptions(uint32_t exceptions) 249 { 250 uint32_t daif = read_daif(); 251 252 /* Foreign interrupts must not be unmasked while holding a spinlock */ 253 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 254 assert_have_no_spinlock(); 255 256 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 257 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 258 write_daif(daif); 259 } 260 #endif /*ARM64*/ 261 262 uint32_t thread_mask_exceptions(uint32_t exceptions) 263 { 264 uint32_t state = thread_get_exceptions(); 265 266 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 267 return state; 268 } 269 270 void thread_unmask_exceptions(uint32_t state) 271 { 272 thread_set_exceptions(state & THREAD_EXCP_ALL); 273 } 274 275 276 struct thread_core_local *thread_get_core_local(void) 277 { 278 uint32_t cpu_id = get_core_pos(); 279 280 /* 281 * Foreign interrupts must be disabled before playing with core_local 282 * since we otherwise may be rescheduled to a different core in the 283 * middle of this function. 284 */ 285 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 286 287 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 288 return &thread_core_local[cpu_id]; 289 } 290 291 static void thread_lazy_save_ns_vfp(void) 292 { 293 #ifdef CFG_WITH_VFP 294 struct thread_ctx *thr = threads + thread_get_id(); 295 296 thr->vfp_state.ns_saved = false; 297 #if defined(CFG_WITH_ARM_TRUSTED_FW) 298 /* 299 * ARM TF saves and restores CPACR_EL1, so we must assume NS world 300 * uses VFP and always preserve the register file when secure world 301 * is about to use it 302 */ 303 thr->vfp_state.ns_force_save = true; 304 #endif 305 vfp_lazy_save_state_init(&thr->vfp_state.ns); 306 #endif /*CFG_WITH_VFP*/ 307 } 308 309 static void thread_lazy_restore_ns_vfp(void) 310 { 311 #ifdef CFG_WITH_VFP 312 struct thread_ctx *thr = threads + thread_get_id(); 313 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 314 315 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 316 317 if (tuv && tuv->lazy_saved && !tuv->saved) { 318 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/); 319 tuv->saved = true; 320 } 321 322 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 323 thr->vfp_state.ns_saved = false; 324 #endif /*CFG_WITH_VFP*/ 325 } 326 327 #ifdef ARM32 328 static void init_regs(struct thread_ctx *thread, 329 struct thread_smc_args *args) 330 { 331 thread->regs.pc = (uint32_t)thread_std_smc_entry; 332 333 /* 334 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 335 * Asynchronous abort and unmasked native interrupts. 336 */ 337 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 338 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A | 339 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT); 340 /* Enable thumb mode if it's a thumb instruction */ 341 if (thread->regs.pc & 1) 342 thread->regs.cpsr |= CPSR_T; 343 /* Reinitialize stack pointer */ 344 thread->regs.svc_sp = thread->stack_va_end; 345 346 /* 347 * Copy arguments into context. This will make the 348 * arguments appear in r0-r7 when thread is started. 349 */ 350 thread->regs.r0 = args->a0; 351 thread->regs.r1 = args->a1; 352 thread->regs.r2 = args->a2; 353 thread->regs.r3 = args->a3; 354 thread->regs.r4 = args->a4; 355 thread->regs.r5 = args->a5; 356 thread->regs.r6 = args->a6; 357 thread->regs.r7 = args->a7; 358 } 359 #endif /*ARM32*/ 360 361 #ifdef ARM64 362 static void init_regs(struct thread_ctx *thread, 363 struct thread_smc_args *args) 364 { 365 thread->regs.pc = (uint64_t)thread_std_smc_entry; 366 367 /* 368 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 369 * Asynchronous abort and unmasked native interrupts. 370 */ 371 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 372 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT); 373 /* Reinitialize stack pointer */ 374 thread->regs.sp = thread->stack_va_end; 375 376 /* 377 * Copy arguments into context. This will make the 378 * arguments appear in x0-x7 when thread is started. 379 */ 380 thread->regs.x[0] = args->a0; 381 thread->regs.x[1] = args->a1; 382 thread->regs.x[2] = args->a2; 383 thread->regs.x[3] = args->a3; 384 thread->regs.x[4] = args->a4; 385 thread->regs.x[5] = args->a5; 386 thread->regs.x[6] = args->a6; 387 thread->regs.x[7] = args->a7; 388 389 /* Set up frame pointer as per the Aarch64 AAPCS */ 390 thread->regs.x[29] = 0; 391 } 392 #endif /*ARM64*/ 393 394 void thread_init_boot_thread(void) 395 { 396 struct thread_core_local *l = thread_get_core_local(); 397 size_t n; 398 399 for (n = 0; n < CFG_NUM_THREADS; n++) { 400 TAILQ_INIT(&threads[n].mutexes); 401 TAILQ_INIT(&threads[n].tsd.sess_stack); 402 SLIST_INIT(&threads[n].tsd.pgt_cache); 403 } 404 405 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 406 thread_core_local[n].curr_thread = -1; 407 408 l->curr_thread = 0; 409 threads[0].state = THREAD_STATE_ACTIVE; 410 } 411 412 void thread_clr_boot_thread(void) 413 { 414 struct thread_core_local *l = thread_get_core_local(); 415 416 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 417 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 418 assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes)); 419 threads[l->curr_thread].state = THREAD_STATE_FREE; 420 l->curr_thread = -1; 421 } 422 423 static void thread_alloc_and_run(struct thread_smc_args *args) 424 { 425 size_t n; 426 struct thread_core_local *l = thread_get_core_local(); 427 bool found_thread = false; 428 429 assert(l->curr_thread == -1); 430 431 lock_global(); 432 433 for (n = 0; n < CFG_NUM_THREADS; n++) { 434 if (threads[n].state == THREAD_STATE_FREE) { 435 threads[n].state = THREAD_STATE_ACTIVE; 436 found_thread = true; 437 break; 438 } 439 } 440 441 unlock_global(); 442 443 if (!found_thread) { 444 args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT; 445 return; 446 } 447 448 l->curr_thread = n; 449 450 threads[n].flags = 0; 451 init_regs(threads + n, args); 452 453 /* Save Hypervisor Client ID */ 454 threads[n].hyp_clnt_id = args->a7; 455 456 thread_lazy_save_ns_vfp(); 457 thread_resume(&threads[n].regs); 458 } 459 460 #ifdef ARM32 461 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 462 struct thread_smc_args *args) 463 { 464 /* 465 * Update returned values from RPC, values will appear in 466 * r0-r3 when thread is resumed. 467 */ 468 regs->r0 = args->a0; 469 regs->r1 = args->a1; 470 regs->r2 = args->a2; 471 regs->r3 = args->a3; 472 regs->r4 = args->a4; 473 regs->r5 = args->a5; 474 } 475 #endif /*ARM32*/ 476 477 #ifdef ARM64 478 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 479 struct thread_smc_args *args) 480 { 481 /* 482 * Update returned values from RPC, values will appear in 483 * x0-x3 when thread is resumed. 484 */ 485 regs->x[0] = args->a0; 486 regs->x[1] = args->a1; 487 regs->x[2] = args->a2; 488 regs->x[3] = args->a3; 489 regs->x[4] = args->a4; 490 regs->x[5] = args->a5; 491 } 492 #endif /*ARM64*/ 493 494 #ifdef ARM32 495 static bool is_from_user(uint32_t cpsr) 496 { 497 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 498 } 499 #endif 500 501 #ifdef ARM64 502 static bool is_from_user(uint32_t cpsr) 503 { 504 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 505 return true; 506 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 507 SPSR_64_MODE_EL0) 508 return true; 509 return false; 510 } 511 #endif 512 513 static bool is_user_mode(struct thread_ctx_regs *regs) 514 { 515 return is_from_user((uint32_t)regs->cpsr); 516 } 517 518 static void thread_resume_from_rpc(struct thread_smc_args *args) 519 { 520 size_t n = args->a3; /* thread id */ 521 struct thread_core_local *l = thread_get_core_local(); 522 uint32_t rv = 0; 523 524 assert(l->curr_thread == -1); 525 526 lock_global(); 527 528 if (n < CFG_NUM_THREADS && 529 threads[n].state == THREAD_STATE_SUSPENDED && 530 args->a7 == threads[n].hyp_clnt_id) 531 threads[n].state = THREAD_STATE_ACTIVE; 532 else 533 rv = OPTEE_SMC_RETURN_ERESUME; 534 535 unlock_global(); 536 537 if (rv) { 538 args->a0 = rv; 539 return; 540 } 541 542 l->curr_thread = n; 543 544 if (is_user_mode(&threads[n].regs)) 545 tee_ta_update_session_utime_resume(); 546 547 if (threads[n].have_user_map) 548 core_mmu_set_user_map(&threads[n].user_map); 549 550 /* 551 * Return from RPC to request service of a foreign interrupt must not 552 * get parameters from non-secure world. 553 */ 554 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 555 copy_a0_to_a5(&threads[n].regs, args); 556 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 557 } 558 559 thread_lazy_save_ns_vfp(); 560 thread_resume(&threads[n].regs); 561 } 562 563 void thread_handle_fast_smc(struct thread_smc_args *args) 564 { 565 thread_check_canaries(); 566 thread_fast_smc_handler_ptr(args); 567 /* Fast handlers must not unmask any exceptions */ 568 assert(thread_get_exceptions() == THREAD_EXCP_ALL); 569 } 570 571 void thread_handle_std_smc(struct thread_smc_args *args) 572 { 573 thread_check_canaries(); 574 575 if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC) 576 thread_resume_from_rpc(args); 577 else 578 thread_alloc_and_run(args); 579 } 580 581 /** 582 * Free physical memory previously allocated with thread_rpc_alloc_arg() 583 * 584 * @cookie: cookie received when allocating the buffer 585 */ 586 static void thread_rpc_free_arg(uint64_t cookie) 587 { 588 if (cookie) { 589 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 590 OPTEE_SMC_RETURN_RPC_FREE 591 }; 592 593 reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2); 594 thread_rpc(rpc_args); 595 } 596 } 597 598 /* 599 * Helper routine for the assembly function thread_std_smc_entry() 600 * 601 * Note: this function is weak just to make it possible to exclude it from 602 * the unpaged area. 603 */ 604 void __weak __thread_std_smc_entry(struct thread_smc_args *args) 605 { 606 thread_std_smc_handler_ptr(args); 607 608 if (args->a0 == OPTEE_SMC_RETURN_OK) { 609 struct thread_ctx *thr = threads + thread_get_id(); 610 611 tee_fs_rpc_cache_clear(&thr->tsd); 612 if (!thread_prealloc_rpc_cache) { 613 thread_rpc_free_arg(mobj_get_cookie(thr->rpc_mobj)); 614 mobj_free(thr->rpc_mobj); 615 thr->rpc_arg = 0; 616 thr->rpc_mobj = NULL; 617 } 618 } 619 } 620 621 void *thread_get_tmp_sp(void) 622 { 623 struct thread_core_local *l = thread_get_core_local(); 624 625 return (void *)l->tmp_stack_va_end; 626 } 627 628 #ifdef ARM64 629 vaddr_t thread_get_saved_thread_sp(void) 630 { 631 struct thread_core_local *l = thread_get_core_local(); 632 int ct = l->curr_thread; 633 634 assert(ct != -1); 635 return threads[ct].kern_sp; 636 } 637 #endif /*ARM64*/ 638 639 vaddr_t thread_stack_start(void) 640 { 641 struct thread_ctx *thr; 642 int ct = thread_get_id_may_fail(); 643 644 if (ct == -1) 645 return 0; 646 647 thr = threads + ct; 648 return thr->stack_va_end - STACK_THREAD_SIZE; 649 } 650 651 size_t thread_stack_size(void) 652 { 653 return STACK_THREAD_SIZE; 654 } 655 656 bool thread_is_from_abort_mode(void) 657 { 658 struct thread_core_local *l = thread_get_core_local(); 659 660 return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT; 661 } 662 663 #ifdef ARM32 664 bool thread_is_in_normal_mode(void) 665 { 666 return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC; 667 } 668 #endif 669 670 #ifdef ARM64 671 bool thread_is_in_normal_mode(void) 672 { 673 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 674 struct thread_core_local *l = thread_get_core_local(); 675 bool ret; 676 677 /* If any bit in l->flags is set we're handling some exception. */ 678 ret = !l->flags; 679 thread_unmask_exceptions(exceptions); 680 681 return ret; 682 } 683 #endif 684 685 void thread_state_free(void) 686 { 687 struct thread_core_local *l = thread_get_core_local(); 688 int ct = l->curr_thread; 689 690 assert(ct != -1); 691 assert(TAILQ_EMPTY(&threads[ct].mutexes)); 692 693 thread_lazy_restore_ns_vfp(); 694 tee_pager_release_phys( 695 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 696 STACK_THREAD_SIZE); 697 698 lock_global(); 699 700 assert(threads[ct].state == THREAD_STATE_ACTIVE); 701 threads[ct].state = THREAD_STATE_FREE; 702 threads[ct].flags = 0; 703 l->curr_thread = -1; 704 705 unlock_global(); 706 } 707 708 #ifdef CFG_WITH_PAGER 709 static void release_unused_kernel_stack(struct thread_ctx *thr, 710 uint32_t cpsr __maybe_unused) 711 { 712 #ifdef ARM64 713 /* 714 * If we're from user mode then thr->regs.sp is the saved user 715 * stack pointer and thr->kern_sp holds the last kernel stack 716 * pointer. But if we're from kernel mode then thr->kern_sp isn't 717 * up to date so we need to read from thr->regs.sp instead. 718 */ 719 vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp; 720 #else 721 vaddr_t sp = thr->regs.svc_sp; 722 #endif 723 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 724 size_t len = sp - base; 725 726 tee_pager_release_phys((void *)base, len); 727 } 728 #else 729 static void release_unused_kernel_stack(struct thread_ctx *thr __unused, 730 uint32_t cpsr __unused) 731 { 732 } 733 #endif 734 735 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 736 { 737 struct thread_core_local *l = thread_get_core_local(); 738 int ct = l->curr_thread; 739 740 assert(ct != -1); 741 742 thread_check_canaries(); 743 744 release_unused_kernel_stack(threads + ct, cpsr); 745 746 if (is_from_user(cpsr)) { 747 thread_user_save_vfp(); 748 tee_ta_update_session_utime_suspend(); 749 tee_ta_gprof_sample_pc(pc); 750 } 751 thread_lazy_restore_ns_vfp(); 752 753 lock_global(); 754 755 assert(threads[ct].state == THREAD_STATE_ACTIVE); 756 threads[ct].flags |= flags; 757 threads[ct].regs.cpsr = cpsr; 758 threads[ct].regs.pc = pc; 759 threads[ct].state = THREAD_STATE_SUSPENDED; 760 761 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 762 if (threads[ct].have_user_map) { 763 core_mmu_get_user_map(&threads[ct].user_map); 764 core_mmu_set_user_map(NULL); 765 } 766 767 l->curr_thread = -1; 768 769 unlock_global(); 770 771 return ct; 772 } 773 774 #ifdef ARM32 775 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 776 { 777 l->tmp_stack_va_end = sp; 778 thread_set_irq_sp(sp); 779 thread_set_fiq_sp(sp); 780 } 781 782 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 783 { 784 l->abt_stack_va_end = sp; 785 thread_set_abt_sp((vaddr_t)l); 786 thread_set_und_sp((vaddr_t)l); 787 } 788 #endif /*ARM32*/ 789 790 #ifdef ARM64 791 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 792 { 793 /* 794 * We're already using the tmp stack when this function is called 795 * so there's no need to assign it to any stack pointer. However, 796 * we'll need to restore it at different times so store it here. 797 */ 798 l->tmp_stack_va_end = sp; 799 } 800 801 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 802 { 803 l->abt_stack_va_end = sp; 804 } 805 #endif /*ARM64*/ 806 807 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 808 { 809 if (thread_id >= CFG_NUM_THREADS) 810 return false; 811 threads[thread_id].stack_va_end = sp; 812 return true; 813 } 814 815 int thread_get_id_may_fail(void) 816 { 817 /* 818 * thread_get_core_local() requires foreign interrupts to be disabled 819 */ 820 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 821 struct thread_core_local *l = thread_get_core_local(); 822 int ct = l->curr_thread; 823 824 thread_unmask_exceptions(exceptions); 825 return ct; 826 } 827 828 int thread_get_id(void) 829 { 830 int ct = thread_get_id_may_fail(); 831 832 assert(ct >= 0 && ct < CFG_NUM_THREADS); 833 return ct; 834 } 835 836 static void init_handlers(const struct thread_handlers *handlers) 837 { 838 thread_std_smc_handler_ptr = handlers->std_smc; 839 thread_fast_smc_handler_ptr = handlers->fast_smc; 840 thread_nintr_handler_ptr = handlers->nintr; 841 thread_cpu_on_handler_ptr = handlers->cpu_on; 842 thread_cpu_off_handler_ptr = handlers->cpu_off; 843 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 844 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 845 thread_system_off_handler_ptr = handlers->system_off; 846 thread_system_reset_handler_ptr = handlers->system_reset; 847 } 848 849 #ifdef CFG_WITH_PAGER 850 static void init_thread_stacks(void) 851 { 852 size_t n; 853 854 /* 855 * Allocate virtual memory for thread stacks. 856 */ 857 for (n = 0; n < CFG_NUM_THREADS; n++) { 858 tee_mm_entry_t *mm; 859 vaddr_t sp; 860 861 /* Find vmem for thread stack and its protection gap */ 862 mm = tee_mm_alloc(&tee_mm_vcore, 863 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 864 assert(mm); 865 866 /* Claim eventual physical page */ 867 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 868 true); 869 870 /* Add the area to the pager */ 871 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 872 tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE, 873 TEE_MATTR_PRW | TEE_MATTR_LOCKED, 874 NULL, NULL); 875 876 /* init effective stack */ 877 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 878 asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp); 879 if (!thread_init_stack(n, sp)) 880 panic("init stack failed"); 881 } 882 } 883 #else 884 static void init_thread_stacks(void) 885 { 886 size_t n; 887 888 /* Assign the thread stacks */ 889 for (n = 0; n < CFG_NUM_THREADS; n++) { 890 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 891 panic("thread_init_stack failed"); 892 } 893 } 894 #endif /*CFG_WITH_PAGER*/ 895 896 static void init_user_kcode(void) 897 { 898 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 899 vaddr_t v = (vaddr_t)thread_excp_vect; 900 vaddr_t ve = (vaddr_t)thread_excp_vect_end; 901 902 thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE); 903 ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE); 904 thread_user_kcode_size = ve - thread_user_kcode_va; 905 906 core_mmu_get_user_va_range(&v, NULL); 907 thread_user_kcode_offset = thread_user_kcode_va - v; 908 909 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 910 /* 911 * When transitioning to EL0 subtract SP with this much to point to 912 * this special kdata page instead. SP is restored by add this much 913 * while transitioning back to EL1. 914 */ 915 v += thread_user_kcode_size; 916 thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v; 917 #endif 918 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/ 919 } 920 921 void thread_init_primary(const struct thread_handlers *handlers) 922 { 923 init_handlers(handlers); 924 925 /* Initialize canaries around the stacks */ 926 init_canaries(); 927 928 init_thread_stacks(); 929 pgt_init(); 930 931 init_user_kcode(); 932 } 933 934 static void init_sec_mon(size_t pos __maybe_unused) 935 { 936 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 937 /* Initialize secure monitor */ 938 sm_init(GET_STACK(stack_tmp[pos])); 939 #endif 940 } 941 942 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr) 943 { 944 return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK; 945 } 946 947 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr) 948 { 949 return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) & 950 MIDR_PRIMARY_PART_NUM_MASK; 951 } 952 953 #ifdef ARM64 954 static bool probe_workaround_available(void) 955 { 956 int32_t r; 957 958 r = thread_smc(SMCCC_VERSION, 0, 0, 0); 959 if (r < 0) 960 return false; 961 if (r < 0x10001) /* compare with version 1.1 */ 962 return false; 963 964 /* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */ 965 r = thread_smc(SMCCC_ARCH_FEATURES, SMCCC_ARCH_WORKAROUND_1, 0, 0); 966 return r >= 0; 967 } 968 969 static vaddr_t select_vector(vaddr_t a) 970 { 971 if (probe_workaround_available()) { 972 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available", 973 SMCCC_ARCH_WORKAROUND_1); 974 DMSG("SMC Workaround for CVE-2017-5715 used"); 975 return a; 976 } 977 978 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable", 979 SMCCC_ARCH_WORKAROUND_1); 980 DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)"); 981 return (vaddr_t)thread_excp_vect; 982 } 983 #else 984 static vaddr_t select_vector(vaddr_t a) 985 { 986 return a; 987 } 988 #endif 989 990 static vaddr_t get_excp_vect(void) 991 { 992 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC 993 uint32_t midr = read_midr(); 994 995 if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM) 996 return (vaddr_t)thread_excp_vect; 997 998 switch (get_midr_primary_part(midr)) { 999 #ifdef ARM32 1000 case CORTEX_A8_PART_NUM: 1001 case CORTEX_A9_PART_NUM: 1002 case CORTEX_A17_PART_NUM: 1003 #endif 1004 case CORTEX_A57_PART_NUM: 1005 case CORTEX_A72_PART_NUM: 1006 case CORTEX_A73_PART_NUM: 1007 case CORTEX_A75_PART_NUM: 1008 return select_vector((vaddr_t)thread_excp_vect_workaround); 1009 #ifdef ARM32 1010 case CORTEX_A15_PART_NUM: 1011 return select_vector((vaddr_t)thread_excp_vect_workaround_a15); 1012 #endif 1013 default: 1014 return (vaddr_t)thread_excp_vect; 1015 } 1016 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/ 1017 1018 return (vaddr_t)thread_excp_vect; 1019 } 1020 1021 void thread_init_per_cpu(void) 1022 { 1023 size_t pos = get_core_pos(); 1024 struct thread_core_local *l = thread_get_core_local(); 1025 1026 init_sec_mon(pos); 1027 1028 set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); 1029 set_abt_stack(l, GET_STACK(stack_abt[pos])); 1030 1031 thread_init_vbar(get_excp_vect()); 1032 } 1033 1034 struct thread_specific_data *thread_get_tsd(void) 1035 { 1036 return &threads[thread_get_id()].tsd; 1037 } 1038 1039 struct thread_ctx_regs *thread_get_ctx_regs(void) 1040 { 1041 struct thread_core_local *l = thread_get_core_local(); 1042 1043 assert(l->curr_thread != -1); 1044 return &threads[l->curr_thread].regs; 1045 } 1046 1047 void thread_set_foreign_intr(bool enable) 1048 { 1049 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1050 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1051 struct thread_core_local *l; 1052 1053 l = thread_get_core_local(); 1054 1055 assert(l->curr_thread != -1); 1056 1057 if (enable) { 1058 threads[l->curr_thread].flags |= 1059 THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1060 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1061 } else { 1062 /* 1063 * No need to disable foreign interrupts here since they're 1064 * already disabled above. 1065 */ 1066 threads[l->curr_thread].flags &= 1067 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1068 } 1069 } 1070 1071 void thread_restore_foreign_intr(void) 1072 { 1073 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1074 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1075 struct thread_core_local *l; 1076 1077 l = thread_get_core_local(); 1078 1079 assert(l->curr_thread != -1); 1080 1081 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) 1082 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1083 } 1084 1085 #ifdef CFG_WITH_VFP 1086 uint32_t thread_kernel_enable_vfp(void) 1087 { 1088 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1089 struct thread_ctx *thr = threads + thread_get_id(); 1090 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1091 1092 assert(!vfp_is_enabled()); 1093 1094 if (!thr->vfp_state.ns_saved) { 1095 vfp_lazy_save_state_final(&thr->vfp_state.ns, 1096 thr->vfp_state.ns_force_save); 1097 thr->vfp_state.ns_saved = true; 1098 } else if (thr->vfp_state.sec_lazy_saved && 1099 !thr->vfp_state.sec_saved) { 1100 /* 1101 * This happens when we're handling an abort while the 1102 * thread was using the VFP state. 1103 */ 1104 vfp_lazy_save_state_final(&thr->vfp_state.sec, 1105 false /*!force_save*/); 1106 thr->vfp_state.sec_saved = true; 1107 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 1108 /* 1109 * This can happen either during syscall or abort 1110 * processing (while processing a syscall). 1111 */ 1112 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/); 1113 tuv->saved = true; 1114 } 1115 1116 vfp_enable(); 1117 return exceptions; 1118 } 1119 1120 void thread_kernel_disable_vfp(uint32_t state) 1121 { 1122 uint32_t exceptions; 1123 1124 assert(vfp_is_enabled()); 1125 1126 vfp_disable(); 1127 exceptions = thread_get_exceptions(); 1128 assert(exceptions & THREAD_EXCP_FOREIGN_INTR); 1129 exceptions &= ~THREAD_EXCP_FOREIGN_INTR; 1130 exceptions |= state & THREAD_EXCP_FOREIGN_INTR; 1131 thread_set_exceptions(exceptions); 1132 } 1133 1134 void thread_kernel_save_vfp(void) 1135 { 1136 struct thread_ctx *thr = threads + thread_get_id(); 1137 1138 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1139 if (vfp_is_enabled()) { 1140 vfp_lazy_save_state_init(&thr->vfp_state.sec); 1141 thr->vfp_state.sec_lazy_saved = true; 1142 } 1143 } 1144 1145 void thread_kernel_restore_vfp(void) 1146 { 1147 struct thread_ctx *thr = threads + thread_get_id(); 1148 1149 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1150 assert(!vfp_is_enabled()); 1151 if (thr->vfp_state.sec_lazy_saved) { 1152 vfp_lazy_restore_state(&thr->vfp_state.sec, 1153 thr->vfp_state.sec_saved); 1154 thr->vfp_state.sec_saved = false; 1155 thr->vfp_state.sec_lazy_saved = false; 1156 } 1157 } 1158 1159 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 1160 { 1161 struct thread_ctx *thr = threads + thread_get_id(); 1162 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1163 1164 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1165 assert(!vfp_is_enabled()); 1166 1167 if (!thr->vfp_state.ns_saved) { 1168 vfp_lazy_save_state_final(&thr->vfp_state.ns, 1169 thr->vfp_state.ns_force_save); 1170 thr->vfp_state.ns_saved = true; 1171 } else if (tuv && uvfp != tuv) { 1172 if (tuv->lazy_saved && !tuv->saved) { 1173 vfp_lazy_save_state_final(&tuv->vfp, 1174 false /*!force_save*/); 1175 tuv->saved = true; 1176 } 1177 } 1178 1179 if (uvfp->lazy_saved) 1180 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 1181 uvfp->lazy_saved = false; 1182 uvfp->saved = false; 1183 1184 thr->vfp_state.uvfp = uvfp; 1185 vfp_enable(); 1186 } 1187 1188 void thread_user_save_vfp(void) 1189 { 1190 struct thread_ctx *thr = threads + thread_get_id(); 1191 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1192 1193 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1194 if (!vfp_is_enabled()) 1195 return; 1196 1197 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1198 vfp_lazy_save_state_init(&tuv->vfp); 1199 tuv->lazy_saved = true; 1200 } 1201 1202 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1203 { 1204 struct thread_ctx *thr = threads + thread_get_id(); 1205 1206 if (uvfp == thr->vfp_state.uvfp) 1207 thr->vfp_state.uvfp = NULL; 1208 uvfp->lazy_saved = false; 1209 uvfp->saved = false; 1210 } 1211 #endif /*CFG_WITH_VFP*/ 1212 1213 #ifdef ARM32 1214 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1215 { 1216 uint32_t s; 1217 1218 if (!is_32bit) 1219 return false; 1220 1221 s = read_spsr(); 1222 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1223 s |= CPSR_MODE_USR; 1224 if (entry_func & 1) 1225 s |= CPSR_T; 1226 *spsr = s; 1227 return true; 1228 } 1229 #endif 1230 1231 #ifdef ARM64 1232 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1233 { 1234 uint32_t s; 1235 1236 if (is_32bit) { 1237 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1238 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1239 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1240 } else { 1241 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1242 } 1243 1244 *spsr = s; 1245 return true; 1246 } 1247 #endif 1248 1249 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1250 unsigned long a2, unsigned long a3, unsigned long user_sp, 1251 unsigned long entry_func, bool is_32bit, 1252 uint32_t *exit_status0, uint32_t *exit_status1) 1253 { 1254 uint32_t spsr; 1255 1256 tee_ta_update_session_utime_resume(); 1257 1258 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1259 *exit_status0 = 1; /* panic */ 1260 *exit_status1 = 0xbadbadba; 1261 return 0; 1262 } 1263 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1264 spsr, exit_status0, exit_status1); 1265 } 1266 1267 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 1268 void thread_get_user_kcode(struct mobj **mobj, size_t *offset, 1269 vaddr_t *va, size_t *sz) 1270 { 1271 core_mmu_get_user_va_range(va, NULL); 1272 *mobj = mobj_tee_ram; 1273 *offset = thread_user_kcode_va - TEE_RAM_START; 1274 *sz = thread_user_kcode_size; 1275 } 1276 #endif 1277 1278 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 1279 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 1280 void thread_get_user_kdata(struct mobj **mobj, size_t *offset, 1281 vaddr_t *va, size_t *sz) 1282 { 1283 vaddr_t v; 1284 1285 core_mmu_get_user_va_range(&v, NULL); 1286 *va = v + thread_user_kcode_size; 1287 *mobj = mobj_tee_ram; 1288 *offset = (vaddr_t)thread_user_kdata_page - TEE_RAM_START; 1289 *sz = sizeof(thread_user_kdata_page); 1290 } 1291 #endif 1292 1293 void thread_add_mutex(struct mutex *m) 1294 { 1295 struct thread_core_local *l = thread_get_core_local(); 1296 int ct = l->curr_thread; 1297 1298 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1299 assert(m->owner_id == MUTEX_OWNER_ID_NONE); 1300 m->owner_id = ct; 1301 TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link); 1302 } 1303 1304 void thread_rem_mutex(struct mutex *m) 1305 { 1306 struct thread_core_local *l = thread_get_core_local(); 1307 int ct = l->curr_thread; 1308 1309 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1310 assert(m->owner_id == ct); 1311 m->owner_id = MUTEX_OWNER_ID_NONE; 1312 TAILQ_REMOVE(&threads[ct].mutexes, m, link); 1313 } 1314 1315 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie) 1316 { 1317 bool rv; 1318 size_t n; 1319 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1320 1321 lock_global(); 1322 1323 for (n = 0; n < CFG_NUM_THREADS; n++) { 1324 if (threads[n].state != THREAD_STATE_FREE) { 1325 rv = false; 1326 goto out; 1327 } 1328 } 1329 1330 rv = true; 1331 for (n = 0; n < CFG_NUM_THREADS; n++) { 1332 if (threads[n].rpc_arg) { 1333 *cookie = mobj_get_cookie(threads[n].rpc_mobj); 1334 mobj_free(threads[n].rpc_mobj); 1335 threads[n].rpc_arg = NULL; 1336 goto out; 1337 } 1338 } 1339 1340 *cookie = 0; 1341 thread_prealloc_rpc_cache = false; 1342 out: 1343 unlock_global(); 1344 thread_unmask_exceptions(exceptions); 1345 return rv; 1346 } 1347 1348 bool thread_enable_prealloc_rpc_cache(void) 1349 { 1350 bool rv; 1351 size_t n; 1352 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1353 1354 lock_global(); 1355 1356 for (n = 0; n < CFG_NUM_THREADS; n++) { 1357 if (threads[n].state != THREAD_STATE_FREE) { 1358 rv = false; 1359 goto out; 1360 } 1361 } 1362 1363 rv = true; 1364 thread_prealloc_rpc_cache = true; 1365 out: 1366 unlock_global(); 1367 thread_unmask_exceptions(exceptions); 1368 return rv; 1369 } 1370 1371 /** 1372 * Allocates data for struct optee_msg_arg. 1373 * 1374 * @size: size in bytes of struct optee_msg_arg 1375 * 1376 * @returns mobj that describes allocated buffer or NULL on error 1377 */ 1378 static struct mobj *thread_rpc_alloc_arg(size_t size) 1379 { 1380 paddr_t pa; 1381 uint64_t co; 1382 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1383 OPTEE_SMC_RETURN_RPC_ALLOC, size 1384 }; 1385 struct mobj *mobj = NULL; 1386 1387 thread_rpc(rpc_args); 1388 1389 pa = reg_pair_to_64(rpc_args[1], rpc_args[2]); 1390 co = reg_pair_to_64(rpc_args[4], rpc_args[5]); 1391 1392 if (!ALIGNMENT_IS_OK(pa, struct optee_msg_arg)) 1393 goto err; 1394 1395 /* Check if this region is in static shared space */ 1396 if (core_pbuf_is(CORE_MEM_NSEC_SHM, pa, size)) 1397 mobj = mobj_shm_alloc(pa, size, co); 1398 else if ((!(pa & SMALL_PAGE_MASK)) && size <= SMALL_PAGE_SIZE) 1399 mobj = mobj_mapped_shm_alloc(&pa, 1, 0, co); 1400 1401 if (!mobj) 1402 goto err; 1403 1404 return mobj; 1405 err: 1406 thread_rpc_free_arg(co); 1407 mobj_free(mobj); 1408 return NULL; 1409 } 1410 1411 static bool get_rpc_arg(uint32_t cmd, size_t num_params, 1412 struct optee_msg_arg **arg_ret, uint64_t *carg_ret) 1413 { 1414 struct thread_ctx *thr = threads + thread_get_id(); 1415 struct optee_msg_arg *arg = thr->rpc_arg; 1416 struct mobj *mobj; 1417 size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS); 1418 1419 if (num_params > THREAD_RPC_MAX_NUM_PARAMS) 1420 return false; 1421 1422 if (!arg) { 1423 mobj = thread_rpc_alloc_arg(sz); 1424 if (!mobj) 1425 return false; 1426 1427 arg = mobj_get_va(mobj, 0); 1428 if (!arg) { 1429 thread_rpc_free_arg(mobj_get_cookie(mobj)); 1430 return false; 1431 } 1432 1433 thr->rpc_arg = arg; 1434 thr->rpc_mobj = mobj; 1435 } 1436 1437 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); 1438 arg->cmd = cmd; 1439 arg->num_params = num_params; 1440 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1441 1442 *arg_ret = arg; 1443 *carg_ret = mobj_get_cookie(thr->rpc_mobj); 1444 return true; 1445 } 1446 1447 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1448 struct optee_msg_param *params) 1449 { 1450 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1451 struct optee_msg_arg *arg; 1452 uint64_t carg; 1453 size_t n; 1454 1455 /* The source CRYPTO_RNG_SRC_JITTER_RPC is safe to use here */ 1456 plat_prng_add_jitter_entropy(CRYPTO_RNG_SRC_JITTER_RPC, 1457 &thread_rpc_pnum); 1458 1459 if (!get_rpc_arg(cmd, num_params, &arg, &carg)) 1460 return TEE_ERROR_OUT_OF_MEMORY; 1461 1462 memcpy(arg->params, params, sizeof(*params) * num_params); 1463 1464 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1465 thread_rpc(rpc_args); 1466 for (n = 0; n < num_params; n++) { 1467 switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) { 1468 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 1469 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 1470 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 1471 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 1472 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 1473 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 1474 params[n] = arg->params[n]; 1475 break; 1476 default: 1477 break; 1478 } 1479 } 1480 return arg->ret; 1481 } 1482 1483 /** 1484 * Free physical memory previously allocated with thread_rpc_alloc() 1485 * 1486 * @cookie: cookie received when allocating the buffer 1487 * @bt: must be the same as supplied when allocating 1488 * @mobj: mobj that describes allocated buffer 1489 * 1490 * This function also frees corresponding mobj. 1491 */ 1492 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj) 1493 { 1494 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1495 struct optee_msg_arg *arg; 1496 uint64_t carg; 1497 1498 if (!get_rpc_arg(OPTEE_MSG_RPC_CMD_SHM_FREE, 1, &arg, &carg)) 1499 return; 1500 1501 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1502 arg->params[0].u.value.a = bt; 1503 arg->params[0].u.value.b = cookie; 1504 arg->params[0].u.value.c = 0; 1505 1506 mobj_free(mobj); 1507 1508 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1509 thread_rpc(rpc_args); 1510 } 1511 1512 /** 1513 * Allocates shared memory buffer via RPC 1514 * 1515 * @size: size in bytes of shared memory buffer 1516 * @align: required alignment of buffer 1517 * @bt: buffer type OPTEE_MSG_RPC_SHM_TYPE_* 1518 * @payload: returned physical pointer to buffer, 0 if allocation 1519 * failed. 1520 * @cookie: returned cookie used when freeing the buffer 1521 */ 1522 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt) 1523 { 1524 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1525 struct optee_msg_arg *arg; 1526 uint64_t carg; 1527 struct mobj *mobj = NULL; 1528 uint64_t cookie; 1529 1530 if (!get_rpc_arg(OPTEE_MSG_RPC_CMD_SHM_ALLOC, 1, &arg, &carg)) 1531 return NULL; 1532 1533 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1534 arg->params[0].u.value.a = bt; 1535 arg->params[0].u.value.b = size; 1536 arg->params[0].u.value.c = align; 1537 1538 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1539 thread_rpc(rpc_args); 1540 1541 if (arg->ret != TEE_SUCCESS) 1542 return NULL; 1543 1544 if (arg->num_params != 1) 1545 return NULL; 1546 1547 if (arg->params[0].attr == OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT) { 1548 cookie = arg->params[0].u.tmem.shm_ref; 1549 mobj = mobj_shm_alloc(arg->params[0].u.tmem.buf_ptr, 1550 arg->params[0].u.tmem.size, 1551 cookie); 1552 } else if (arg->params[0].attr == (OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 1553 OPTEE_MSG_ATTR_NONCONTIG)) { 1554 cookie = arg->params[0].u.tmem.shm_ref; 1555 mobj = msg_param_mobj_from_noncontig( 1556 arg->params[0].u.tmem.buf_ptr, 1557 arg->params[0].u.tmem.size, 1558 cookie, 1559 true); 1560 } else { 1561 return NULL; 1562 } 1563 1564 if (!mobj) { 1565 thread_rpc_free(bt, cookie, mobj); 1566 return NULL; 1567 } 1568 1569 assert(mobj_is_nonsec(mobj)); 1570 1571 return mobj; 1572 } 1573 1574 struct mobj *thread_rpc_alloc_payload(size_t size) 1575 { 1576 return thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL); 1577 } 1578 1579 void thread_rpc_free_payload(struct mobj *mobj) 1580 { 1581 thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, mobj_get_cookie(mobj), 1582 mobj); 1583 } 1584 1585 struct mobj *thread_rpc_alloc_global_payload(size_t size) 1586 { 1587 return thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_GLOBAL); 1588 } 1589 1590 void thread_rpc_free_global_payload(struct mobj *mobj) 1591 { 1592 thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_GLOBAL, mobj_get_cookie(mobj), 1593 mobj); 1594 } 1595