1 /* 2 * Copyright (c) 2016, Linaro Limited 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * 2. Redistributions in binary form must reproduce the above copyright notice, 13 * this list of conditions and the following disclaimer in the documentation 14 * and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <platform_config.h> 30 31 #include <arm.h> 32 #include <assert.h> 33 #include <keep.h> 34 #include <kernel/misc.h> 35 #include <kernel/panic.h> 36 #include <kernel/spinlock.h> 37 #include <kernel/tee_ta_manager.h> 38 #include <kernel/thread_defs.h> 39 #include <kernel/thread.h> 40 #include <mm/core_memprot.h> 41 #include <mm/tee_mm.h> 42 #include <mm/tee_mmu.h> 43 #include <mm/tee_pager.h> 44 #include <optee_msg.h> 45 #include <sm/optee_smc.h> 46 #include <sm/sm.h> 47 #include <tee/tee_fs_rpc.h> 48 #include <trace.h> 49 #include <util.h> 50 51 #include "thread_private.h" 52 53 #ifdef CFG_WITH_ARM_TRUSTED_FW 54 #define STACK_TMP_OFFS 0 55 #else 56 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE 57 #endif 58 59 60 #ifdef ARM32 61 #ifdef CFG_CORE_SANITIZE_KADDRESS 62 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) 63 #else 64 #define STACK_TMP_SIZE (1024 + STACK_TMP_OFFS) 65 #endif 66 #define STACK_THREAD_SIZE 8192 67 68 #if TRACE_LEVEL > 0 69 #ifdef CFG_CORE_SANITIZE_KADDRESS 70 #define STACK_ABT_SIZE 3072 71 #else 72 #define STACK_ABT_SIZE 2048 73 #endif 74 #else 75 #define STACK_ABT_SIZE 1024 76 #endif 77 78 #endif /*ARM32*/ 79 80 #ifdef ARM64 81 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 82 #define STACK_THREAD_SIZE 8192 83 84 #if TRACE_LEVEL > 0 85 #define STACK_ABT_SIZE 3072 86 #else 87 #define STACK_ABT_SIZE 1024 88 #endif 89 #endif /*ARM64*/ 90 91 struct thread_ctx threads[CFG_NUM_THREADS]; 92 93 static struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE]; 94 95 #ifdef CFG_WITH_STACK_CANARIES 96 #ifdef ARM32 97 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 98 #endif 99 #ifdef ARM64 100 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 101 #endif 102 #define START_CANARY_VALUE 0xdededede 103 #define END_CANARY_VALUE 0xabababab 104 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 105 #define GET_END_CANARY(name, stack_num) \ 106 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 107 #else 108 #define STACK_CANARY_SIZE 0 109 #endif 110 111 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 112 linkage uint32_t name[num_stacks] \ 113 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 114 sizeof(uint32_t)] \ 115 __attribute__((section(".nozi_stack"), \ 116 aligned(STACK_ALIGNMENT))) 117 118 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 119 120 #define GET_STACK(stack) \ 121 ((vaddr_t)(stack) + STACK_SIZE(stack)) 122 123 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, /* global */); 124 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 125 #ifndef CFG_WITH_PAGER 126 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 127 #endif 128 129 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]); 130 const uint32_t stack_tmp_offset = STACK_TMP_OFFS + STACK_CANARY_SIZE / 2; 131 132 /* 133 * These stack setup info are required by secondary boot cores before they 134 * each locally enable the pager (the mmu). Hence kept in pager sections. 135 */ 136 KEEP_PAGER(stack_tmp); 137 KEEP_PAGER(stack_tmp_stride); 138 KEEP_PAGER(stack_tmp_offset); 139 140 thread_smc_handler_t thread_std_smc_handler_ptr; 141 static thread_smc_handler_t thread_fast_smc_handler_ptr; 142 thread_fiq_handler_t thread_fiq_handler_ptr; 143 thread_pm_handler_t thread_cpu_on_handler_ptr; 144 thread_pm_handler_t thread_cpu_off_handler_ptr; 145 thread_pm_handler_t thread_cpu_suspend_handler_ptr; 146 thread_pm_handler_t thread_cpu_resume_handler_ptr; 147 thread_pm_handler_t thread_system_off_handler_ptr; 148 thread_pm_handler_t thread_system_reset_handler_ptr; 149 150 151 static unsigned int thread_global_lock = SPINLOCK_UNLOCK; 152 static bool thread_prealloc_rpc_cache; 153 154 static void init_canaries(void) 155 { 156 #ifdef CFG_WITH_STACK_CANARIES 157 size_t n; 158 #define INIT_CANARY(name) \ 159 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 160 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 161 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 162 \ 163 *start_canary = START_CANARY_VALUE; \ 164 *end_canary = END_CANARY_VALUE; \ 165 DMSG("#Stack canaries for %s[%zu] with top at %p\n", \ 166 #name, n, (void *)(end_canary - 1)); \ 167 DMSG("watch *%p\n", (void *)end_canary); \ 168 } 169 170 INIT_CANARY(stack_tmp); 171 INIT_CANARY(stack_abt); 172 #ifndef CFG_WITH_PAGER 173 INIT_CANARY(stack_thread); 174 #endif 175 #endif/*CFG_WITH_STACK_CANARIES*/ 176 } 177 178 #define CANARY_DIED(stack, loc, n) \ 179 do { \ 180 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 181 panic(); \ 182 } while (0) 183 184 void thread_check_canaries(void) 185 { 186 #ifdef CFG_WITH_STACK_CANARIES 187 size_t n; 188 189 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 190 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 191 CANARY_DIED(stack_tmp, start, n); 192 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 193 CANARY_DIED(stack_tmp, end, n); 194 } 195 196 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 197 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 198 CANARY_DIED(stack_abt, start, n); 199 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 200 CANARY_DIED(stack_abt, end, n); 201 202 } 203 #ifndef CFG_WITH_PAGER 204 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 205 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 206 CANARY_DIED(stack_thread, start, n); 207 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 208 CANARY_DIED(stack_thread, end, n); 209 } 210 #endif 211 #endif/*CFG_WITH_STACK_CANARIES*/ 212 } 213 214 static void lock_global(void) 215 { 216 cpu_spin_lock(&thread_global_lock); 217 } 218 219 static void unlock_global(void) 220 { 221 cpu_spin_unlock(&thread_global_lock); 222 } 223 224 #ifdef ARM32 225 uint32_t thread_get_exceptions(void) 226 { 227 uint32_t cpsr = read_cpsr(); 228 229 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 230 } 231 232 void thread_set_exceptions(uint32_t exceptions) 233 { 234 uint32_t cpsr = read_cpsr(); 235 236 /* IRQ must not be unmasked while holding a spinlock */ 237 if (!(exceptions & THREAD_EXCP_IRQ)) 238 assert_have_no_spinlock(); 239 240 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 241 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 242 write_cpsr(cpsr); 243 } 244 #endif /*ARM32*/ 245 246 #ifdef ARM64 247 uint32_t thread_get_exceptions(void) 248 { 249 uint32_t daif = read_daif(); 250 251 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 252 } 253 254 void thread_set_exceptions(uint32_t exceptions) 255 { 256 uint32_t daif = read_daif(); 257 258 /* IRQ must not be unmasked while holding a spinlock */ 259 if (!(exceptions & THREAD_EXCP_IRQ)) 260 assert_have_no_spinlock(); 261 262 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 263 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 264 write_daif(daif); 265 } 266 #endif /*ARM64*/ 267 268 uint32_t thread_mask_exceptions(uint32_t exceptions) 269 { 270 uint32_t state = thread_get_exceptions(); 271 272 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 273 return state; 274 } 275 276 void thread_unmask_exceptions(uint32_t state) 277 { 278 thread_set_exceptions(state & THREAD_EXCP_ALL); 279 } 280 281 282 struct thread_core_local *thread_get_core_local(void) 283 { 284 uint32_t cpu_id = get_core_pos(); 285 286 /* 287 * IRQs must be disabled before playing with core_local since 288 * we otherwise may be rescheduled to a different core in the 289 * middle of this function. 290 */ 291 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 292 293 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 294 return &thread_core_local[cpu_id]; 295 } 296 297 static void thread_lazy_save_ns_vfp(void) 298 { 299 #ifdef CFG_WITH_VFP 300 struct thread_ctx *thr = threads + thread_get_id(); 301 302 thr->vfp_state.ns_saved = false; 303 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW) 304 /* 305 * ARM TF saves and restores CPACR_EL1, so we must assume NS world 306 * uses VFP and always preserve the register file when secure world 307 * is about to use it 308 */ 309 thr->vfp_state.ns.force_save = true; 310 #endif 311 vfp_lazy_save_state_init(&thr->vfp_state.ns); 312 #endif /*CFG_WITH_VFP*/ 313 } 314 315 static void thread_lazy_restore_ns_vfp(void) 316 { 317 #ifdef CFG_WITH_VFP 318 struct thread_ctx *thr = threads + thread_get_id(); 319 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 320 321 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 322 323 if (tuv && tuv->lazy_saved && !tuv->saved) { 324 vfp_lazy_save_state_final(&tuv->vfp); 325 tuv->saved = true; 326 } 327 328 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 329 thr->vfp_state.ns_saved = false; 330 #endif /*CFG_WITH_VFP*/ 331 } 332 333 #ifdef ARM32 334 static void init_regs(struct thread_ctx *thread, 335 struct thread_smc_args *args) 336 { 337 thread->regs.pc = (uint32_t)thread_std_smc_entry; 338 339 /* 340 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous 341 * abort and unmasked FIQ. 342 */ 343 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 344 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_I | CPSR_A; 345 /* Enable thumb mode if it's a thumb instruction */ 346 if (thread->regs.pc & 1) 347 thread->regs.cpsr |= CPSR_T; 348 /* Reinitialize stack pointer */ 349 thread->regs.svc_sp = thread->stack_va_end; 350 351 /* 352 * Copy arguments into context. This will make the 353 * arguments appear in r0-r7 when thread is started. 354 */ 355 thread->regs.r0 = args->a0; 356 thread->regs.r1 = args->a1; 357 thread->regs.r2 = args->a2; 358 thread->regs.r3 = args->a3; 359 thread->regs.r4 = args->a4; 360 thread->regs.r5 = args->a5; 361 thread->regs.r6 = args->a6; 362 thread->regs.r7 = args->a7; 363 } 364 #endif /*ARM32*/ 365 366 #ifdef ARM64 367 static void init_regs(struct thread_ctx *thread, 368 struct thread_smc_args *args) 369 { 370 thread->regs.pc = (uint64_t)thread_std_smc_entry; 371 372 /* 373 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous 374 * abort and unmasked FIQ. 375 */ 376 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 377 DAIFBIT_IRQ | DAIFBIT_ABT); 378 /* Reinitialize stack pointer */ 379 thread->regs.sp = thread->stack_va_end; 380 381 /* 382 * Copy arguments into context. This will make the 383 * arguments appear in x0-x7 when thread is started. 384 */ 385 thread->regs.x[0] = args->a0; 386 thread->regs.x[1] = args->a1; 387 thread->regs.x[2] = args->a2; 388 thread->regs.x[3] = args->a3; 389 thread->regs.x[4] = args->a4; 390 thread->regs.x[5] = args->a5; 391 thread->regs.x[6] = args->a6; 392 thread->regs.x[7] = args->a7; 393 394 /* Set up frame pointer as per the Aarch64 AAPCS */ 395 thread->regs.x[29] = 0; 396 } 397 #endif /*ARM64*/ 398 399 void thread_init_boot_thread(void) 400 { 401 struct thread_core_local *l = thread_get_core_local(); 402 size_t n; 403 404 for (n = 0; n < CFG_NUM_THREADS; n++) { 405 TAILQ_INIT(&threads[n].mutexes); 406 TAILQ_INIT(&threads[n].tsd.sess_stack); 407 #ifdef CFG_SMALL_PAGE_USER_TA 408 SLIST_INIT(&threads[n].tsd.pgt_cache); 409 #endif 410 } 411 412 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 413 thread_core_local[n].curr_thread = -1; 414 415 l->curr_thread = 0; 416 threads[0].state = THREAD_STATE_ACTIVE; 417 } 418 419 void thread_clr_boot_thread(void) 420 { 421 struct thread_core_local *l = thread_get_core_local(); 422 423 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 424 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 425 assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes)); 426 threads[l->curr_thread].state = THREAD_STATE_FREE; 427 l->curr_thread = -1; 428 } 429 430 static void thread_alloc_and_run(struct thread_smc_args *args) 431 { 432 size_t n; 433 struct thread_core_local *l = thread_get_core_local(); 434 bool found_thread = false; 435 436 assert(l->curr_thread == -1); 437 438 lock_global(); 439 440 for (n = 0; n < CFG_NUM_THREADS; n++) { 441 if (threads[n].state == THREAD_STATE_FREE) { 442 threads[n].state = THREAD_STATE_ACTIVE; 443 found_thread = true; 444 break; 445 } 446 } 447 448 unlock_global(); 449 450 if (!found_thread) { 451 args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT; 452 return; 453 } 454 455 l->curr_thread = n; 456 457 threads[n].flags = 0; 458 init_regs(threads + n, args); 459 460 /* Save Hypervisor Client ID */ 461 threads[n].hyp_clnt_id = args->a7; 462 463 thread_lazy_save_ns_vfp(); 464 thread_resume(&threads[n].regs); 465 } 466 467 #ifdef ARM32 468 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 469 struct thread_smc_args *args) 470 { 471 /* 472 * Update returned values from RPC, values will appear in 473 * r0-r3 when thread is resumed. 474 */ 475 regs->r0 = args->a0; 476 regs->r1 = args->a1; 477 regs->r2 = args->a2; 478 regs->r3 = args->a3; 479 regs->r4 = args->a4; 480 regs->r5 = args->a5; 481 } 482 #endif /*ARM32*/ 483 484 #ifdef ARM64 485 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 486 struct thread_smc_args *args) 487 { 488 /* 489 * Update returned values from RPC, values will appear in 490 * x0-x3 when thread is resumed. 491 */ 492 regs->x[0] = args->a0; 493 regs->x[1] = args->a1; 494 regs->x[2] = args->a2; 495 regs->x[3] = args->a3; 496 regs->x[4] = args->a4; 497 regs->x[5] = args->a5; 498 } 499 #endif /*ARM64*/ 500 501 #ifdef ARM32 502 static bool is_from_user(uint32_t cpsr) 503 { 504 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 505 } 506 #endif 507 508 #ifdef ARM64 509 static bool is_from_user(uint32_t cpsr) 510 { 511 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 512 return true; 513 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 514 SPSR_64_MODE_EL0) 515 return true; 516 return false; 517 } 518 #endif 519 520 static bool is_user_mode(struct thread_ctx_regs *regs) 521 { 522 return is_from_user((uint32_t)regs->cpsr); 523 } 524 525 static void thread_resume_from_rpc(struct thread_smc_args *args) 526 { 527 size_t n = args->a3; /* thread id */ 528 struct thread_core_local *l = thread_get_core_local(); 529 uint32_t rv = 0; 530 531 assert(l->curr_thread == -1); 532 533 lock_global(); 534 535 if (n < CFG_NUM_THREADS && 536 threads[n].state == THREAD_STATE_SUSPENDED && 537 args->a7 == threads[n].hyp_clnt_id) 538 threads[n].state = THREAD_STATE_ACTIVE; 539 else 540 rv = OPTEE_SMC_RETURN_ERESUME; 541 542 unlock_global(); 543 544 if (rv) { 545 args->a0 = rv; 546 return; 547 } 548 549 l->curr_thread = n; 550 551 if (is_user_mode(&threads[n].regs)) 552 tee_ta_update_session_utime_resume(); 553 554 if (threads[n].have_user_map) 555 core_mmu_set_user_map(&threads[n].user_map); 556 557 /* 558 * Return from RPC to request service of an IRQ must not 559 * get parameters from non-secure world. 560 */ 561 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 562 copy_a0_to_a5(&threads[n].regs, args); 563 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 564 } 565 566 thread_lazy_save_ns_vfp(); 567 thread_resume(&threads[n].regs); 568 } 569 570 void thread_handle_fast_smc(struct thread_smc_args *args) 571 { 572 thread_check_canaries(); 573 thread_fast_smc_handler_ptr(args); 574 /* Fast handlers must not unmask any exceptions */ 575 assert(thread_get_exceptions() == THREAD_EXCP_ALL); 576 } 577 578 void thread_handle_std_smc(struct thread_smc_args *args) 579 { 580 thread_check_canaries(); 581 582 if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC) 583 thread_resume_from_rpc(args); 584 else 585 thread_alloc_and_run(args); 586 } 587 588 /* Helper routine for the assembly function thread_std_smc_entry() */ 589 void __thread_std_smc_entry(struct thread_smc_args *args) 590 { 591 struct thread_ctx *thr = threads + thread_get_id(); 592 593 if (!thr->rpc_arg) { 594 paddr_t parg; 595 uint64_t carg; 596 void *arg; 597 598 thread_rpc_alloc_arg( 599 OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS), 600 &parg, &carg); 601 if (!parg || !ALIGNMENT_IS_OK(parg, struct optee_msg_arg) || 602 !(arg = phys_to_virt(parg, MEM_AREA_NSEC_SHM))) { 603 thread_rpc_free_arg(carg); 604 args->a0 = OPTEE_SMC_RETURN_ENOMEM; 605 return; 606 } 607 608 thr->rpc_arg = arg; 609 thr->rpc_carg = carg; 610 } 611 612 thread_std_smc_handler_ptr(args); 613 614 tee_fs_rpc_cache_clear(&thr->tsd); 615 if (!thread_prealloc_rpc_cache) { 616 thread_rpc_free_arg(thr->rpc_carg); 617 thr->rpc_carg = 0; 618 thr->rpc_arg = 0; 619 } 620 } 621 622 void *thread_get_tmp_sp(void) 623 { 624 struct thread_core_local *l = thread_get_core_local(); 625 626 return (void *)l->tmp_stack_va_end; 627 } 628 629 #ifdef ARM64 630 vaddr_t thread_get_saved_thread_sp(void) 631 { 632 struct thread_core_local *l = thread_get_core_local(); 633 int ct = l->curr_thread; 634 635 assert(ct != -1); 636 return threads[ct].kern_sp; 637 } 638 #endif /*ARM64*/ 639 640 bool thread_addr_is_in_stack(vaddr_t va) 641 { 642 struct thread_ctx *thr; 643 int ct = thread_get_id_may_fail(); 644 645 if (ct == -1) 646 return false; 647 648 thr = threads + ct; 649 return va < thr->stack_va_end && 650 va >= (thr->stack_va_end - STACK_THREAD_SIZE); 651 } 652 653 void thread_state_free(void) 654 { 655 struct thread_core_local *l = thread_get_core_local(); 656 int ct = l->curr_thread; 657 658 assert(ct != -1); 659 assert(TAILQ_EMPTY(&threads[ct].mutexes)); 660 661 thread_lazy_restore_ns_vfp(); 662 tee_pager_release_phys( 663 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 664 STACK_THREAD_SIZE); 665 666 lock_global(); 667 668 assert(threads[ct].state == THREAD_STATE_ACTIVE); 669 threads[ct].state = THREAD_STATE_FREE; 670 threads[ct].flags = 0; 671 l->curr_thread = -1; 672 673 unlock_global(); 674 } 675 676 #ifdef CFG_WITH_PAGER 677 static void release_unused_kernel_stack(struct thread_ctx *thr) 678 { 679 vaddr_t sp = thr->regs.svc_sp; 680 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 681 size_t len = sp - base; 682 683 tee_pager_release_phys((void *)base, len); 684 } 685 #else 686 static void release_unused_kernel_stack(struct thread_ctx *thr __unused) 687 { 688 } 689 #endif 690 691 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 692 { 693 struct thread_core_local *l = thread_get_core_local(); 694 int ct = l->curr_thread; 695 696 assert(ct != -1); 697 698 thread_check_canaries(); 699 700 release_unused_kernel_stack(threads + ct); 701 702 if (is_from_user(cpsr)) { 703 thread_user_save_vfp(); 704 tee_ta_update_session_utime_suspend(); 705 tee_ta_gprof_sample_pc(pc); 706 } 707 thread_lazy_restore_ns_vfp(); 708 709 lock_global(); 710 711 assert(threads[ct].state == THREAD_STATE_ACTIVE); 712 threads[ct].flags |= flags; 713 threads[ct].regs.cpsr = cpsr; 714 threads[ct].regs.pc = pc; 715 threads[ct].state = THREAD_STATE_SUSPENDED; 716 717 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 718 if (threads[ct].have_user_map) { 719 core_mmu_get_user_map(&threads[ct].user_map); 720 core_mmu_set_user_map(NULL); 721 } 722 723 l->curr_thread = -1; 724 725 unlock_global(); 726 727 return ct; 728 } 729 730 #ifdef ARM32 731 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 732 { 733 l->tmp_stack_va_end = sp; 734 thread_set_irq_sp(sp); 735 thread_set_fiq_sp(sp); 736 } 737 738 static void set_abt_stack(struct thread_core_local *l __unused, vaddr_t sp) 739 { 740 thread_set_abt_sp(sp); 741 } 742 #endif /*ARM32*/ 743 744 #ifdef ARM64 745 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 746 { 747 /* 748 * We're already using the tmp stack when this function is called 749 * so there's no need to assign it to any stack pointer. However, 750 * we'll need to restore it at different times so store it here. 751 */ 752 l->tmp_stack_va_end = sp; 753 } 754 755 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 756 { 757 l->abt_stack_va_end = sp; 758 } 759 #endif /*ARM64*/ 760 761 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 762 { 763 if (thread_id >= CFG_NUM_THREADS) 764 return false; 765 threads[thread_id].stack_va_end = sp; 766 return true; 767 } 768 769 int thread_get_id_may_fail(void) 770 { 771 /* thread_get_core_local() requires IRQs to be disabled */ 772 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 773 struct thread_core_local *l = thread_get_core_local(); 774 int ct = l->curr_thread; 775 776 thread_unmask_exceptions(exceptions); 777 return ct; 778 } 779 780 int thread_get_id(void) 781 { 782 int ct = thread_get_id_may_fail(); 783 784 assert(ct >= 0 && ct < CFG_NUM_THREADS); 785 return ct; 786 } 787 788 static void init_handlers(const struct thread_handlers *handlers) 789 { 790 thread_std_smc_handler_ptr = handlers->std_smc; 791 thread_fast_smc_handler_ptr = handlers->fast_smc; 792 thread_fiq_handler_ptr = handlers->fiq; 793 thread_cpu_on_handler_ptr = handlers->cpu_on; 794 thread_cpu_off_handler_ptr = handlers->cpu_off; 795 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 796 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 797 thread_system_off_handler_ptr = handlers->system_off; 798 thread_system_reset_handler_ptr = handlers->system_reset; 799 } 800 801 #ifdef CFG_WITH_PAGER 802 static void init_thread_stacks(void) 803 { 804 size_t n; 805 806 /* 807 * Allocate virtual memory for thread stacks. 808 */ 809 for (n = 0; n < CFG_NUM_THREADS; n++) { 810 tee_mm_entry_t *mm; 811 vaddr_t sp; 812 813 /* Find vmem for thread stack and its protection gap */ 814 mm = tee_mm_alloc(&tee_mm_vcore, 815 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 816 assert(mm); 817 818 /* Claim eventual physical page */ 819 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 820 true); 821 822 /* Add the area to the pager */ 823 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 824 tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE, 825 TEE_MATTR_PRW | TEE_MATTR_LOCKED, 826 NULL, NULL); 827 828 /* init effective stack */ 829 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 830 if (!thread_init_stack(n, sp)) 831 panic("init stack failed"); 832 } 833 } 834 #else 835 static void init_thread_stacks(void) 836 { 837 size_t n; 838 839 /* Assign the thread stacks */ 840 for (n = 0; n < CFG_NUM_THREADS; n++) { 841 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 842 panic("thread_init_stack failed"); 843 } 844 } 845 #endif /*CFG_WITH_PAGER*/ 846 847 void thread_init_primary(const struct thread_handlers *handlers) 848 { 849 init_handlers(handlers); 850 851 /* Initialize canaries around the stacks */ 852 init_canaries(); 853 854 init_thread_stacks(); 855 pgt_init(); 856 } 857 858 static void init_sec_mon(size_t pos __maybe_unused) 859 { 860 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 861 /* Initialize secure monitor */ 862 sm_init(GET_STACK(stack_tmp[pos])); 863 #endif 864 } 865 866 void thread_init_per_cpu(void) 867 { 868 size_t pos = get_core_pos(); 869 struct thread_core_local *l = thread_get_core_local(); 870 871 init_sec_mon(pos); 872 873 set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); 874 set_abt_stack(l, GET_STACK(stack_abt[pos])); 875 876 thread_init_vbar(); 877 } 878 879 struct thread_specific_data *thread_get_tsd(void) 880 { 881 return &threads[thread_get_id()].tsd; 882 } 883 884 struct thread_ctx_regs *thread_get_ctx_regs(void) 885 { 886 struct thread_core_local *l = thread_get_core_local(); 887 888 assert(l->curr_thread != -1); 889 return &threads[l->curr_thread].regs; 890 } 891 892 void thread_set_irq(bool enable) 893 { 894 /* thread_get_core_local() requires IRQs to be disabled */ 895 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 896 struct thread_core_local *l; 897 898 l = thread_get_core_local(); 899 900 assert(l->curr_thread != -1); 901 902 if (enable) { 903 threads[l->curr_thread].flags |= THREAD_FLAGS_IRQ_ENABLE; 904 thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ); 905 } else { 906 /* 907 * No need to disable IRQ here since it's already disabled 908 * above. 909 */ 910 threads[l->curr_thread].flags &= ~THREAD_FLAGS_IRQ_ENABLE; 911 } 912 } 913 914 void thread_restore_irq(void) 915 { 916 /* thread_get_core_local() requires IRQs to be disabled */ 917 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 918 struct thread_core_local *l; 919 920 l = thread_get_core_local(); 921 922 assert(l->curr_thread != -1); 923 924 if (threads[l->curr_thread].flags & THREAD_FLAGS_IRQ_ENABLE) 925 thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ); 926 } 927 928 #ifdef CFG_WITH_VFP 929 uint32_t thread_kernel_enable_vfp(void) 930 { 931 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 932 struct thread_ctx *thr = threads + thread_get_id(); 933 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 934 935 assert(!vfp_is_enabled()); 936 937 if (!thr->vfp_state.ns_saved) { 938 vfp_lazy_save_state_final(&thr->vfp_state.ns); 939 thr->vfp_state.ns_saved = true; 940 } else if (thr->vfp_state.sec_lazy_saved && 941 !thr->vfp_state.sec_saved) { 942 /* 943 * This happens when we're handling an abort while the 944 * thread was using the VFP state. 945 */ 946 vfp_lazy_save_state_final(&thr->vfp_state.sec); 947 thr->vfp_state.sec_saved = true; 948 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 949 /* 950 * This can happen either during syscall or abort 951 * processing (while processing a syscall). 952 */ 953 vfp_lazy_save_state_final(&tuv->vfp); 954 tuv->saved = true; 955 } 956 957 vfp_enable(); 958 return exceptions; 959 } 960 961 void thread_kernel_disable_vfp(uint32_t state) 962 { 963 uint32_t exceptions; 964 965 assert(vfp_is_enabled()); 966 967 vfp_disable(); 968 exceptions = thread_get_exceptions(); 969 assert(exceptions & THREAD_EXCP_IRQ); 970 exceptions &= ~THREAD_EXCP_IRQ; 971 exceptions |= state & THREAD_EXCP_IRQ; 972 thread_set_exceptions(exceptions); 973 } 974 975 void thread_kernel_save_vfp(void) 976 { 977 struct thread_ctx *thr = threads + thread_get_id(); 978 979 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 980 if (vfp_is_enabled()) { 981 vfp_lazy_save_state_init(&thr->vfp_state.sec); 982 thr->vfp_state.sec_lazy_saved = true; 983 } 984 } 985 986 void thread_kernel_restore_vfp(void) 987 { 988 struct thread_ctx *thr = threads + thread_get_id(); 989 990 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 991 assert(!vfp_is_enabled()); 992 if (thr->vfp_state.sec_lazy_saved) { 993 vfp_lazy_restore_state(&thr->vfp_state.sec, 994 thr->vfp_state.sec_saved); 995 thr->vfp_state.sec_saved = false; 996 thr->vfp_state.sec_lazy_saved = false; 997 } 998 } 999 1000 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 1001 { 1002 struct thread_ctx *thr = threads + thread_get_id(); 1003 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1004 1005 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 1006 assert(!vfp_is_enabled()); 1007 1008 if (!thr->vfp_state.ns_saved) { 1009 vfp_lazy_save_state_final(&thr->vfp_state.ns); 1010 thr->vfp_state.ns_saved = true; 1011 } else if (tuv && uvfp != tuv) { 1012 if (tuv->lazy_saved && !tuv->saved) { 1013 vfp_lazy_save_state_final(&tuv->vfp); 1014 tuv->saved = true; 1015 } 1016 } 1017 1018 if (uvfp->lazy_saved) 1019 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 1020 uvfp->lazy_saved = false; 1021 uvfp->saved = false; 1022 1023 thr->vfp_state.uvfp = uvfp; 1024 vfp_enable(); 1025 } 1026 1027 void thread_user_save_vfp(void) 1028 { 1029 struct thread_ctx *thr = threads + thread_get_id(); 1030 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1031 1032 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 1033 if (!vfp_is_enabled()) 1034 return; 1035 1036 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1037 vfp_lazy_save_state_init(&tuv->vfp); 1038 tuv->lazy_saved = true; 1039 } 1040 1041 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1042 { 1043 struct thread_ctx *thr = threads + thread_get_id(); 1044 1045 if (uvfp == thr->vfp_state.uvfp) 1046 thr->vfp_state.uvfp = NULL; 1047 uvfp->lazy_saved = false; 1048 uvfp->saved = false; 1049 } 1050 #endif /*CFG_WITH_VFP*/ 1051 1052 #ifdef ARM32 1053 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1054 { 1055 uint32_t s; 1056 1057 if (!is_32bit) 1058 return false; 1059 1060 s = read_spsr(); 1061 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1062 s |= CPSR_MODE_USR; 1063 if (entry_func & 1) 1064 s |= CPSR_T; 1065 *spsr = s; 1066 return true; 1067 } 1068 #endif 1069 1070 #ifdef ARM64 1071 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1072 { 1073 uint32_t s; 1074 1075 if (is_32bit) { 1076 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1077 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1078 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1079 } else { 1080 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1081 } 1082 1083 *spsr = s; 1084 return true; 1085 } 1086 #endif 1087 1088 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1089 unsigned long a2, unsigned long a3, unsigned long user_sp, 1090 unsigned long entry_func, bool is_32bit, 1091 uint32_t *exit_status0, uint32_t *exit_status1) 1092 { 1093 uint32_t spsr; 1094 1095 tee_ta_update_session_utime_resume(); 1096 1097 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1098 *exit_status0 = 1; /* panic */ 1099 *exit_status1 = 0xbadbadba; 1100 return 0; 1101 } 1102 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1103 spsr, exit_status0, exit_status1); 1104 } 1105 1106 void thread_add_mutex(struct mutex *m) 1107 { 1108 struct thread_core_local *l = thread_get_core_local(); 1109 int ct = l->curr_thread; 1110 1111 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1112 assert(m->owner_id == -1); 1113 m->owner_id = ct; 1114 TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link); 1115 } 1116 1117 void thread_rem_mutex(struct mutex *m) 1118 { 1119 struct thread_core_local *l = thread_get_core_local(); 1120 int ct = l->curr_thread; 1121 1122 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1123 assert(m->owner_id == ct); 1124 m->owner_id = -1; 1125 TAILQ_REMOVE(&threads[ct].mutexes, m, link); 1126 } 1127 1128 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie) 1129 { 1130 bool rv; 1131 size_t n; 1132 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 1133 1134 lock_global(); 1135 1136 for (n = 0; n < CFG_NUM_THREADS; n++) { 1137 if (threads[n].state != THREAD_STATE_FREE) { 1138 rv = false; 1139 goto out; 1140 } 1141 } 1142 1143 rv = true; 1144 for (n = 0; n < CFG_NUM_THREADS; n++) { 1145 if (threads[n].rpc_arg) { 1146 *cookie = threads[n].rpc_carg; 1147 threads[n].rpc_carg = 0; 1148 threads[n].rpc_arg = NULL; 1149 goto out; 1150 } 1151 } 1152 1153 *cookie = 0; 1154 thread_prealloc_rpc_cache = false; 1155 out: 1156 unlock_global(); 1157 thread_unmask_exceptions(exceptions); 1158 return rv; 1159 } 1160 1161 bool thread_enable_prealloc_rpc_cache(void) 1162 { 1163 bool rv; 1164 size_t n; 1165 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 1166 1167 lock_global(); 1168 1169 for (n = 0; n < CFG_NUM_THREADS; n++) { 1170 if (threads[n].state != THREAD_STATE_FREE) { 1171 rv = false; 1172 goto out; 1173 } 1174 } 1175 1176 rv = true; 1177 thread_prealloc_rpc_cache = true; 1178 out: 1179 unlock_global(); 1180 thread_unmask_exceptions(exceptions); 1181 return rv; 1182 } 1183 1184 static uint32_t rpc_cmd_nolock(uint32_t cmd, size_t num_params, 1185 struct optee_msg_param *params) 1186 { 1187 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1188 struct thread_ctx *thr = threads + thread_get_id(); 1189 struct optee_msg_arg *arg = thr->rpc_arg; 1190 uint64_t carg = thr->rpc_carg; 1191 const size_t params_size = sizeof(struct optee_msg_param) * num_params; 1192 size_t n; 1193 1194 assert(arg && carg && num_params <= THREAD_RPC_MAX_NUM_PARAMS); 1195 1196 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS)); 1197 arg->cmd = cmd; 1198 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1199 arg->num_params = num_params; 1200 memcpy(OPTEE_MSG_GET_PARAMS(arg), params, params_size); 1201 1202 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1203 thread_rpc(rpc_args); 1204 for (n = 0; n < num_params; n++) { 1205 switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) { 1206 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 1207 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 1208 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 1209 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 1210 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 1211 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 1212 memcpy(params + n, OPTEE_MSG_GET_PARAMS(arg) + n, 1213 sizeof(struct optee_msg_param)); 1214 break; 1215 default: 1216 break; 1217 } 1218 } 1219 return arg->ret; 1220 } 1221 1222 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1223 struct optee_msg_param *params) 1224 { 1225 uint32_t ret; 1226 1227 ret = rpc_cmd_nolock(cmd, num_params, params); 1228 1229 return ret; 1230 } 1231 1232 static bool check_alloced_shm(paddr_t pa, size_t len, size_t align) 1233 { 1234 if (pa & (align - 1)) 1235 return false; 1236 return core_pbuf_is(CORE_MEM_NSEC_SHM, pa, len); 1237 } 1238 1239 void thread_rpc_free_arg(uint64_t cookie) 1240 { 1241 if (cookie) { 1242 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1243 OPTEE_SMC_RETURN_RPC_FREE 1244 }; 1245 1246 reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2); 1247 thread_rpc(rpc_args); 1248 } 1249 } 1250 1251 void thread_rpc_alloc_arg(size_t size, paddr_t *arg, uint64_t *cookie) 1252 { 1253 paddr_t pa; 1254 uint64_t co; 1255 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1256 OPTEE_SMC_RETURN_RPC_ALLOC, size 1257 }; 1258 1259 thread_rpc(rpc_args); 1260 1261 pa = reg_pair_to_64(rpc_args[1], rpc_args[2]); 1262 co = reg_pair_to_64(rpc_args[4], rpc_args[5]); 1263 if (!check_alloced_shm(pa, size, sizeof(uint64_t))) { 1264 thread_rpc_free_arg(co); 1265 pa = 0; 1266 co = 0; 1267 } 1268 1269 *arg = pa; 1270 *cookie = co; 1271 } 1272 1273 /** 1274 * Free physical memory previously allocated with thread_rpc_alloc() 1275 * 1276 * @cookie: cookie received when allocating the buffer 1277 * @bt: must be the same as supplied when allocating 1278 */ 1279 static void thread_rpc_free(unsigned int bt, uint64_t cookie) 1280 { 1281 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1282 struct thread_ctx *thr = threads + thread_get_id(); 1283 struct optee_msg_arg *arg = thr->rpc_arg; 1284 uint64_t carg = thr->rpc_carg; 1285 struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg); 1286 1287 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); 1288 arg->cmd = OPTEE_MSG_RPC_CMD_SHM_FREE; 1289 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1290 arg->num_params = 1; 1291 1292 params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1293 params[0].u.value.a = bt; 1294 params[0].u.value.b = cookie; 1295 params[0].u.value.c = 0; 1296 1297 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1298 thread_rpc(rpc_args); 1299 } 1300 1301 /** 1302 * Allocates shared memory buffer via RPC 1303 * 1304 * @size: size in bytes of shared memory buffer 1305 * @align: required alignment of buffer 1306 * @bt: buffer type OPTEE_MSG_RPC_SHM_TYPE_* 1307 * @payload: returned physical pointer to buffer, 0 if allocation 1308 * failed. 1309 * @cookie: returned cookie used when freeing the buffer 1310 */ 1311 static void thread_rpc_alloc(size_t size, size_t align, unsigned int bt, 1312 paddr_t *payload, uint64_t *cookie) 1313 { 1314 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1315 struct thread_ctx *thr = threads + thread_get_id(); 1316 struct optee_msg_arg *arg = thr->rpc_arg; 1317 uint64_t carg = thr->rpc_carg; 1318 struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg); 1319 1320 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); 1321 arg->cmd = OPTEE_MSG_RPC_CMD_SHM_ALLOC; 1322 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1323 arg->num_params = 1; 1324 1325 params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1326 params[0].u.value.a = bt; 1327 params[0].u.value.b = size; 1328 params[0].u.value.c = align; 1329 1330 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1331 thread_rpc(rpc_args); 1332 if (arg->ret != TEE_SUCCESS) 1333 goto fail; 1334 1335 if (arg->num_params != 1) 1336 goto fail; 1337 1338 if (params[0].attr != OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT) 1339 goto fail; 1340 1341 if (!check_alloced_shm(params[0].u.tmem.buf_ptr, size, align)) { 1342 thread_rpc_free(bt, params[0].u.tmem.shm_ref); 1343 goto fail; 1344 } 1345 1346 *payload = params[0].u.tmem.buf_ptr; 1347 *cookie = params[0].u.tmem.shm_ref; 1348 return; 1349 fail: 1350 *payload = 0; 1351 *cookie = 0; 1352 } 1353 1354 void thread_rpc_alloc_payload(size_t size, paddr_t *payload, uint64_t *cookie) 1355 { 1356 thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, payload, cookie); 1357 } 1358 1359 void thread_rpc_free_payload(uint64_t cookie) 1360 { 1361 thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie); 1362 } 1363