xref: /optee_os/core/arch/arm/kernel/thread.c (revision c822f03f36889a224f182a6d99966be6130b38e0)
1 /*
2  * Copyright (c) 2016, Linaro Limited
3  * Copyright (c) 2014, STMicroelectronics International N.V.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice,
10  * this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright notice,
13  * this list of conditions and the following disclaimer in the documentation
14  * and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
20  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <platform_config.h>
30 
31 #include <arm.h>
32 #include <assert.h>
33 #include <keep.h>
34 #include <kernel/misc.h>
35 #include <kernel/panic.h>
36 #include <kernel/tee_ta_manager.h>
37 #include <kernel/thread_defs.h>
38 #include <kernel/thread.h>
39 #include <kernel/tz_proc_def.h>
40 #include <kernel/tz_proc.h>
41 #include <mm/core_memprot.h>
42 #include <mm/tee_mm.h>
43 #include <mm/tee_mmu_defs.h>
44 #include <mm/tee_mmu.h>
45 #include <mm/tee_pager.h>
46 #include <optee_msg.h>
47 #include <sm/optee_smc.h>
48 #include <sm/sm.h>
49 #include <tee/tee_fs_rpc.h>
50 #include <trace.h>
51 #include <util.h>
52 
53 #include "thread_private.h"
54 
55 #ifdef CFG_WITH_ARM_TRUSTED_FW
56 #define STACK_TMP_OFFS		0
57 #else
58 #define STACK_TMP_OFFS		SM_STACK_TMP_RESERVE_SIZE
59 #endif
60 
61 
62 #ifdef ARM32
63 #ifdef CFG_CORE_SANITIZE_KADDRESS
64 #define STACK_TMP_SIZE		(3072 + STACK_TMP_OFFS)
65 #else
66 #define STACK_TMP_SIZE		(1024 + STACK_TMP_OFFS)
67 #endif
68 #define STACK_THREAD_SIZE	8192
69 
70 #if TRACE_LEVEL > 0
71 #ifdef CFG_CORE_SANITIZE_KADDRESS
72 #define STACK_ABT_SIZE		3072
73 #else
74 #define STACK_ABT_SIZE		2048
75 #endif
76 #else
77 #define STACK_ABT_SIZE		1024
78 #endif
79 
80 #endif /*ARM32*/
81 
82 #ifdef ARM64
83 #define STACK_TMP_SIZE		(2048 + STACK_TMP_OFFS)
84 #define STACK_THREAD_SIZE	8192
85 
86 #if TRACE_LEVEL > 0
87 #define STACK_ABT_SIZE		3072
88 #else
89 #define STACK_ABT_SIZE		1024
90 #endif
91 #endif /*ARM64*/
92 
93 struct thread_ctx threads[CFG_NUM_THREADS];
94 
95 static struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE];
96 
97 #ifdef CFG_WITH_STACK_CANARIES
98 #ifdef ARM32
99 #define STACK_CANARY_SIZE	(4 * sizeof(uint32_t))
100 #endif
101 #ifdef ARM64
102 #define STACK_CANARY_SIZE	(8 * sizeof(uint32_t))
103 #endif
104 #define START_CANARY_VALUE	0xdededede
105 #define END_CANARY_VALUE	0xabababab
106 #define GET_START_CANARY(name, stack_num) name[stack_num][0]
107 #define GET_END_CANARY(name, stack_num) \
108 	name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1]
109 #else
110 #define STACK_CANARY_SIZE	0
111 #endif
112 
113 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \
114 linkage uint32_t name[num_stacks] \
115 		[ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \
116 		sizeof(uint32_t)] \
117 		__attribute__((section(".nozi_stack"), \
118 			       aligned(STACK_ALIGNMENT)))
119 
120 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2)
121 
122 #define GET_STACK(stack) \
123 	((vaddr_t)(stack) + STACK_SIZE(stack))
124 
125 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, /* global */);
126 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static);
127 #ifndef CFG_WITH_PAGER
128 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static);
129 #endif
130 
131 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]);
132 const uint32_t stack_tmp_offset = STACK_TMP_OFFS + STACK_CANARY_SIZE / 2;
133 
134 KEEP_PAGER(stack_tmp);
135 KEEP_PAGER(stack_tmp_stride);
136 
137 thread_smc_handler_t thread_std_smc_handler_ptr;
138 static thread_smc_handler_t thread_fast_smc_handler_ptr;
139 thread_fiq_handler_t thread_fiq_handler_ptr;
140 thread_pm_handler_t thread_cpu_on_handler_ptr;
141 thread_pm_handler_t thread_cpu_off_handler_ptr;
142 thread_pm_handler_t thread_cpu_suspend_handler_ptr;
143 thread_pm_handler_t thread_cpu_resume_handler_ptr;
144 thread_pm_handler_t thread_system_off_handler_ptr;
145 thread_pm_handler_t thread_system_reset_handler_ptr;
146 
147 
148 static unsigned int thread_global_lock = SPINLOCK_UNLOCK;
149 static bool thread_prealloc_rpc_cache;
150 
151 static void init_canaries(void)
152 {
153 #ifdef CFG_WITH_STACK_CANARIES
154 	size_t n;
155 #define INIT_CANARY(name)						\
156 	for (n = 0; n < ARRAY_SIZE(name); n++) {			\
157 		uint32_t *start_canary = &GET_START_CANARY(name, n);	\
158 		uint32_t *end_canary = &GET_END_CANARY(name, n);	\
159 									\
160 		*start_canary = START_CANARY_VALUE;			\
161 		*end_canary = END_CANARY_VALUE;				\
162 		DMSG("#Stack canaries for %s[%zu] with top at %p\n",	\
163 			#name, n, (void *)(end_canary - 1));		\
164 		DMSG("watch *%p\n", (void *)end_canary);		\
165 	}
166 
167 	INIT_CANARY(stack_tmp);
168 	INIT_CANARY(stack_abt);
169 #ifndef CFG_WITH_PAGER
170 	INIT_CANARY(stack_thread);
171 #endif
172 #endif/*CFG_WITH_STACK_CANARIES*/
173 }
174 
175 #define CANARY_DIED(stack, loc, n) \
176 	do { \
177 		EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \
178 		panic(); \
179 	} while (0)
180 
181 void thread_check_canaries(void)
182 {
183 #ifdef CFG_WITH_STACK_CANARIES
184 	size_t n;
185 
186 	for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) {
187 		if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE)
188 			CANARY_DIED(stack_tmp, start, n);
189 		if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE)
190 			CANARY_DIED(stack_tmp, end, n);
191 	}
192 
193 	for (n = 0; n < ARRAY_SIZE(stack_abt); n++) {
194 		if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE)
195 			CANARY_DIED(stack_abt, start, n);
196 		if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE)
197 			CANARY_DIED(stack_abt, end, n);
198 
199 	}
200 #ifndef CFG_WITH_PAGER
201 	for (n = 0; n < ARRAY_SIZE(stack_thread); n++) {
202 		if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE)
203 			CANARY_DIED(stack_thread, start, n);
204 		if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE)
205 			CANARY_DIED(stack_thread, end, n);
206 	}
207 #endif
208 #endif/*CFG_WITH_STACK_CANARIES*/
209 }
210 
211 static void lock_global(void)
212 {
213 	cpu_spin_lock(&thread_global_lock);
214 }
215 
216 static void unlock_global(void)
217 {
218 	cpu_spin_unlock(&thread_global_lock);
219 }
220 
221 #ifdef ARM32
222 uint32_t thread_get_exceptions(void)
223 {
224 	uint32_t cpsr = read_cpsr();
225 
226 	return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
227 }
228 
229 void thread_set_exceptions(uint32_t exceptions)
230 {
231 	uint32_t cpsr = read_cpsr();
232 
233 	cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
234 	cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
235 	write_cpsr(cpsr);
236 }
237 #endif /*ARM32*/
238 
239 #ifdef ARM64
240 uint32_t thread_get_exceptions(void)
241 {
242 	uint32_t daif = read_daif();
243 
244 	return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
245 }
246 
247 void thread_set_exceptions(uint32_t exceptions)
248 {
249 	uint32_t daif = read_daif();
250 
251 	daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
252 	daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
253 	write_daif(daif);
254 }
255 #endif /*ARM64*/
256 
257 uint32_t thread_mask_exceptions(uint32_t exceptions)
258 {
259 	uint32_t state = thread_get_exceptions();
260 
261 	thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
262 	return state;
263 }
264 
265 void thread_unmask_exceptions(uint32_t state)
266 {
267 	thread_set_exceptions(state & THREAD_EXCP_ALL);
268 }
269 
270 
271 struct thread_core_local *thread_get_core_local(void)
272 {
273 	uint32_t cpu_id = get_core_pos();
274 
275 	/*
276 	 * IRQs must be disabled before playing with core_local since
277 	 * we otherwise may be rescheduled to a different core in the
278 	 * middle of this function.
279 	 */
280 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
281 
282 	assert(cpu_id < CFG_TEE_CORE_NB_CORE);
283 	return &thread_core_local[cpu_id];
284 }
285 
286 static void thread_lazy_save_ns_vfp(void)
287 {
288 #ifdef CFG_WITH_VFP
289 	struct thread_ctx *thr = threads + thread_get_id();
290 
291 	thr->vfp_state.ns_saved = false;
292 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW)
293 	/*
294 	 * ARM TF saves and restores CPACR_EL1, so we must assume NS world
295 	 * uses VFP and always preserve the register file when secure world
296 	 * is about to use it
297 	 */
298 	thr->vfp_state.ns.force_save = true;
299 #endif
300 	vfp_lazy_save_state_init(&thr->vfp_state.ns);
301 #endif /*CFG_WITH_VFP*/
302 }
303 
304 static void thread_lazy_restore_ns_vfp(void)
305 {
306 #ifdef CFG_WITH_VFP
307 	struct thread_ctx *thr = threads + thread_get_id();
308 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
309 
310 	assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
311 
312 	if (tuv && tuv->lazy_saved && !tuv->saved) {
313 		vfp_lazy_save_state_final(&tuv->vfp);
314 		tuv->saved = true;
315 	}
316 
317 	vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
318 	thr->vfp_state.ns_saved = false;
319 #endif /*CFG_WITH_VFP*/
320 }
321 
322 #ifdef ARM32
323 static void init_regs(struct thread_ctx *thread,
324 		struct thread_smc_args *args)
325 {
326 	thread->regs.pc = (uint32_t)thread_std_smc_entry;
327 
328 	/*
329 	 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous
330 	 * abort and unmasked FIQ.
331 	  */
332 	thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
333 	thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_I | CPSR_A;
334 	/* Enable thumb mode if it's a thumb instruction */
335 	if (thread->regs.pc & 1)
336 		thread->regs.cpsr |= CPSR_T;
337 	/* Reinitialize stack pointer */
338 	thread->regs.svc_sp = thread->stack_va_end;
339 
340 	/*
341 	 * Copy arguments into context. This will make the
342 	 * arguments appear in r0-r7 when thread is started.
343 	 */
344 	thread->regs.r0 = args->a0;
345 	thread->regs.r1 = args->a1;
346 	thread->regs.r2 = args->a2;
347 	thread->regs.r3 = args->a3;
348 	thread->regs.r4 = args->a4;
349 	thread->regs.r5 = args->a5;
350 	thread->regs.r6 = args->a6;
351 	thread->regs.r7 = args->a7;
352 }
353 #endif /*ARM32*/
354 
355 #ifdef ARM64
356 static void init_regs(struct thread_ctx *thread,
357 		struct thread_smc_args *args)
358 {
359 	thread->regs.pc = (uint64_t)thread_std_smc_entry;
360 
361 	/*
362 	 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous
363 	 * abort and unmasked FIQ.
364 	  */
365 	thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
366 				    DAIFBIT_IRQ | DAIFBIT_ABT);
367 	/* Reinitialize stack pointer */
368 	thread->regs.sp = thread->stack_va_end;
369 
370 	/*
371 	 * Copy arguments into context. This will make the
372 	 * arguments appear in x0-x7 when thread is started.
373 	 */
374 	thread->regs.x[0] = args->a0;
375 	thread->regs.x[1] = args->a1;
376 	thread->regs.x[2] = args->a2;
377 	thread->regs.x[3] = args->a3;
378 	thread->regs.x[4] = args->a4;
379 	thread->regs.x[5] = args->a5;
380 	thread->regs.x[6] = args->a6;
381 	thread->regs.x[7] = args->a7;
382 
383 	/* Set up frame pointer as per the Aarch64 AAPCS */
384 	thread->regs.x[29] = 0;
385 }
386 #endif /*ARM64*/
387 
388 void thread_init_boot_thread(void)
389 {
390 	struct thread_core_local *l = thread_get_core_local();
391 	size_t n;
392 
393 	for (n = 0; n < CFG_NUM_THREADS; n++) {
394 		TAILQ_INIT(&threads[n].mutexes);
395 		TAILQ_INIT(&threads[n].tsd.sess_stack);
396 #ifdef CFG_SMALL_PAGE_USER_TA
397 		SLIST_INIT(&threads[n].tsd.pgt_cache);
398 #endif
399 	}
400 
401 	for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++)
402 		thread_core_local[n].curr_thread = -1;
403 
404 	l->curr_thread = 0;
405 	threads[0].state = THREAD_STATE_ACTIVE;
406 }
407 
408 void thread_clr_boot_thread(void)
409 {
410 	struct thread_core_local *l = thread_get_core_local();
411 
412 	assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS);
413 	assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE);
414 	assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes));
415 	threads[l->curr_thread].state = THREAD_STATE_FREE;
416 	l->curr_thread = -1;
417 }
418 
419 static void thread_alloc_and_run(struct thread_smc_args *args)
420 {
421 	size_t n;
422 	struct thread_core_local *l = thread_get_core_local();
423 	bool found_thread = false;
424 
425 	assert(l->curr_thread == -1);
426 
427 	lock_global();
428 
429 	for (n = 0; n < CFG_NUM_THREADS; n++) {
430 		if (threads[n].state == THREAD_STATE_FREE) {
431 			threads[n].state = THREAD_STATE_ACTIVE;
432 			found_thread = true;
433 			break;
434 		}
435 	}
436 
437 	unlock_global();
438 
439 	if (!found_thread) {
440 		args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT;
441 		return;
442 	}
443 
444 	l->curr_thread = n;
445 
446 	threads[n].flags = 0;
447 	init_regs(threads + n, args);
448 
449 	/* Save Hypervisor Client ID */
450 	threads[n].hyp_clnt_id = args->a7;
451 
452 	thread_lazy_save_ns_vfp();
453 	thread_resume(&threads[n].regs);
454 }
455 
456 #ifdef ARM32
457 static void copy_a0_to_a5(struct thread_ctx_regs *regs,
458 		struct thread_smc_args *args)
459 {
460 	/*
461 	 * Update returned values from RPC, values will appear in
462 	 * r0-r3 when thread is resumed.
463 	 */
464 	regs->r0 = args->a0;
465 	regs->r1 = args->a1;
466 	regs->r2 = args->a2;
467 	regs->r3 = args->a3;
468 	regs->r4 = args->a4;
469 	regs->r5 = args->a5;
470 }
471 #endif /*ARM32*/
472 
473 #ifdef ARM64
474 static void copy_a0_to_a5(struct thread_ctx_regs *regs,
475 		struct thread_smc_args *args)
476 {
477 	/*
478 	 * Update returned values from RPC, values will appear in
479 	 * x0-x3 when thread is resumed.
480 	 */
481 	regs->x[0] = args->a0;
482 	regs->x[1] = args->a1;
483 	regs->x[2] = args->a2;
484 	regs->x[3] = args->a3;
485 	regs->x[4] = args->a4;
486 	regs->x[5] = args->a5;
487 }
488 #endif /*ARM64*/
489 
490 static void thread_resume_from_rpc(struct thread_smc_args *args)
491 {
492 	size_t n = args->a3; /* thread id */
493 	struct thread_core_local *l = thread_get_core_local();
494 	uint32_t rv = 0;
495 
496 	assert(l->curr_thread == -1);
497 
498 	lock_global();
499 
500 	if (n < CFG_NUM_THREADS &&
501 	    threads[n].state == THREAD_STATE_SUSPENDED &&
502 	    args->a7 == threads[n].hyp_clnt_id)
503 		threads[n].state = THREAD_STATE_ACTIVE;
504 	else
505 		rv = OPTEE_SMC_RETURN_ERESUME;
506 
507 	unlock_global();
508 
509 	if (rv) {
510 		args->a0 = rv;
511 		return;
512 	}
513 
514 	l->curr_thread = n;
515 
516 	if (threads[n].have_user_map)
517 		core_mmu_set_user_map(&threads[n].user_map);
518 
519 	/*
520 	 * Return from RPC to request service of an IRQ must not
521 	 * get parameters from non-secure world.
522 	 */
523 	if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
524 		copy_a0_to_a5(&threads[n].regs, args);
525 		threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
526 	}
527 
528 	thread_lazy_save_ns_vfp();
529 	thread_resume(&threads[n].regs);
530 }
531 
532 void thread_handle_fast_smc(struct thread_smc_args *args)
533 {
534 	thread_check_canaries();
535 	thread_fast_smc_handler_ptr(args);
536 	/* Fast handlers must not unmask any exceptions */
537 	assert(thread_get_exceptions() == THREAD_EXCP_ALL);
538 }
539 
540 void thread_handle_std_smc(struct thread_smc_args *args)
541 {
542 	thread_check_canaries();
543 
544 	if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC)
545 		thread_resume_from_rpc(args);
546 	else
547 		thread_alloc_and_run(args);
548 }
549 
550 /* Helper routine for the assembly function thread_std_smc_entry() */
551 void __thread_std_smc_entry(struct thread_smc_args *args)
552 {
553 	struct thread_ctx *thr = threads + thread_get_id();
554 
555 	if (!thr->rpc_arg) {
556 		paddr_t parg;
557 		uint64_t carg;
558 		void *arg;
559 
560 		thread_rpc_alloc_arg(
561 			OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS),
562 			&parg, &carg);
563 		if (!parg || !ALIGNMENT_IS_OK(parg, struct optee_msg_arg) ||
564 		    !(arg = phys_to_virt(parg, CORE_MEM_NSEC_SHM))) {
565 			thread_rpc_free_arg(carg);
566 			args->a0 = OPTEE_SMC_RETURN_ENOMEM;
567 			return;
568 		}
569 
570 		thr->rpc_arg = arg;
571 		thr->rpc_carg = carg;
572 	}
573 
574 	thread_std_smc_handler_ptr(args);
575 
576 	tee_fs_rpc_cache_clear(&thr->tsd);
577 	if (!thread_prealloc_rpc_cache) {
578 		thread_rpc_free_arg(thr->rpc_carg);
579 		thr->rpc_carg = 0;
580 		thr->rpc_arg = 0;
581 	}
582 }
583 
584 void *thread_get_tmp_sp(void)
585 {
586 	struct thread_core_local *l = thread_get_core_local();
587 
588 	return (void *)l->tmp_stack_va_end;
589 }
590 
591 #ifdef ARM64
592 vaddr_t thread_get_saved_thread_sp(void)
593 {
594 	struct thread_core_local *l = thread_get_core_local();
595 	int ct = l->curr_thread;
596 
597 	assert(ct != -1);
598 	return threads[ct].kern_sp;
599 }
600 #endif /*ARM64*/
601 
602 bool thread_addr_is_in_stack(vaddr_t va)
603 {
604 	struct thread_ctx *thr;
605 	int ct = thread_get_id_may_fail();
606 
607 	if (ct == -1)
608 		return false;
609 
610 	thr = threads + ct;
611 	return va < thr->stack_va_end &&
612 	       va >= (thr->stack_va_end - STACK_THREAD_SIZE);
613 }
614 
615 void thread_state_free(void)
616 {
617 	struct thread_core_local *l = thread_get_core_local();
618 	int ct = l->curr_thread;
619 
620 	assert(ct != -1);
621 	assert(TAILQ_EMPTY(&threads[ct].mutexes));
622 
623 	thread_lazy_restore_ns_vfp();
624 	tee_pager_release_phys(
625 		(void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE),
626 		STACK_THREAD_SIZE);
627 
628 	lock_global();
629 
630 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
631 	threads[ct].state = THREAD_STATE_FREE;
632 	threads[ct].flags = 0;
633 	l->curr_thread = -1;
634 
635 	unlock_global();
636 }
637 
638 #ifdef ARM32
639 static bool is_from_user(uint32_t cpsr)
640 {
641 	return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
642 }
643 #endif
644 
645 #ifdef ARM64
646 static bool is_from_user(uint32_t cpsr)
647 {
648 	if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
649 		return true;
650 	if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
651 	     SPSR_64_MODE_EL0)
652 		return true;
653 	return false;
654 }
655 #endif
656 
657 #ifdef CFG_WITH_PAGER
658 static void release_unused_kernel_stack(struct thread_ctx *thr)
659 {
660 	vaddr_t sp = thr->regs.svc_sp;
661 	vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE;
662 	size_t len = sp - base;
663 
664 	tee_pager_release_phys((void *)base, len);
665 }
666 #else
667 static void release_unused_kernel_stack(struct thread_ctx *thr __unused)
668 {
669 }
670 #endif
671 
672 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
673 {
674 	struct thread_core_local *l = thread_get_core_local();
675 	int ct = l->curr_thread;
676 
677 	assert(ct != -1);
678 
679 	thread_check_canaries();
680 
681 	release_unused_kernel_stack(threads + ct);
682 
683 	if (is_from_user(cpsr))
684 		thread_user_save_vfp();
685 	thread_lazy_restore_ns_vfp();
686 
687 	lock_global();
688 
689 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
690 	threads[ct].flags |= flags;
691 	threads[ct].regs.cpsr = cpsr;
692 	threads[ct].regs.pc = pc;
693 	threads[ct].state = THREAD_STATE_SUSPENDED;
694 
695 	threads[ct].have_user_map = core_mmu_user_mapping_is_active();
696 	if (threads[ct].have_user_map) {
697 		core_mmu_get_user_map(&threads[ct].user_map);
698 		core_mmu_set_user_map(NULL);
699 	}
700 
701 	l->curr_thread = -1;
702 
703 	unlock_global();
704 
705 	return ct;
706 }
707 
708 #ifdef ARM32
709 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
710 {
711 	l->tmp_stack_va_end = sp;
712 	thread_set_irq_sp(sp);
713 	thread_set_fiq_sp(sp);
714 }
715 
716 static void set_abt_stack(struct thread_core_local *l __unused, vaddr_t sp)
717 {
718 	thread_set_abt_sp(sp);
719 }
720 #endif /*ARM32*/
721 
722 #ifdef ARM64
723 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
724 {
725 	/*
726 	 * We're already using the tmp stack when this function is called
727 	 * so there's no need to assign it to any stack pointer. However,
728 	 * we'll need to restore it at different times so store it here.
729 	 */
730 	l->tmp_stack_va_end = sp;
731 }
732 
733 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp)
734 {
735 	l->abt_stack_va_end = sp;
736 }
737 #endif /*ARM64*/
738 
739 bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
740 {
741 	if (thread_id >= CFG_NUM_THREADS)
742 		return false;
743 	threads[thread_id].stack_va_end = sp;
744 	return true;
745 }
746 
747 int thread_get_id_may_fail(void)
748 {
749 	/* thread_get_core_local() requires IRQs to be disabled */
750 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
751 	struct thread_core_local *l = thread_get_core_local();
752 	int ct = l->curr_thread;
753 
754 	thread_unmask_exceptions(exceptions);
755 	return ct;
756 }
757 
758 int thread_get_id(void)
759 {
760 	int ct = thread_get_id_may_fail();
761 
762 	assert(ct >= 0 && ct < CFG_NUM_THREADS);
763 	return ct;
764 }
765 
766 static void init_handlers(const struct thread_handlers *handlers)
767 {
768 	thread_std_smc_handler_ptr = handlers->std_smc;
769 	thread_fast_smc_handler_ptr = handlers->fast_smc;
770 	thread_fiq_handler_ptr = handlers->fiq;
771 	thread_cpu_on_handler_ptr = handlers->cpu_on;
772 	thread_cpu_off_handler_ptr = handlers->cpu_off;
773 	thread_cpu_suspend_handler_ptr = handlers->cpu_suspend;
774 	thread_cpu_resume_handler_ptr = handlers->cpu_resume;
775 	thread_system_off_handler_ptr = handlers->system_off;
776 	thread_system_reset_handler_ptr = handlers->system_reset;
777 }
778 
779 #ifdef CFG_WITH_PAGER
780 static void init_thread_stacks(void)
781 {
782 	size_t n;
783 
784 	/*
785 	 * Allocate virtual memory for thread stacks.
786 	 */
787 	for (n = 0; n < CFG_NUM_THREADS; n++) {
788 		tee_mm_entry_t *mm;
789 		vaddr_t sp;
790 
791 		/* Find vmem for thread stack and its protection gap */
792 		mm = tee_mm_alloc(&tee_mm_vcore,
793 				  SMALL_PAGE_SIZE + STACK_THREAD_SIZE);
794 		assert(mm);
795 
796 		/* Claim eventual physical page */
797 		tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm),
798 				    true);
799 
800 		/* Add the area to the pager */
801 		tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE,
802 					tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE,
803 					TEE_MATTR_PRW | TEE_MATTR_LOCKED,
804 					NULL, NULL);
805 
806 		/* init effective stack */
807 		sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm);
808 		if (!thread_init_stack(n, sp))
809 			panic("init stack failed");
810 	}
811 }
812 #else
813 static void init_thread_stacks(void)
814 {
815 	size_t n;
816 
817 	/* Assign the thread stacks */
818 	for (n = 0; n < CFG_NUM_THREADS; n++) {
819 		if (!thread_init_stack(n, GET_STACK(stack_thread[n])))
820 			panic("thread_init_stack failed");
821 	}
822 }
823 #endif /*CFG_WITH_PAGER*/
824 
825 void thread_init_primary(const struct thread_handlers *handlers)
826 {
827 	init_handlers(handlers);
828 
829 	/* Initialize canaries around the stacks */
830 	init_canaries();
831 
832 	init_thread_stacks();
833 	pgt_init();
834 }
835 
836 static void init_sec_mon(size_t pos __maybe_unused)
837 {
838 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
839 	/* Initialize secure monitor */
840 	sm_init(GET_STACK(stack_tmp[pos]));
841 #endif
842 }
843 
844 void thread_init_per_cpu(void)
845 {
846 	size_t pos = get_core_pos();
847 	struct thread_core_local *l = thread_get_core_local();
848 
849 	init_sec_mon(pos);
850 
851 	set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS);
852 	set_abt_stack(l, GET_STACK(stack_abt[pos]));
853 
854 	thread_init_vbar();
855 }
856 
857 struct thread_specific_data *thread_get_tsd(void)
858 {
859 	return &threads[thread_get_id()].tsd;
860 }
861 
862 struct thread_ctx_regs *thread_get_ctx_regs(void)
863 {
864 	struct thread_core_local *l = thread_get_core_local();
865 
866 	assert(l->curr_thread != -1);
867 	return &threads[l->curr_thread].regs;
868 }
869 
870 void thread_set_irq(bool enable)
871 {
872 	/* thread_get_core_local() requires IRQs to be disabled */
873 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
874 	struct thread_core_local *l;
875 
876 	l = thread_get_core_local();
877 
878 	assert(l->curr_thread != -1);
879 
880 	if (enable) {
881 		threads[l->curr_thread].flags |= THREAD_FLAGS_IRQ_ENABLE;
882 		thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ);
883 	} else {
884 		/*
885 		 * No need to disable IRQ here since it's already disabled
886 		 * above.
887 		 */
888 		threads[l->curr_thread].flags &= ~THREAD_FLAGS_IRQ_ENABLE;
889 	}
890 }
891 
892 void thread_restore_irq(void)
893 {
894 	/* thread_get_core_local() requires IRQs to be disabled */
895 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
896 	struct thread_core_local *l;
897 
898 	l = thread_get_core_local();
899 
900 	assert(l->curr_thread != -1);
901 
902 	if (threads[l->curr_thread].flags & THREAD_FLAGS_IRQ_ENABLE)
903 		thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ);
904 }
905 
906 #ifdef CFG_WITH_VFP
907 uint32_t thread_kernel_enable_vfp(void)
908 {
909 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
910 	struct thread_ctx *thr = threads + thread_get_id();
911 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
912 
913 	assert(!vfp_is_enabled());
914 
915 	if (!thr->vfp_state.ns_saved) {
916 		vfp_lazy_save_state_final(&thr->vfp_state.ns);
917 		thr->vfp_state.ns_saved = true;
918 	} else if (thr->vfp_state.sec_lazy_saved &&
919 		   !thr->vfp_state.sec_saved) {
920 		/*
921 		 * This happens when we're handling an abort while the
922 		 * thread was using the VFP state.
923 		 */
924 		vfp_lazy_save_state_final(&thr->vfp_state.sec);
925 		thr->vfp_state.sec_saved = true;
926 	} else if (tuv && tuv->lazy_saved && !tuv->saved) {
927 		/*
928 		 * This can happen either during syscall or abort
929 		 * processing (while processing a syscall).
930 		 */
931 		vfp_lazy_save_state_final(&tuv->vfp);
932 		tuv->saved = true;
933 	}
934 
935 	vfp_enable();
936 	return exceptions;
937 }
938 
939 void thread_kernel_disable_vfp(uint32_t state)
940 {
941 	uint32_t exceptions;
942 
943 	assert(vfp_is_enabled());
944 
945 	vfp_disable();
946 	exceptions = thread_get_exceptions();
947 	assert(exceptions & THREAD_EXCP_IRQ);
948 	exceptions &= ~THREAD_EXCP_IRQ;
949 	exceptions |= state & THREAD_EXCP_IRQ;
950 	thread_set_exceptions(exceptions);
951 }
952 
953 void thread_kernel_save_vfp(void)
954 {
955 	struct thread_ctx *thr = threads + thread_get_id();
956 
957 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
958 	if (vfp_is_enabled()) {
959 		vfp_lazy_save_state_init(&thr->vfp_state.sec);
960 		thr->vfp_state.sec_lazy_saved = true;
961 	}
962 }
963 
964 void thread_kernel_restore_vfp(void)
965 {
966 	struct thread_ctx *thr = threads + thread_get_id();
967 
968 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
969 	assert(!vfp_is_enabled());
970 	if (thr->vfp_state.sec_lazy_saved) {
971 		vfp_lazy_restore_state(&thr->vfp_state.sec,
972 				       thr->vfp_state.sec_saved);
973 		thr->vfp_state.sec_saved = false;
974 		thr->vfp_state.sec_lazy_saved = false;
975 	}
976 }
977 
978 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
979 {
980 	struct thread_ctx *thr = threads + thread_get_id();
981 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
982 
983 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
984 	assert(!vfp_is_enabled());
985 
986 	if (!thr->vfp_state.ns_saved) {
987 		vfp_lazy_save_state_final(&thr->vfp_state.ns);
988 		thr->vfp_state.ns_saved = true;
989 	} else if (tuv && uvfp != tuv) {
990 		if (tuv->lazy_saved && !tuv->saved) {
991 			vfp_lazy_save_state_final(&tuv->vfp);
992 			tuv->saved = true;
993 		}
994 	}
995 
996 	if (uvfp->lazy_saved)
997 		vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
998 	uvfp->lazy_saved = false;
999 	uvfp->saved = false;
1000 
1001 	thr->vfp_state.uvfp = uvfp;
1002 	vfp_enable();
1003 }
1004 
1005 void thread_user_save_vfp(void)
1006 {
1007 	struct thread_ctx *thr = threads + thread_get_id();
1008 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
1009 
1010 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
1011 	if (!vfp_is_enabled())
1012 		return;
1013 
1014 	assert(tuv && !tuv->lazy_saved && !tuv->saved);
1015 	vfp_lazy_save_state_init(&tuv->vfp);
1016 	tuv->lazy_saved = true;
1017 }
1018 
1019 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp)
1020 {
1021 	struct thread_ctx *thr = threads + thread_get_id();
1022 
1023 	if (uvfp == thr->vfp_state.uvfp)
1024 		thr->vfp_state.uvfp = NULL;
1025 	uvfp->lazy_saved = false;
1026 	uvfp->saved = false;
1027 }
1028 #endif /*CFG_WITH_VFP*/
1029 
1030 #ifdef ARM32
1031 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1032 {
1033 	uint32_t s;
1034 
1035 	if (!is_32bit)
1036 		return false;
1037 
1038 	s = read_spsr();
1039 	s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
1040 	s |= CPSR_MODE_USR;
1041 	if (entry_func & 1)
1042 		s |= CPSR_T;
1043 	*spsr = s;
1044 	return true;
1045 }
1046 #endif
1047 
1048 #ifdef ARM64
1049 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1050 {
1051 	uint32_t s;
1052 
1053 	if (is_32bit) {
1054 		s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
1055 		s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
1056 		s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
1057 	} else {
1058 		s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
1059 	}
1060 
1061 	*spsr = s;
1062 	return true;
1063 }
1064 #endif
1065 
1066 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
1067 		unsigned long a2, unsigned long a3, unsigned long user_sp,
1068 		unsigned long entry_func, bool is_32bit,
1069 		uint32_t *exit_status0, uint32_t *exit_status1)
1070 {
1071 	uint32_t spsr;
1072 
1073 	if (!get_spsr(is_32bit, entry_func, &spsr)) {
1074 		*exit_status0 = 1; /* panic */
1075 		*exit_status1 = 0xbadbadba;
1076 		return 0;
1077 	}
1078 	return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func,
1079 					spsr, exit_status0, exit_status1);
1080 }
1081 
1082 void thread_add_mutex(struct mutex *m)
1083 {
1084 	struct thread_core_local *l = thread_get_core_local();
1085 	int ct = l->curr_thread;
1086 
1087 	assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE);
1088 	assert(m->owner_id == -1);
1089 	m->owner_id = ct;
1090 	TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link);
1091 }
1092 
1093 void thread_rem_mutex(struct mutex *m)
1094 {
1095 	struct thread_core_local *l = thread_get_core_local();
1096 	int ct = l->curr_thread;
1097 
1098 	assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE);
1099 	assert(m->owner_id == ct);
1100 	m->owner_id = -1;
1101 	TAILQ_REMOVE(&threads[ct].mutexes, m, link);
1102 }
1103 
1104 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie)
1105 {
1106 	bool rv;
1107 	size_t n;
1108 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
1109 
1110 	lock_global();
1111 
1112 	for (n = 0; n < CFG_NUM_THREADS; n++) {
1113 		if (threads[n].state != THREAD_STATE_FREE) {
1114 			rv = false;
1115 			goto out;
1116 		}
1117 	}
1118 
1119 	rv = true;
1120 	for (n = 0; n < CFG_NUM_THREADS; n++) {
1121 		if (threads[n].rpc_arg) {
1122 			*cookie = threads[n].rpc_carg;
1123 			threads[n].rpc_carg = 0;
1124 			threads[n].rpc_arg = NULL;
1125 			goto out;
1126 		}
1127 	}
1128 
1129 	*cookie = 0;
1130 	thread_prealloc_rpc_cache = false;
1131 out:
1132 	unlock_global();
1133 	thread_unmask_exceptions(exceptions);
1134 	return rv;
1135 }
1136 
1137 bool thread_enable_prealloc_rpc_cache(void)
1138 {
1139 	bool rv;
1140 	size_t n;
1141 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
1142 
1143 	lock_global();
1144 
1145 	for (n = 0; n < CFG_NUM_THREADS; n++) {
1146 		if (threads[n].state != THREAD_STATE_FREE) {
1147 			rv = false;
1148 			goto out;
1149 		}
1150 	}
1151 
1152 	rv = true;
1153 	thread_prealloc_rpc_cache = true;
1154 out:
1155 	unlock_global();
1156 	thread_unmask_exceptions(exceptions);
1157 	return rv;
1158 }
1159 
1160 static uint32_t rpc_cmd_nolock(uint32_t cmd, size_t num_params,
1161 		struct optee_msg_param *params)
1162 {
1163 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD };
1164 	struct thread_ctx *thr = threads + thread_get_id();
1165 	struct optee_msg_arg *arg = thr->rpc_arg;
1166 	uint64_t carg = thr->rpc_carg;
1167 	const size_t params_size = sizeof(struct optee_msg_param) * num_params;
1168 	size_t n;
1169 
1170 	assert(arg && carg && num_params <= THREAD_RPC_MAX_NUM_PARAMS);
1171 
1172 	memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS));
1173 	arg->cmd = cmd;
1174 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1175 	arg->num_params = num_params;
1176 	memcpy(OPTEE_MSG_GET_PARAMS(arg), params, params_size);
1177 
1178 	reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2);
1179 	thread_rpc(rpc_args);
1180 	for (n = 0; n < num_params; n++) {
1181 		switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) {
1182 		case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
1183 		case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
1184 		case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
1185 		case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
1186 		case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
1187 		case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
1188 			memcpy(params + n, OPTEE_MSG_GET_PARAMS(arg) + n,
1189 			       sizeof(struct optee_msg_param));
1190 			break;
1191 		default:
1192 			break;
1193 		}
1194 	}
1195 	return arg->ret;
1196 }
1197 
1198 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params,
1199 		struct optee_msg_param *params)
1200 {
1201 	uint32_t ret;
1202 
1203 	ret = rpc_cmd_nolock(cmd, num_params, params);
1204 
1205 	return ret;
1206 }
1207 
1208 static bool check_alloced_shm(paddr_t pa, size_t len, size_t align)
1209 {
1210 	if (pa & (align - 1))
1211 		return false;
1212 	return core_pbuf_is(CORE_MEM_NSEC_SHM, pa, len);
1213 }
1214 
1215 void thread_rpc_free_arg(uint64_t cookie)
1216 {
1217 	if (cookie) {
1218 		uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1219 			OPTEE_SMC_RETURN_RPC_FREE
1220 		};
1221 
1222 		reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2);
1223 		thread_rpc(rpc_args);
1224 	}
1225 }
1226 
1227 void thread_rpc_alloc_arg(size_t size, paddr_t *arg, uint64_t *cookie)
1228 {
1229 	paddr_t pa;
1230 	uint64_t co;
1231 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1232 		OPTEE_SMC_RETURN_RPC_ALLOC, size
1233 	};
1234 
1235 	thread_rpc(rpc_args);
1236 
1237 	pa = reg_pair_to_64(rpc_args[1], rpc_args[2]);
1238 	co = reg_pair_to_64(rpc_args[4], rpc_args[5]);
1239 	if (!check_alloced_shm(pa, size, sizeof(uint64_t))) {
1240 		thread_rpc_free_arg(co);
1241 		pa = 0;
1242 		co = 0;
1243 	}
1244 
1245 	*arg = pa;
1246 	*cookie = co;
1247 }
1248 
1249 /**
1250  * Free physical memory previously allocated with thread_rpc_alloc()
1251  *
1252  * @cookie:	cookie received when allocating the buffer
1253  * @bt:		 must be the same as supplied when allocating
1254  */
1255 static void thread_rpc_free(unsigned int bt, uint64_t cookie)
1256 {
1257 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD };
1258 	struct thread_ctx *thr = threads + thread_get_id();
1259 	struct optee_msg_arg *arg = thr->rpc_arg;
1260 	uint64_t carg = thr->rpc_carg;
1261 	struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg);
1262 
1263 	memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
1264 	arg->cmd = OPTEE_MSG_RPC_CMD_SHM_FREE;
1265 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1266 	arg->num_params = 1;
1267 
1268 	params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
1269 	params[0].u.value.a = bt;
1270 	params[0].u.value.b = cookie;
1271 	params[0].u.value.c = 0;
1272 
1273 	reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2);
1274 	thread_rpc(rpc_args);
1275 }
1276 
1277 /**
1278  * Allocates shared memory buffer via RPC
1279  *
1280  * @size:	size in bytes of shared memory buffer
1281  * @align:	required alignment of buffer
1282  * @bt:		buffer type OPTEE_MSG_RPC_SHM_TYPE_*
1283  * @payload:	returned physical pointer to buffer, 0 if allocation
1284  *		failed.
1285  * @cookie:	returned cookie used when freeing the buffer
1286  */
1287 static void thread_rpc_alloc(size_t size, size_t align, unsigned int bt,
1288 			paddr_t *payload, uint64_t *cookie)
1289 {
1290 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD };
1291 	struct thread_ctx *thr = threads + thread_get_id();
1292 	struct optee_msg_arg *arg = thr->rpc_arg;
1293 	uint64_t carg = thr->rpc_carg;
1294 	struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg);
1295 
1296 	memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
1297 	arg->cmd = OPTEE_MSG_RPC_CMD_SHM_ALLOC;
1298 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1299 	arg->num_params = 1;
1300 
1301 	params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
1302 	params[0].u.value.a = bt;
1303 	params[0].u.value.b = size;
1304 	params[0].u.value.c = align;
1305 
1306 	reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2);
1307 	thread_rpc(rpc_args);
1308 	if (arg->ret != TEE_SUCCESS)
1309 		goto fail;
1310 
1311 	if (arg->num_params != 1)
1312 		goto fail;
1313 
1314 	if (params[0].attr != OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT)
1315 		goto fail;
1316 
1317 	if (!check_alloced_shm(params[0].u.tmem.buf_ptr, size, align)) {
1318 		thread_rpc_free(bt, params[0].u.tmem.shm_ref);
1319 		goto fail;
1320 	}
1321 
1322 	*payload = params[0].u.tmem.buf_ptr;
1323 	*cookie = params[0].u.tmem.shm_ref;
1324 	return;
1325 fail:
1326 	*payload = 0;
1327 	*cookie = 0;
1328 }
1329 
1330 void thread_rpc_alloc_payload(size_t size, paddr_t *payload, uint64_t *cookie)
1331 {
1332 	thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, payload, cookie);
1333 }
1334 
1335 void thread_rpc_free_payload(uint64_t cookie)
1336 {
1337 	thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie);
1338 }
1339