1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 */ 6 7 #include <platform_config.h> 8 9 #include <arm.h> 10 #include <assert.h> 11 #include <keep.h> 12 #include <kernel/asan.h> 13 #include <kernel/lockdep.h> 14 #include <kernel/misc.h> 15 #include <kernel/msg_param.h> 16 #include <kernel/panic.h> 17 #include <kernel/spinlock.h> 18 #include <kernel/tee_ta_manager.h> 19 #include <kernel/thread_defs.h> 20 #include <kernel/thread.h> 21 #include <mm/core_memprot.h> 22 #include <mm/mobj.h> 23 #include <mm/tee_mm.h> 24 #include <mm/tee_mmu.h> 25 #include <mm/tee_pager.h> 26 #include <optee_msg.h> 27 #include <optee_rpc_cmd.h> 28 #include <smccc.h> 29 #include <sm/optee_smc.h> 30 #include <sm/sm.h> 31 #include <tee/tee_cryp_utl.h> 32 #include <tee/tee_fs_rpc.h> 33 #include <trace.h> 34 #include <util.h> 35 36 #include "thread_private.h" 37 38 #ifdef CFG_WITH_ARM_TRUSTED_FW 39 #define STACK_TMP_OFFS 0 40 #else 41 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE 42 #endif 43 44 45 #ifdef ARM32 46 #ifdef CFG_CORE_SANITIZE_KADDRESS 47 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) 48 #else 49 #define STACK_TMP_SIZE (1536 + STACK_TMP_OFFS) 50 #endif 51 #define STACK_THREAD_SIZE 8192 52 53 #ifdef CFG_CORE_SANITIZE_KADDRESS 54 #define STACK_ABT_SIZE 3072 55 #else 56 #define STACK_ABT_SIZE 2048 57 #endif 58 59 #endif /*ARM32*/ 60 61 #ifdef ARM64 62 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 63 #define STACK_THREAD_SIZE 8192 64 65 #if TRACE_LEVEL > 0 66 #define STACK_ABT_SIZE 3072 67 #else 68 #define STACK_ABT_SIZE 1024 69 #endif 70 #endif /*ARM64*/ 71 72 struct thread_ctx threads[CFG_NUM_THREADS]; 73 74 struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE] __nex_bss; 75 76 #ifdef CFG_WITH_STACK_CANARIES 77 #ifdef ARM32 78 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 79 #endif 80 #ifdef ARM64 81 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 82 #endif 83 #define START_CANARY_VALUE 0xdededede 84 #define END_CANARY_VALUE 0xabababab 85 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 86 #define GET_END_CANARY(name, stack_num) \ 87 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 88 #else 89 #define STACK_CANARY_SIZE 0 90 #endif 91 92 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 93 linkage uint32_t name[num_stacks] \ 94 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 95 sizeof(uint32_t)] \ 96 __attribute__((section(".nozi_stack." # name), \ 97 aligned(STACK_ALIGNMENT))) 98 99 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 100 101 #define GET_STACK(stack) \ 102 ((vaddr_t)(stack) + STACK_SIZE(stack)) 103 104 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, static); 105 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 106 #ifndef CFG_WITH_PAGER 107 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 108 #endif 109 110 const void *stack_tmp_export = (uint8_t *)stack_tmp + sizeof(stack_tmp[0]) - 111 (STACK_TMP_OFFS + STACK_CANARY_SIZE / 2); 112 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]); 113 114 /* 115 * These stack setup info are required by secondary boot cores before they 116 * each locally enable the pager (the mmu). Hence kept in pager sections. 117 */ 118 KEEP_PAGER(stack_tmp_export); 119 KEEP_PAGER(stack_tmp_stride); 120 121 thread_smc_handler_t thread_std_smc_handler_ptr __nex_bss; 122 static thread_smc_handler_t thread_fast_smc_handler_ptr __nex_bss; 123 thread_nintr_handler_t thread_nintr_handler_ptr __nex_bss; 124 thread_pm_handler_t thread_cpu_on_handler_ptr __nex_bss; 125 thread_pm_handler_t thread_cpu_off_handler_ptr __nex_bss; 126 thread_pm_handler_t thread_cpu_suspend_handler_ptr __nex_bss; 127 thread_pm_handler_t thread_cpu_resume_handler_ptr __nex_bss; 128 thread_pm_handler_t thread_system_off_handler_ptr __nex_bss; 129 thread_pm_handler_t thread_system_reset_handler_ptr __nex_bss; 130 131 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 132 static vaddr_t thread_user_kcode_va __nex_bss; 133 long thread_user_kcode_offset __nex_bss; 134 static size_t thread_user_kcode_size __nex_bss; 135 #endif 136 137 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 138 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 139 long thread_user_kdata_sp_offset __nex_bss; 140 static uint8_t thread_user_kdata_page[ 141 ROUNDUP(sizeof(thread_core_local), SMALL_PAGE_SIZE)] 142 __aligned(SMALL_PAGE_SIZE) 143 #ifndef CFG_VIRTUALIZATION 144 __section(".nozi.kdata_page"); 145 #else 146 __section(".nex_nozi.kdata_page"); 147 #endif 148 #endif 149 150 static unsigned int thread_global_lock __nex_bss = SPINLOCK_UNLOCK; 151 static bool thread_prealloc_rpc_cache; 152 153 static unsigned int thread_rpc_pnum; 154 155 static void init_canaries(void) 156 { 157 #ifdef CFG_WITH_STACK_CANARIES 158 size_t n; 159 #define INIT_CANARY(name) \ 160 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 161 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 162 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 163 \ 164 *start_canary = START_CANARY_VALUE; \ 165 *end_canary = END_CANARY_VALUE; \ 166 DMSG("#Stack canaries for %s[%zu] with top at %p\n", \ 167 #name, n, (void *)(end_canary - 1)); \ 168 DMSG("watch *%p\n", (void *)end_canary); \ 169 } 170 171 INIT_CANARY(stack_tmp); 172 INIT_CANARY(stack_abt); 173 #ifndef CFG_WITH_PAGER 174 INIT_CANARY(stack_thread); 175 #endif 176 #endif/*CFG_WITH_STACK_CANARIES*/ 177 } 178 179 #define CANARY_DIED(stack, loc, n) \ 180 do { \ 181 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 182 panic(); \ 183 } while (0) 184 185 void thread_check_canaries(void) 186 { 187 #ifdef CFG_WITH_STACK_CANARIES 188 size_t n; 189 190 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 191 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 192 CANARY_DIED(stack_tmp, start, n); 193 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 194 CANARY_DIED(stack_tmp, end, n); 195 } 196 197 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 198 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 199 CANARY_DIED(stack_abt, start, n); 200 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 201 CANARY_DIED(stack_abt, end, n); 202 203 } 204 #ifndef CFG_WITH_PAGER 205 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 206 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 207 CANARY_DIED(stack_thread, start, n); 208 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 209 CANARY_DIED(stack_thread, end, n); 210 } 211 #endif 212 #endif/*CFG_WITH_STACK_CANARIES*/ 213 } 214 215 static void lock_global(void) 216 { 217 cpu_spin_lock(&thread_global_lock); 218 } 219 220 static void unlock_global(void) 221 { 222 cpu_spin_unlock(&thread_global_lock); 223 } 224 225 #ifdef ARM32 226 uint32_t thread_get_exceptions(void) 227 { 228 uint32_t cpsr = read_cpsr(); 229 230 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 231 } 232 233 void thread_set_exceptions(uint32_t exceptions) 234 { 235 uint32_t cpsr = read_cpsr(); 236 237 /* Foreign interrupts must not be unmasked while holding a spinlock */ 238 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 239 assert_have_no_spinlock(); 240 241 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 242 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 243 write_cpsr(cpsr); 244 } 245 #endif /*ARM32*/ 246 247 #ifdef ARM64 248 uint32_t thread_get_exceptions(void) 249 { 250 uint32_t daif = read_daif(); 251 252 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 253 } 254 255 void thread_set_exceptions(uint32_t exceptions) 256 { 257 uint32_t daif = read_daif(); 258 259 /* Foreign interrupts must not be unmasked while holding a spinlock */ 260 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 261 assert_have_no_spinlock(); 262 263 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 264 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 265 write_daif(daif); 266 } 267 #endif /*ARM64*/ 268 269 uint32_t thread_mask_exceptions(uint32_t exceptions) 270 { 271 uint32_t state = thread_get_exceptions(); 272 273 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 274 return state; 275 } 276 277 void thread_unmask_exceptions(uint32_t state) 278 { 279 thread_set_exceptions(state & THREAD_EXCP_ALL); 280 } 281 282 283 struct thread_core_local *thread_get_core_local(void) 284 { 285 uint32_t cpu_id = get_core_pos(); 286 287 /* 288 * Foreign interrupts must be disabled before playing with core_local 289 * since we otherwise may be rescheduled to a different core in the 290 * middle of this function. 291 */ 292 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 293 294 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 295 return &thread_core_local[cpu_id]; 296 } 297 298 static void thread_lazy_save_ns_vfp(void) 299 { 300 #ifdef CFG_WITH_VFP 301 struct thread_ctx *thr = threads + thread_get_id(); 302 303 thr->vfp_state.ns_saved = false; 304 vfp_lazy_save_state_init(&thr->vfp_state.ns); 305 #endif /*CFG_WITH_VFP*/ 306 } 307 308 static void thread_lazy_restore_ns_vfp(void) 309 { 310 #ifdef CFG_WITH_VFP 311 struct thread_ctx *thr = threads + thread_get_id(); 312 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 313 314 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 315 316 if (tuv && tuv->lazy_saved && !tuv->saved) { 317 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/); 318 tuv->saved = true; 319 } 320 321 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 322 thr->vfp_state.ns_saved = false; 323 #endif /*CFG_WITH_VFP*/ 324 } 325 326 #ifdef ARM32 327 static void init_regs(struct thread_ctx *thread, 328 struct thread_smc_args *args) 329 { 330 thread->regs.pc = (uint32_t)thread_std_smc_entry; 331 332 /* 333 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 334 * Asynchronous abort and unmasked native interrupts. 335 */ 336 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 337 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A | 338 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT); 339 /* Enable thumb mode if it's a thumb instruction */ 340 if (thread->regs.pc & 1) 341 thread->regs.cpsr |= CPSR_T; 342 /* Reinitialize stack pointer */ 343 thread->regs.svc_sp = thread->stack_va_end; 344 345 /* 346 * Copy arguments into context. This will make the 347 * arguments appear in r0-r7 when thread is started. 348 */ 349 thread->regs.r0 = args->a0; 350 thread->regs.r1 = args->a1; 351 thread->regs.r2 = args->a2; 352 thread->regs.r3 = args->a3; 353 thread->regs.r4 = args->a4; 354 thread->regs.r5 = args->a5; 355 thread->regs.r6 = args->a6; 356 thread->regs.r7 = args->a7; 357 } 358 #endif /*ARM32*/ 359 360 #ifdef ARM64 361 static void init_regs(struct thread_ctx *thread, 362 struct thread_smc_args *args) 363 { 364 thread->regs.pc = (uint64_t)thread_std_smc_entry; 365 366 /* 367 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 368 * Asynchronous abort and unmasked native interrupts. 369 */ 370 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 371 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT); 372 /* Reinitialize stack pointer */ 373 thread->regs.sp = thread->stack_va_end; 374 375 /* 376 * Copy arguments into context. This will make the 377 * arguments appear in x0-x7 when thread is started. 378 */ 379 thread->regs.x[0] = args->a0; 380 thread->regs.x[1] = args->a1; 381 thread->regs.x[2] = args->a2; 382 thread->regs.x[3] = args->a3; 383 thread->regs.x[4] = args->a4; 384 thread->regs.x[5] = args->a5; 385 thread->regs.x[6] = args->a6; 386 thread->regs.x[7] = args->a7; 387 388 /* Set up frame pointer as per the Aarch64 AAPCS */ 389 thread->regs.x[29] = 0; 390 } 391 #endif /*ARM64*/ 392 393 void thread_init_boot_thread(void) 394 { 395 struct thread_core_local *l = thread_get_core_local(); 396 397 thread_init_threads(); 398 399 l->curr_thread = 0; 400 threads[0].state = THREAD_STATE_ACTIVE; 401 } 402 403 void thread_clr_boot_thread(void) 404 { 405 struct thread_core_local *l = thread_get_core_local(); 406 407 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 408 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 409 threads[l->curr_thread].state = THREAD_STATE_FREE; 410 l->curr_thread = -1; 411 } 412 413 static void thread_alloc_and_run(struct thread_smc_args *args) 414 { 415 size_t n; 416 struct thread_core_local *l = thread_get_core_local(); 417 bool found_thread = false; 418 419 assert(l->curr_thread == -1); 420 421 lock_global(); 422 423 for (n = 0; n < CFG_NUM_THREADS; n++) { 424 if (threads[n].state == THREAD_STATE_FREE) { 425 threads[n].state = THREAD_STATE_ACTIVE; 426 found_thread = true; 427 break; 428 } 429 } 430 431 unlock_global(); 432 433 if (!found_thread) { 434 args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT; 435 return; 436 } 437 438 l->curr_thread = n; 439 440 threads[n].flags = 0; 441 init_regs(threads + n, args); 442 443 /* Save Hypervisor Client ID */ 444 threads[n].hyp_clnt_id = args->a7; 445 446 thread_lazy_save_ns_vfp(); 447 thread_resume(&threads[n].regs); 448 } 449 450 #ifdef ARM32 451 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 452 struct thread_smc_args *args) 453 { 454 /* 455 * Update returned values from RPC, values will appear in 456 * r0-r3 when thread is resumed. 457 */ 458 regs->r0 = args->a0; 459 regs->r1 = args->a1; 460 regs->r2 = args->a2; 461 regs->r3 = args->a3; 462 regs->r4 = args->a4; 463 regs->r5 = args->a5; 464 } 465 #endif /*ARM32*/ 466 467 #ifdef ARM64 468 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 469 struct thread_smc_args *args) 470 { 471 /* 472 * Update returned values from RPC, values will appear in 473 * x0-x3 when thread is resumed. 474 */ 475 regs->x[0] = args->a0; 476 regs->x[1] = args->a1; 477 regs->x[2] = args->a2; 478 regs->x[3] = args->a3; 479 regs->x[4] = args->a4; 480 regs->x[5] = args->a5; 481 } 482 #endif /*ARM64*/ 483 484 #ifdef ARM32 485 static bool is_from_user(uint32_t cpsr) 486 { 487 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 488 } 489 #endif 490 491 #ifdef ARM64 492 static bool is_from_user(uint32_t cpsr) 493 { 494 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 495 return true; 496 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 497 SPSR_64_MODE_EL0) 498 return true; 499 return false; 500 } 501 #endif 502 503 static bool is_user_mode(struct thread_ctx_regs *regs) 504 { 505 return is_from_user((uint32_t)regs->cpsr); 506 } 507 508 static void thread_resume_from_rpc(struct thread_smc_args *args) 509 { 510 size_t n = args->a3; /* thread id */ 511 struct thread_core_local *l = thread_get_core_local(); 512 uint32_t rv = 0; 513 514 assert(l->curr_thread == -1); 515 516 lock_global(); 517 518 if (n < CFG_NUM_THREADS && 519 threads[n].state == THREAD_STATE_SUSPENDED && 520 args->a7 == threads[n].hyp_clnt_id) 521 threads[n].state = THREAD_STATE_ACTIVE; 522 else 523 rv = OPTEE_SMC_RETURN_ERESUME; 524 525 unlock_global(); 526 527 if (rv) { 528 args->a0 = rv; 529 return; 530 } 531 532 l->curr_thread = n; 533 534 if (is_user_mode(&threads[n].regs)) 535 tee_ta_update_session_utime_resume(); 536 537 if (threads[n].have_user_map) 538 core_mmu_set_user_map(&threads[n].user_map); 539 540 /* 541 * Return from RPC to request service of a foreign interrupt must not 542 * get parameters from non-secure world. 543 */ 544 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 545 copy_a0_to_a5(&threads[n].regs, args); 546 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 547 } 548 549 thread_lazy_save_ns_vfp(); 550 thread_resume(&threads[n].regs); 551 } 552 553 void thread_handle_fast_smc(struct thread_smc_args *args) 554 { 555 thread_check_canaries(); 556 thread_fast_smc_handler_ptr(args); 557 /* Fast handlers must not unmask any exceptions */ 558 assert(thread_get_exceptions() == THREAD_EXCP_ALL); 559 } 560 561 void thread_handle_std_smc(struct thread_smc_args *args) 562 { 563 thread_check_canaries(); 564 565 if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC) 566 thread_resume_from_rpc(args); 567 else 568 thread_alloc_and_run(args); 569 } 570 571 /** 572 * Free physical memory previously allocated with thread_rpc_alloc_arg() 573 * 574 * @cookie: cookie received when allocating the buffer 575 */ 576 static void thread_rpc_free_arg(uint64_t cookie) 577 { 578 if (cookie) { 579 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 580 OPTEE_SMC_RETURN_RPC_FREE 581 }; 582 583 reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2); 584 thread_rpc(rpc_args); 585 } 586 } 587 588 /* 589 * Helper routine for the assembly function thread_std_smc_entry() 590 * 591 * Note: this function is weak just to make it possible to exclude it from 592 * the unpaged area. 593 */ 594 void __weak __thread_std_smc_entry(struct thread_smc_args *args) 595 { 596 thread_std_smc_handler_ptr(args); 597 598 if (args->a0 == OPTEE_SMC_RETURN_OK) { 599 struct thread_ctx *thr = threads + thread_get_id(); 600 601 tee_fs_rpc_cache_clear(&thr->tsd); 602 if (!thread_prealloc_rpc_cache) { 603 thread_rpc_free_arg(mobj_get_cookie(thr->rpc_mobj)); 604 mobj_free(thr->rpc_mobj); 605 thr->rpc_arg = 0; 606 thr->rpc_mobj = NULL; 607 } 608 } 609 } 610 611 void *thread_get_tmp_sp(void) 612 { 613 struct thread_core_local *l = thread_get_core_local(); 614 615 return (void *)l->tmp_stack_va_end; 616 } 617 618 #ifdef ARM64 619 vaddr_t thread_get_saved_thread_sp(void) 620 { 621 struct thread_core_local *l = thread_get_core_local(); 622 int ct = l->curr_thread; 623 624 assert(ct != -1); 625 return threads[ct].kern_sp; 626 } 627 #endif /*ARM64*/ 628 629 vaddr_t thread_stack_start(void) 630 { 631 struct thread_ctx *thr; 632 int ct = thread_get_id_may_fail(); 633 634 if (ct == -1) 635 return 0; 636 637 thr = threads + ct; 638 return thr->stack_va_end - STACK_THREAD_SIZE; 639 } 640 641 size_t thread_stack_size(void) 642 { 643 return STACK_THREAD_SIZE; 644 } 645 646 bool thread_is_from_abort_mode(void) 647 { 648 struct thread_core_local *l = thread_get_core_local(); 649 650 return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT; 651 } 652 653 #ifdef ARM32 654 bool thread_is_in_normal_mode(void) 655 { 656 return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC; 657 } 658 #endif 659 660 #ifdef ARM64 661 bool thread_is_in_normal_mode(void) 662 { 663 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 664 struct thread_core_local *l = thread_get_core_local(); 665 bool ret; 666 667 /* If any bit in l->flags is set we're handling some exception. */ 668 ret = !l->flags; 669 thread_unmask_exceptions(exceptions); 670 671 return ret; 672 } 673 #endif 674 675 void thread_state_free(void) 676 { 677 struct thread_core_local *l = thread_get_core_local(); 678 int ct = l->curr_thread; 679 680 assert(ct != -1); 681 682 thread_lazy_restore_ns_vfp(); 683 tee_pager_release_phys( 684 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 685 STACK_THREAD_SIZE); 686 687 lock_global(); 688 689 assert(threads[ct].state == THREAD_STATE_ACTIVE); 690 threads[ct].state = THREAD_STATE_FREE; 691 threads[ct].flags = 0; 692 l->curr_thread = -1; 693 694 unlock_global(); 695 } 696 697 #ifdef CFG_WITH_PAGER 698 static void release_unused_kernel_stack(struct thread_ctx *thr, 699 uint32_t cpsr __maybe_unused) 700 { 701 #ifdef ARM64 702 /* 703 * If we're from user mode then thr->regs.sp is the saved user 704 * stack pointer and thr->kern_sp holds the last kernel stack 705 * pointer. But if we're from kernel mode then thr->kern_sp isn't 706 * up to date so we need to read from thr->regs.sp instead. 707 */ 708 vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp; 709 #else 710 vaddr_t sp = thr->regs.svc_sp; 711 #endif 712 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 713 size_t len = sp - base; 714 715 tee_pager_release_phys((void *)base, len); 716 } 717 #else 718 static void release_unused_kernel_stack(struct thread_ctx *thr __unused, 719 uint32_t cpsr __unused) 720 { 721 } 722 #endif 723 724 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 725 { 726 struct thread_core_local *l = thread_get_core_local(); 727 int ct = l->curr_thread; 728 729 assert(ct != -1); 730 731 thread_check_canaries(); 732 733 release_unused_kernel_stack(threads + ct, cpsr); 734 735 if (is_from_user(cpsr)) { 736 thread_user_save_vfp(); 737 tee_ta_update_session_utime_suspend(); 738 tee_ta_gprof_sample_pc(pc); 739 } 740 thread_lazy_restore_ns_vfp(); 741 742 lock_global(); 743 744 assert(threads[ct].state == THREAD_STATE_ACTIVE); 745 threads[ct].flags |= flags; 746 threads[ct].regs.cpsr = cpsr; 747 threads[ct].regs.pc = pc; 748 threads[ct].state = THREAD_STATE_SUSPENDED; 749 750 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 751 if (threads[ct].have_user_map) { 752 core_mmu_get_user_map(&threads[ct].user_map); 753 core_mmu_set_user_map(NULL); 754 } 755 756 l->curr_thread = -1; 757 758 unlock_global(); 759 760 return ct; 761 } 762 763 #ifdef ARM32 764 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 765 { 766 l->tmp_stack_va_end = sp; 767 thread_set_irq_sp(sp); 768 thread_set_fiq_sp(sp); 769 } 770 771 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 772 { 773 l->abt_stack_va_end = sp; 774 thread_set_abt_sp((vaddr_t)l); 775 thread_set_und_sp((vaddr_t)l); 776 } 777 #endif /*ARM32*/ 778 779 #ifdef ARM64 780 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 781 { 782 /* 783 * We're already using the tmp stack when this function is called 784 * so there's no need to assign it to any stack pointer. However, 785 * we'll need to restore it at different times so store it here. 786 */ 787 l->tmp_stack_va_end = sp; 788 } 789 790 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 791 { 792 l->abt_stack_va_end = sp; 793 } 794 #endif /*ARM64*/ 795 796 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 797 { 798 if (thread_id >= CFG_NUM_THREADS) 799 return false; 800 threads[thread_id].stack_va_end = sp; 801 return true; 802 } 803 804 int thread_get_id_may_fail(void) 805 { 806 /* 807 * thread_get_core_local() requires foreign interrupts to be disabled 808 */ 809 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 810 struct thread_core_local *l = thread_get_core_local(); 811 int ct = l->curr_thread; 812 813 thread_unmask_exceptions(exceptions); 814 return ct; 815 } 816 817 int thread_get_id(void) 818 { 819 int ct = thread_get_id_may_fail(); 820 821 assert(ct >= 0 && ct < CFG_NUM_THREADS); 822 return ct; 823 } 824 825 static void init_handlers(const struct thread_handlers *handlers) 826 { 827 thread_std_smc_handler_ptr = handlers->std_smc; 828 thread_fast_smc_handler_ptr = handlers->fast_smc; 829 thread_nintr_handler_ptr = handlers->nintr; 830 thread_cpu_on_handler_ptr = handlers->cpu_on; 831 thread_cpu_off_handler_ptr = handlers->cpu_off; 832 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 833 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 834 thread_system_off_handler_ptr = handlers->system_off; 835 thread_system_reset_handler_ptr = handlers->system_reset; 836 } 837 838 #ifdef CFG_WITH_PAGER 839 static void init_thread_stacks(void) 840 { 841 size_t n; 842 843 /* 844 * Allocate virtual memory for thread stacks. 845 */ 846 for (n = 0; n < CFG_NUM_THREADS; n++) { 847 tee_mm_entry_t *mm; 848 vaddr_t sp; 849 850 /* Find vmem for thread stack and its protection gap */ 851 mm = tee_mm_alloc(&tee_mm_vcore, 852 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 853 assert(mm); 854 855 /* Claim eventual physical page */ 856 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 857 true); 858 859 /* Add the area to the pager */ 860 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 861 tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE, 862 TEE_MATTR_PRW | TEE_MATTR_LOCKED, 863 NULL, NULL); 864 865 /* init effective stack */ 866 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 867 asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp); 868 if (!thread_init_stack(n, sp)) 869 panic("init stack failed"); 870 } 871 } 872 #else 873 static void init_thread_stacks(void) 874 { 875 size_t n; 876 877 /* Assign the thread stacks */ 878 for (n = 0; n < CFG_NUM_THREADS; n++) { 879 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 880 panic("thread_init_stack failed"); 881 } 882 } 883 #endif /*CFG_WITH_PAGER*/ 884 885 static void init_user_kcode(void) 886 { 887 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 888 vaddr_t v = (vaddr_t)thread_excp_vect; 889 vaddr_t ve = (vaddr_t)thread_excp_vect_end; 890 891 thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE); 892 ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE); 893 thread_user_kcode_size = ve - thread_user_kcode_va; 894 895 core_mmu_get_user_va_range(&v, NULL); 896 thread_user_kcode_offset = thread_user_kcode_va - v; 897 898 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 899 /* 900 * When transitioning to EL0 subtract SP with this much to point to 901 * this special kdata page instead. SP is restored by add this much 902 * while transitioning back to EL1. 903 */ 904 v += thread_user_kcode_size; 905 thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v; 906 #endif 907 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/ 908 } 909 910 void thread_init_threads(void) 911 { 912 size_t n; 913 914 init_thread_stacks(); 915 pgt_init(); 916 917 mutex_lockdep_init(); 918 919 for (n = 0; n < CFG_NUM_THREADS; n++) { 920 TAILQ_INIT(&threads[n].tsd.sess_stack); 921 SLIST_INIT(&threads[n].tsd.pgt_cache); 922 } 923 924 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 925 thread_core_local[n].curr_thread = -1; 926 } 927 928 void thread_init_primary(const struct thread_handlers *handlers) 929 { 930 init_handlers(handlers); 931 932 /* Initialize canaries around the stacks */ 933 init_canaries(); 934 935 init_user_kcode(); 936 } 937 938 static void init_sec_mon(size_t pos __maybe_unused) 939 { 940 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 941 /* Initialize secure monitor */ 942 sm_init(GET_STACK(stack_tmp[pos])); 943 #endif 944 } 945 946 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr) 947 { 948 return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK; 949 } 950 951 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr) 952 { 953 return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) & 954 MIDR_PRIMARY_PART_NUM_MASK; 955 } 956 957 #ifdef ARM64 958 static bool probe_workaround_available(void) 959 { 960 int32_t r; 961 962 r = thread_smc(SMCCC_VERSION, 0, 0, 0); 963 if (r < 0) 964 return false; 965 if (r < 0x10001) /* compare with version 1.1 */ 966 return false; 967 968 /* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */ 969 r = thread_smc(SMCCC_ARCH_FEATURES, SMCCC_ARCH_WORKAROUND_1, 0, 0); 970 return r >= 0; 971 } 972 973 static vaddr_t __maybe_unused select_vector(vaddr_t a) 974 { 975 if (probe_workaround_available()) { 976 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available", 977 SMCCC_ARCH_WORKAROUND_1); 978 DMSG("SMC Workaround for CVE-2017-5715 used"); 979 return a; 980 } 981 982 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable", 983 SMCCC_ARCH_WORKAROUND_1); 984 DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)"); 985 return (vaddr_t)thread_excp_vect; 986 } 987 #else 988 static vaddr_t __maybe_unused select_vector(vaddr_t a) 989 { 990 return a; 991 } 992 #endif 993 994 static vaddr_t get_excp_vect(void) 995 { 996 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC 997 uint32_t midr = read_midr(); 998 999 if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM) 1000 return (vaddr_t)thread_excp_vect; 1001 1002 switch (get_midr_primary_part(midr)) { 1003 #ifdef ARM32 1004 case CORTEX_A8_PART_NUM: 1005 case CORTEX_A9_PART_NUM: 1006 case CORTEX_A17_PART_NUM: 1007 #endif 1008 case CORTEX_A57_PART_NUM: 1009 case CORTEX_A72_PART_NUM: 1010 case CORTEX_A73_PART_NUM: 1011 case CORTEX_A75_PART_NUM: 1012 return select_vector((vaddr_t)thread_excp_vect_workaround); 1013 #ifdef ARM32 1014 case CORTEX_A15_PART_NUM: 1015 return select_vector((vaddr_t)thread_excp_vect_workaround_a15); 1016 #endif 1017 default: 1018 return (vaddr_t)thread_excp_vect; 1019 } 1020 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/ 1021 1022 return (vaddr_t)thread_excp_vect; 1023 } 1024 1025 void thread_init_per_cpu(void) 1026 { 1027 size_t pos = get_core_pos(); 1028 struct thread_core_local *l = thread_get_core_local(); 1029 1030 init_sec_mon(pos); 1031 1032 set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); 1033 set_abt_stack(l, GET_STACK(stack_abt[pos])); 1034 1035 thread_init_vbar(get_excp_vect()); 1036 } 1037 1038 struct thread_specific_data *thread_get_tsd(void) 1039 { 1040 return &threads[thread_get_id()].tsd; 1041 } 1042 1043 struct thread_ctx_regs *thread_get_ctx_regs(void) 1044 { 1045 struct thread_core_local *l = thread_get_core_local(); 1046 1047 assert(l->curr_thread != -1); 1048 return &threads[l->curr_thread].regs; 1049 } 1050 1051 void thread_set_foreign_intr(bool enable) 1052 { 1053 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1054 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1055 struct thread_core_local *l; 1056 1057 l = thread_get_core_local(); 1058 1059 assert(l->curr_thread != -1); 1060 1061 if (enable) { 1062 threads[l->curr_thread].flags |= 1063 THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1064 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1065 } else { 1066 /* 1067 * No need to disable foreign interrupts here since they're 1068 * already disabled above. 1069 */ 1070 threads[l->curr_thread].flags &= 1071 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1072 } 1073 } 1074 1075 void thread_restore_foreign_intr(void) 1076 { 1077 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1078 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1079 struct thread_core_local *l; 1080 1081 l = thread_get_core_local(); 1082 1083 assert(l->curr_thread != -1); 1084 1085 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) 1086 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1087 } 1088 1089 #ifdef CFG_WITH_VFP 1090 uint32_t thread_kernel_enable_vfp(void) 1091 { 1092 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1093 struct thread_ctx *thr = threads + thread_get_id(); 1094 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1095 1096 assert(!vfp_is_enabled()); 1097 1098 if (!thr->vfp_state.ns_saved) { 1099 vfp_lazy_save_state_final(&thr->vfp_state.ns, 1100 true /*force_save*/); 1101 thr->vfp_state.ns_saved = true; 1102 } else if (thr->vfp_state.sec_lazy_saved && 1103 !thr->vfp_state.sec_saved) { 1104 /* 1105 * This happens when we're handling an abort while the 1106 * thread was using the VFP state. 1107 */ 1108 vfp_lazy_save_state_final(&thr->vfp_state.sec, 1109 false /*!force_save*/); 1110 thr->vfp_state.sec_saved = true; 1111 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 1112 /* 1113 * This can happen either during syscall or abort 1114 * processing (while processing a syscall). 1115 */ 1116 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/); 1117 tuv->saved = true; 1118 } 1119 1120 vfp_enable(); 1121 return exceptions; 1122 } 1123 1124 void thread_kernel_disable_vfp(uint32_t state) 1125 { 1126 uint32_t exceptions; 1127 1128 assert(vfp_is_enabled()); 1129 1130 vfp_disable(); 1131 exceptions = thread_get_exceptions(); 1132 assert(exceptions & THREAD_EXCP_FOREIGN_INTR); 1133 exceptions &= ~THREAD_EXCP_FOREIGN_INTR; 1134 exceptions |= state & THREAD_EXCP_FOREIGN_INTR; 1135 thread_set_exceptions(exceptions); 1136 } 1137 1138 void thread_kernel_save_vfp(void) 1139 { 1140 struct thread_ctx *thr = threads + thread_get_id(); 1141 1142 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1143 if (vfp_is_enabled()) { 1144 vfp_lazy_save_state_init(&thr->vfp_state.sec); 1145 thr->vfp_state.sec_lazy_saved = true; 1146 } 1147 } 1148 1149 void thread_kernel_restore_vfp(void) 1150 { 1151 struct thread_ctx *thr = threads + thread_get_id(); 1152 1153 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1154 assert(!vfp_is_enabled()); 1155 if (thr->vfp_state.sec_lazy_saved) { 1156 vfp_lazy_restore_state(&thr->vfp_state.sec, 1157 thr->vfp_state.sec_saved); 1158 thr->vfp_state.sec_saved = false; 1159 thr->vfp_state.sec_lazy_saved = false; 1160 } 1161 } 1162 1163 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 1164 { 1165 struct thread_ctx *thr = threads + thread_get_id(); 1166 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1167 1168 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1169 assert(!vfp_is_enabled()); 1170 1171 if (!thr->vfp_state.ns_saved) { 1172 vfp_lazy_save_state_final(&thr->vfp_state.ns, 1173 true /*force_save*/); 1174 thr->vfp_state.ns_saved = true; 1175 } else if (tuv && uvfp != tuv) { 1176 if (tuv->lazy_saved && !tuv->saved) { 1177 vfp_lazy_save_state_final(&tuv->vfp, 1178 false /*!force_save*/); 1179 tuv->saved = true; 1180 } 1181 } 1182 1183 if (uvfp->lazy_saved) 1184 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 1185 uvfp->lazy_saved = false; 1186 uvfp->saved = false; 1187 1188 thr->vfp_state.uvfp = uvfp; 1189 vfp_enable(); 1190 } 1191 1192 void thread_user_save_vfp(void) 1193 { 1194 struct thread_ctx *thr = threads + thread_get_id(); 1195 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1196 1197 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1198 if (!vfp_is_enabled()) 1199 return; 1200 1201 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1202 vfp_lazy_save_state_init(&tuv->vfp); 1203 tuv->lazy_saved = true; 1204 } 1205 1206 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1207 { 1208 struct thread_ctx *thr = threads + thread_get_id(); 1209 1210 if (uvfp == thr->vfp_state.uvfp) 1211 thr->vfp_state.uvfp = NULL; 1212 uvfp->lazy_saved = false; 1213 uvfp->saved = false; 1214 } 1215 #endif /*CFG_WITH_VFP*/ 1216 1217 #ifdef ARM32 1218 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1219 { 1220 uint32_t s; 1221 1222 if (!is_32bit) 1223 return false; 1224 1225 s = read_spsr(); 1226 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1227 s |= CPSR_MODE_USR; 1228 if (entry_func & 1) 1229 s |= CPSR_T; 1230 *spsr = s; 1231 return true; 1232 } 1233 #endif 1234 1235 #ifdef ARM64 1236 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1237 { 1238 uint32_t s; 1239 1240 if (is_32bit) { 1241 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1242 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1243 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1244 } else { 1245 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1246 } 1247 1248 *spsr = s; 1249 return true; 1250 } 1251 #endif 1252 1253 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1254 unsigned long a2, unsigned long a3, unsigned long user_sp, 1255 unsigned long entry_func, bool is_32bit, 1256 uint32_t *exit_status0, uint32_t *exit_status1) 1257 { 1258 uint32_t spsr; 1259 1260 tee_ta_update_session_utime_resume(); 1261 1262 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1263 *exit_status0 = 1; /* panic */ 1264 *exit_status1 = 0xbadbadba; 1265 return 0; 1266 } 1267 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1268 spsr, exit_status0, exit_status1); 1269 } 1270 1271 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 1272 void thread_get_user_kcode(struct mobj **mobj, size_t *offset, 1273 vaddr_t *va, size_t *sz) 1274 { 1275 core_mmu_get_user_va_range(va, NULL); 1276 *mobj = mobj_tee_ram; 1277 *offset = thread_user_kcode_va - TEE_RAM_START; 1278 *sz = thread_user_kcode_size; 1279 } 1280 #endif 1281 1282 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 1283 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 1284 void thread_get_user_kdata(struct mobj **mobj, size_t *offset, 1285 vaddr_t *va, size_t *sz) 1286 { 1287 vaddr_t v; 1288 1289 core_mmu_get_user_va_range(&v, NULL); 1290 *va = v + thread_user_kcode_size; 1291 *mobj = mobj_tee_ram; 1292 *offset = (vaddr_t)thread_user_kdata_page - TEE_RAM_START; 1293 *sz = sizeof(thread_user_kdata_page); 1294 } 1295 #endif 1296 1297 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie) 1298 { 1299 bool rv; 1300 size_t n; 1301 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1302 1303 lock_global(); 1304 1305 for (n = 0; n < CFG_NUM_THREADS; n++) { 1306 if (threads[n].state != THREAD_STATE_FREE) { 1307 rv = false; 1308 goto out; 1309 } 1310 } 1311 1312 rv = true; 1313 for (n = 0; n < CFG_NUM_THREADS; n++) { 1314 if (threads[n].rpc_arg) { 1315 *cookie = mobj_get_cookie(threads[n].rpc_mobj); 1316 mobj_free(threads[n].rpc_mobj); 1317 threads[n].rpc_arg = NULL; 1318 goto out; 1319 } 1320 } 1321 1322 *cookie = 0; 1323 thread_prealloc_rpc_cache = false; 1324 out: 1325 unlock_global(); 1326 thread_unmask_exceptions(exceptions); 1327 return rv; 1328 } 1329 1330 bool thread_enable_prealloc_rpc_cache(void) 1331 { 1332 bool rv; 1333 size_t n; 1334 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1335 1336 lock_global(); 1337 1338 for (n = 0; n < CFG_NUM_THREADS; n++) { 1339 if (threads[n].state != THREAD_STATE_FREE) { 1340 rv = false; 1341 goto out; 1342 } 1343 } 1344 1345 rv = true; 1346 thread_prealloc_rpc_cache = true; 1347 out: 1348 unlock_global(); 1349 thread_unmask_exceptions(exceptions); 1350 return rv; 1351 } 1352 1353 /** 1354 * Allocates data for struct optee_msg_arg. 1355 * 1356 * @size: size in bytes of struct optee_msg_arg 1357 * 1358 * @returns mobj that describes allocated buffer or NULL on error 1359 */ 1360 static struct mobj *thread_rpc_alloc_arg(size_t size) 1361 { 1362 paddr_t pa; 1363 uint64_t co; 1364 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1365 OPTEE_SMC_RETURN_RPC_ALLOC, size 1366 }; 1367 struct mobj *mobj = NULL; 1368 1369 thread_rpc(rpc_args); 1370 1371 pa = reg_pair_to_64(rpc_args[1], rpc_args[2]); 1372 co = reg_pair_to_64(rpc_args[4], rpc_args[5]); 1373 1374 if (!ALIGNMENT_IS_OK(pa, struct optee_msg_arg)) 1375 goto err; 1376 1377 /* Check if this region is in static shared space */ 1378 if (core_pbuf_is(CORE_MEM_NSEC_SHM, pa, size)) 1379 mobj = mobj_shm_alloc(pa, size, co); 1380 else if ((!(pa & SMALL_PAGE_MASK)) && size <= SMALL_PAGE_SIZE) 1381 mobj = mobj_mapped_shm_alloc(&pa, 1, 0, co); 1382 1383 if (!mobj) 1384 goto err; 1385 1386 return mobj; 1387 err: 1388 thread_rpc_free_arg(co); 1389 mobj_free(mobj); 1390 return NULL; 1391 } 1392 1393 static bool set_rmem(struct optee_msg_param *param, 1394 struct thread_param *tpm) 1395 { 1396 param->attr = tpm->attr - THREAD_PARAM_ATTR_MEMREF_IN + 1397 OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 1398 param->u.rmem.offs = tpm->u.memref.offs; 1399 param->u.rmem.size = tpm->u.memref.size; 1400 if (tpm->u.memref.mobj) { 1401 param->u.rmem.shm_ref = mobj_get_cookie(tpm->u.memref.mobj); 1402 if (!param->u.rmem.shm_ref) 1403 return false; 1404 } else { 1405 param->u.rmem.shm_ref = 0; 1406 } 1407 1408 return true; 1409 } 1410 1411 static bool set_tmem(struct optee_msg_param *param, 1412 struct thread_param *tpm) 1413 { 1414 paddr_t pa = 0; 1415 uint64_t shm_ref = 0; 1416 struct mobj *mobj = tpm->u.memref.mobj; 1417 1418 param->attr = tpm->attr - THREAD_PARAM_ATTR_MEMREF_IN + 1419 OPTEE_MSG_ATTR_TYPE_TMEM_INPUT; 1420 if (mobj) { 1421 shm_ref = mobj_get_cookie(mobj); 1422 if (!shm_ref) 1423 return false; 1424 if (mobj_get_pa(mobj, tpm->u.memref.offs, 0, &pa)) 1425 return false; 1426 } 1427 1428 param->u.tmem.size = tpm->u.memref.size; 1429 param->u.tmem.buf_ptr = pa; 1430 param->u.tmem.shm_ref = shm_ref; 1431 1432 return true; 1433 } 1434 1435 static uint32_t get_rpc_arg(uint32_t cmd, size_t num_params, 1436 struct thread_param *params, void **arg_ret, 1437 uint64_t *carg_ret) 1438 { 1439 struct thread_ctx *thr = threads + thread_get_id(); 1440 struct optee_msg_arg *arg = thr->rpc_arg; 1441 size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS); 1442 1443 if (num_params > THREAD_RPC_MAX_NUM_PARAMS) 1444 return TEE_ERROR_BAD_PARAMETERS; 1445 1446 if (!arg) { 1447 struct mobj *mobj = thread_rpc_alloc_arg(sz); 1448 1449 if (!mobj) 1450 return TEE_ERROR_OUT_OF_MEMORY; 1451 1452 arg = mobj_get_va(mobj, 0); 1453 if (!arg) { 1454 thread_rpc_free_arg(mobj_get_cookie(mobj)); 1455 return TEE_ERROR_OUT_OF_MEMORY; 1456 } 1457 1458 thr->rpc_arg = arg; 1459 thr->rpc_mobj = mobj; 1460 } 1461 1462 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); 1463 arg->cmd = cmd; 1464 arg->num_params = num_params; 1465 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1466 1467 for (size_t n = 0; n < num_params; n++) { 1468 switch (params[n].attr) { 1469 case THREAD_PARAM_ATTR_NONE: 1470 arg->params[n].attr = OPTEE_MSG_ATTR_TYPE_NONE; 1471 break; 1472 case THREAD_PARAM_ATTR_VALUE_IN: 1473 case THREAD_PARAM_ATTR_VALUE_OUT: 1474 case THREAD_PARAM_ATTR_VALUE_INOUT: 1475 arg->params[n].attr = params[n].attr - 1476 THREAD_PARAM_ATTR_VALUE_IN + 1477 OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1478 arg->params[n].u.value.a = params[n].u.value.a; 1479 arg->params[n].u.value.b = params[n].u.value.b; 1480 arg->params[n].u.value.c = params[n].u.value.c; 1481 break; 1482 case THREAD_PARAM_ATTR_MEMREF_IN: 1483 case THREAD_PARAM_ATTR_MEMREF_OUT: 1484 case THREAD_PARAM_ATTR_MEMREF_INOUT: 1485 if (!params[n].u.memref.mobj || 1486 mobj_matches(params[n].u.memref.mobj, 1487 CORE_MEM_NSEC_SHM)) { 1488 if (!set_tmem(arg->params + n, params + n)) 1489 return TEE_ERROR_BAD_PARAMETERS; 1490 } else if (mobj_matches(params[n].u.memref.mobj, 1491 CORE_MEM_REG_SHM)) { 1492 if (!set_rmem(arg->params + n, params + n)) 1493 return TEE_ERROR_BAD_PARAMETERS; 1494 } else { 1495 return TEE_ERROR_BAD_PARAMETERS; 1496 } 1497 break; 1498 default: 1499 return TEE_ERROR_BAD_PARAMETERS; 1500 } 1501 } 1502 1503 *arg_ret = arg; 1504 *carg_ret = mobj_get_cookie(thr->rpc_mobj); 1505 1506 return TEE_SUCCESS; 1507 } 1508 1509 static uint32_t get_rpc_arg_res(struct optee_msg_arg *arg, size_t num_params, 1510 struct thread_param *params) 1511 { 1512 for (size_t n = 0; n < num_params; n++) { 1513 switch (params[n].attr) { 1514 case THREAD_PARAM_ATTR_VALUE_OUT: 1515 case THREAD_PARAM_ATTR_VALUE_INOUT: 1516 params[n].u.value.a = arg->params[n].u.value.a; 1517 params[n].u.value.b = arg->params[n].u.value.b; 1518 params[n].u.value.c = arg->params[n].u.value.c; 1519 break; 1520 case THREAD_PARAM_ATTR_MEMREF_OUT: 1521 case THREAD_PARAM_ATTR_MEMREF_INOUT: 1522 /* 1523 * rmem.size and tmem.size is the same type and 1524 * location. 1525 */ 1526 params[n].u.memref.size = arg->params[n].u.rmem.size; 1527 break; 1528 default: 1529 break; 1530 } 1531 } 1532 1533 return arg->ret; 1534 } 1535 1536 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1537 struct thread_param *params) 1538 { 1539 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1540 void *arg = NULL; 1541 uint64_t carg = 0; 1542 uint32_t ret = 0; 1543 1544 /* The source CRYPTO_RNG_SRC_JITTER_RPC is safe to use here */ 1545 plat_prng_add_jitter_entropy(CRYPTO_RNG_SRC_JITTER_RPC, 1546 &thread_rpc_pnum); 1547 1548 ret = get_rpc_arg(cmd, num_params, params, &arg, &carg); 1549 if (ret) 1550 return ret; 1551 1552 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1553 thread_rpc(rpc_args); 1554 1555 return get_rpc_arg_res(arg, num_params, params); 1556 } 1557 1558 /** 1559 * Free physical memory previously allocated with thread_rpc_alloc() 1560 * 1561 * @cookie: cookie received when allocating the buffer 1562 * @bt: must be the same as supplied when allocating 1563 * @mobj: mobj that describes allocated buffer 1564 * 1565 * This function also frees corresponding mobj. 1566 */ 1567 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj) 1568 { 1569 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1570 void *arg = NULL; 1571 uint64_t carg = 0; 1572 struct thread_param param = THREAD_PARAM_VALUE(IN, bt, cookie, 0); 1573 uint32_t ret = get_rpc_arg(OPTEE_RPC_CMD_SHM_FREE, 1, ¶m, 1574 &arg, &carg); 1575 1576 mobj_free(mobj); 1577 1578 if (!ret) { 1579 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1580 thread_rpc(rpc_args); 1581 } 1582 } 1583 1584 static struct mobj *get_rpc_alloc_res(struct optee_msg_arg *arg, 1585 unsigned int bt) 1586 { 1587 struct mobj *mobj = NULL; 1588 uint64_t cookie = 0; 1589 1590 if (arg->ret || arg->num_params != 1) 1591 return NULL; 1592 1593 if (arg->params[0].attr == OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT) { 1594 cookie = arg->params[0].u.tmem.shm_ref; 1595 mobj = mobj_shm_alloc(arg->params[0].u.tmem.buf_ptr, 1596 arg->params[0].u.tmem.size, 1597 cookie); 1598 } else if (arg->params[0].attr == (OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 1599 OPTEE_MSG_ATTR_NONCONTIG)) { 1600 cookie = arg->params[0].u.tmem.shm_ref; 1601 mobj = msg_param_mobj_from_noncontig( 1602 arg->params[0].u.tmem.buf_ptr, 1603 arg->params[0].u.tmem.size, 1604 cookie, 1605 true); 1606 } else { 1607 return NULL; 1608 } 1609 1610 if (!mobj) { 1611 thread_rpc_free(bt, cookie, mobj); 1612 return NULL; 1613 } 1614 1615 assert(mobj_is_nonsec(mobj)); 1616 1617 return mobj; 1618 } 1619 1620 /** 1621 * Allocates shared memory buffer via RPC 1622 * 1623 * @size: size in bytes of shared memory buffer 1624 * @align: required alignment of buffer 1625 * @bt: buffer type OPTEE_RPC_SHM_TYPE_* 1626 * 1627 * Returns a pointer to MOBJ for the memory on success, or NULL on failure. 1628 */ 1629 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt) 1630 { 1631 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1632 void *arg = NULL; 1633 uint64_t carg = 0; 1634 struct thread_param param = THREAD_PARAM_VALUE(IN, bt, size, align); 1635 uint32_t ret = get_rpc_arg(OPTEE_RPC_CMD_SHM_ALLOC, 1, ¶m, 1636 &arg, &carg); 1637 1638 if (ret) 1639 return NULL; 1640 1641 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1642 thread_rpc(rpc_args); 1643 1644 return get_rpc_alloc_res(arg, bt); 1645 } 1646 1647 struct mobj *thread_rpc_alloc_payload(size_t size) 1648 { 1649 return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_APPL); 1650 } 1651 1652 void thread_rpc_free_payload(struct mobj *mobj) 1653 { 1654 thread_rpc_free(OPTEE_RPC_SHM_TYPE_APPL, mobj_get_cookie(mobj), 1655 mobj); 1656 } 1657 1658 struct mobj *thread_rpc_alloc_global_payload(size_t size) 1659 { 1660 return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_GLOBAL); 1661 } 1662 1663 void thread_rpc_free_global_payload(struct mobj *mobj) 1664 { 1665 thread_rpc_free(OPTEE_RPC_SHM_TYPE_GLOBAL, mobj_get_cookie(mobj), 1666 mobj); 1667 } 1668