1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 */ 6 7 #include <platform_config.h> 8 9 #include <arm.h> 10 #include <assert.h> 11 #include <keep.h> 12 #include <kernel/asan.h> 13 #include <kernel/misc.h> 14 #include <kernel/msg_param.h> 15 #include <kernel/panic.h> 16 #include <kernel/spinlock.h> 17 #include <kernel/tee_ta_manager.h> 18 #include <kernel/thread_defs.h> 19 #include <kernel/thread.h> 20 #include <mm/core_memprot.h> 21 #include <mm/mobj.h> 22 #include <mm/tee_mm.h> 23 #include <mm/tee_mmu.h> 24 #include <mm/tee_pager.h> 25 #include <optee_msg.h> 26 #include <smccc.h> 27 #include <sm/optee_smc.h> 28 #include <sm/sm.h> 29 #include <tee/tee_cryp_utl.h> 30 #include <tee/tee_fs_rpc.h> 31 #include <trace.h> 32 #include <util.h> 33 34 #include "thread_private.h" 35 36 #ifdef CFG_WITH_ARM_TRUSTED_FW 37 #define STACK_TMP_OFFS 0 38 #else 39 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE 40 #endif 41 42 43 #ifdef ARM32 44 #ifdef CFG_CORE_SANITIZE_KADDRESS 45 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) 46 #else 47 #define STACK_TMP_SIZE (1536 + STACK_TMP_OFFS) 48 #endif 49 #define STACK_THREAD_SIZE 8192 50 51 #ifdef CFG_CORE_SANITIZE_KADDRESS 52 #define STACK_ABT_SIZE 3072 53 #else 54 #define STACK_ABT_SIZE 2048 55 #endif 56 57 #endif /*ARM32*/ 58 59 #ifdef ARM64 60 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 61 #define STACK_THREAD_SIZE 8192 62 63 #if TRACE_LEVEL > 0 64 #define STACK_ABT_SIZE 3072 65 #else 66 #define STACK_ABT_SIZE 1024 67 #endif 68 #endif /*ARM64*/ 69 70 struct thread_ctx threads[CFG_NUM_THREADS]; 71 72 struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE]; 73 74 #ifdef CFG_WITH_STACK_CANARIES 75 #ifdef ARM32 76 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 77 #endif 78 #ifdef ARM64 79 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 80 #endif 81 #define START_CANARY_VALUE 0xdededede 82 #define END_CANARY_VALUE 0xabababab 83 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 84 #define GET_END_CANARY(name, stack_num) \ 85 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 86 #else 87 #define STACK_CANARY_SIZE 0 88 #endif 89 90 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 91 linkage uint32_t name[num_stacks] \ 92 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 93 sizeof(uint32_t)] \ 94 __attribute__((section(".nozi_stack"), \ 95 aligned(STACK_ALIGNMENT))) 96 97 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 98 99 #define GET_STACK(stack) \ 100 ((vaddr_t)(stack) + STACK_SIZE(stack)) 101 102 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, static); 103 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 104 #ifndef CFG_WITH_PAGER 105 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 106 #endif 107 108 const void *stack_tmp_export = (uint8_t *)stack_tmp + sizeof(stack_tmp[0]) - 109 (STACK_TMP_OFFS + STACK_CANARY_SIZE / 2); 110 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]); 111 112 /* 113 * These stack setup info are required by secondary boot cores before they 114 * each locally enable the pager (the mmu). Hence kept in pager sections. 115 */ 116 KEEP_PAGER(stack_tmp_export); 117 KEEP_PAGER(stack_tmp_stride); 118 119 thread_smc_handler_t thread_std_smc_handler_ptr; 120 static thread_smc_handler_t thread_fast_smc_handler_ptr; 121 thread_nintr_handler_t thread_nintr_handler_ptr; 122 thread_pm_handler_t thread_cpu_on_handler_ptr; 123 thread_pm_handler_t thread_cpu_off_handler_ptr; 124 thread_pm_handler_t thread_cpu_suspend_handler_ptr; 125 thread_pm_handler_t thread_cpu_resume_handler_ptr; 126 thread_pm_handler_t thread_system_off_handler_ptr; 127 thread_pm_handler_t thread_system_reset_handler_ptr; 128 129 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 130 static vaddr_t thread_user_kcode_va; 131 long thread_user_kcode_offset; 132 static size_t thread_user_kcode_size; 133 #endif 134 135 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 136 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 137 long thread_user_kdata_sp_offset; 138 static uint8_t thread_user_kdata_page[ 139 ROUNDUP(sizeof(thread_core_local), SMALL_PAGE_SIZE)] 140 __aligned(SMALL_PAGE_SIZE) __section(".nozi.kdata_page"); 141 #endif 142 143 static unsigned int thread_global_lock = SPINLOCK_UNLOCK; 144 static bool thread_prealloc_rpc_cache; 145 146 static unsigned int thread_rpc_pnum; 147 148 static void init_canaries(void) 149 { 150 #ifdef CFG_WITH_STACK_CANARIES 151 size_t n; 152 #define INIT_CANARY(name) \ 153 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 154 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 155 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 156 \ 157 *start_canary = START_CANARY_VALUE; \ 158 *end_canary = END_CANARY_VALUE; \ 159 DMSG("#Stack canaries for %s[%zu] with top at %p\n", \ 160 #name, n, (void *)(end_canary - 1)); \ 161 DMSG("watch *%p\n", (void *)end_canary); \ 162 } 163 164 INIT_CANARY(stack_tmp); 165 INIT_CANARY(stack_abt); 166 #ifndef CFG_WITH_PAGER 167 INIT_CANARY(stack_thread); 168 #endif 169 #endif/*CFG_WITH_STACK_CANARIES*/ 170 } 171 172 #define CANARY_DIED(stack, loc, n) \ 173 do { \ 174 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 175 panic(); \ 176 } while (0) 177 178 void thread_check_canaries(void) 179 { 180 #ifdef CFG_WITH_STACK_CANARIES 181 size_t n; 182 183 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 184 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 185 CANARY_DIED(stack_tmp, start, n); 186 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 187 CANARY_DIED(stack_tmp, end, n); 188 } 189 190 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 191 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 192 CANARY_DIED(stack_abt, start, n); 193 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 194 CANARY_DIED(stack_abt, end, n); 195 196 } 197 #ifndef CFG_WITH_PAGER 198 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 199 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 200 CANARY_DIED(stack_thread, start, n); 201 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 202 CANARY_DIED(stack_thread, end, n); 203 } 204 #endif 205 #endif/*CFG_WITH_STACK_CANARIES*/ 206 } 207 208 static void lock_global(void) 209 { 210 cpu_spin_lock(&thread_global_lock); 211 } 212 213 static void unlock_global(void) 214 { 215 cpu_spin_unlock(&thread_global_lock); 216 } 217 218 #ifdef ARM32 219 uint32_t thread_get_exceptions(void) 220 { 221 uint32_t cpsr = read_cpsr(); 222 223 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 224 } 225 226 void thread_set_exceptions(uint32_t exceptions) 227 { 228 uint32_t cpsr = read_cpsr(); 229 230 /* Foreign interrupts must not be unmasked while holding a spinlock */ 231 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 232 assert_have_no_spinlock(); 233 234 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 235 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 236 write_cpsr(cpsr); 237 } 238 #endif /*ARM32*/ 239 240 #ifdef ARM64 241 uint32_t thread_get_exceptions(void) 242 { 243 uint32_t daif = read_daif(); 244 245 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 246 } 247 248 void thread_set_exceptions(uint32_t exceptions) 249 { 250 uint32_t daif = read_daif(); 251 252 /* Foreign interrupts must not be unmasked while holding a spinlock */ 253 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 254 assert_have_no_spinlock(); 255 256 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 257 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 258 write_daif(daif); 259 } 260 #endif /*ARM64*/ 261 262 uint32_t thread_mask_exceptions(uint32_t exceptions) 263 { 264 uint32_t state = thread_get_exceptions(); 265 266 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 267 return state; 268 } 269 270 void thread_unmask_exceptions(uint32_t state) 271 { 272 thread_set_exceptions(state & THREAD_EXCP_ALL); 273 } 274 275 276 struct thread_core_local *thread_get_core_local(void) 277 { 278 uint32_t cpu_id = get_core_pos(); 279 280 /* 281 * Foreign interrupts must be disabled before playing with core_local 282 * since we otherwise may be rescheduled to a different core in the 283 * middle of this function. 284 */ 285 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 286 287 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 288 return &thread_core_local[cpu_id]; 289 } 290 291 static void thread_lazy_save_ns_vfp(void) 292 { 293 #ifdef CFG_WITH_VFP 294 struct thread_ctx *thr = threads + thread_get_id(); 295 296 thr->vfp_state.ns_saved = false; 297 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW) 298 /* 299 * ARM TF saves and restores CPACR_EL1, so we must assume NS world 300 * uses VFP and always preserve the register file when secure world 301 * is about to use it 302 */ 303 thr->vfp_state.ns.force_save = true; 304 #endif 305 vfp_lazy_save_state_init(&thr->vfp_state.ns); 306 #endif /*CFG_WITH_VFP*/ 307 } 308 309 static void thread_lazy_restore_ns_vfp(void) 310 { 311 #ifdef CFG_WITH_VFP 312 struct thread_ctx *thr = threads + thread_get_id(); 313 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 314 315 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 316 317 if (tuv && tuv->lazy_saved && !tuv->saved) { 318 vfp_lazy_save_state_final(&tuv->vfp); 319 tuv->saved = true; 320 } 321 322 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 323 thr->vfp_state.ns_saved = false; 324 #endif /*CFG_WITH_VFP*/ 325 } 326 327 #ifdef ARM32 328 static void init_regs(struct thread_ctx *thread, 329 struct thread_smc_args *args) 330 { 331 thread->regs.pc = (uint32_t)thread_std_smc_entry; 332 333 /* 334 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 335 * Asynchronous abort and unmasked native interrupts. 336 */ 337 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 338 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A | 339 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT); 340 /* Enable thumb mode if it's a thumb instruction */ 341 if (thread->regs.pc & 1) 342 thread->regs.cpsr |= CPSR_T; 343 /* Reinitialize stack pointer */ 344 thread->regs.svc_sp = thread->stack_va_end; 345 346 /* 347 * Copy arguments into context. This will make the 348 * arguments appear in r0-r7 when thread is started. 349 */ 350 thread->regs.r0 = args->a0; 351 thread->regs.r1 = args->a1; 352 thread->regs.r2 = args->a2; 353 thread->regs.r3 = args->a3; 354 thread->regs.r4 = args->a4; 355 thread->regs.r5 = args->a5; 356 thread->regs.r6 = args->a6; 357 thread->regs.r7 = args->a7; 358 } 359 #endif /*ARM32*/ 360 361 #ifdef ARM64 362 static void init_regs(struct thread_ctx *thread, 363 struct thread_smc_args *args) 364 { 365 thread->regs.pc = (uint64_t)thread_std_smc_entry; 366 367 /* 368 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 369 * Asynchronous abort and unmasked native interrupts. 370 */ 371 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 372 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT); 373 /* Reinitialize stack pointer */ 374 thread->regs.sp = thread->stack_va_end; 375 376 /* 377 * Copy arguments into context. This will make the 378 * arguments appear in x0-x7 when thread is started. 379 */ 380 thread->regs.x[0] = args->a0; 381 thread->regs.x[1] = args->a1; 382 thread->regs.x[2] = args->a2; 383 thread->regs.x[3] = args->a3; 384 thread->regs.x[4] = args->a4; 385 thread->regs.x[5] = args->a5; 386 thread->regs.x[6] = args->a6; 387 thread->regs.x[7] = args->a7; 388 389 /* Set up frame pointer as per the Aarch64 AAPCS */ 390 thread->regs.x[29] = 0; 391 } 392 #endif /*ARM64*/ 393 394 void thread_init_boot_thread(void) 395 { 396 struct thread_core_local *l = thread_get_core_local(); 397 size_t n; 398 399 for (n = 0; n < CFG_NUM_THREADS; n++) { 400 TAILQ_INIT(&threads[n].mutexes); 401 TAILQ_INIT(&threads[n].tsd.sess_stack); 402 SLIST_INIT(&threads[n].tsd.pgt_cache); 403 } 404 405 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 406 thread_core_local[n].curr_thread = -1; 407 408 l->curr_thread = 0; 409 threads[0].state = THREAD_STATE_ACTIVE; 410 } 411 412 void thread_clr_boot_thread(void) 413 { 414 struct thread_core_local *l = thread_get_core_local(); 415 416 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 417 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 418 assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes)); 419 threads[l->curr_thread].state = THREAD_STATE_FREE; 420 l->curr_thread = -1; 421 } 422 423 static void thread_alloc_and_run(struct thread_smc_args *args) 424 { 425 size_t n; 426 struct thread_core_local *l = thread_get_core_local(); 427 bool found_thread = false; 428 429 assert(l->curr_thread == -1); 430 431 lock_global(); 432 433 for (n = 0; n < CFG_NUM_THREADS; n++) { 434 if (threads[n].state == THREAD_STATE_FREE) { 435 threads[n].state = THREAD_STATE_ACTIVE; 436 found_thread = true; 437 break; 438 } 439 } 440 441 unlock_global(); 442 443 if (!found_thread) { 444 args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT; 445 return; 446 } 447 448 l->curr_thread = n; 449 450 threads[n].flags = 0; 451 init_regs(threads + n, args); 452 453 /* Save Hypervisor Client ID */ 454 threads[n].hyp_clnt_id = args->a7; 455 456 thread_lazy_save_ns_vfp(); 457 thread_resume(&threads[n].regs); 458 } 459 460 #ifdef ARM32 461 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 462 struct thread_smc_args *args) 463 { 464 /* 465 * Update returned values from RPC, values will appear in 466 * r0-r3 when thread is resumed. 467 */ 468 regs->r0 = args->a0; 469 regs->r1 = args->a1; 470 regs->r2 = args->a2; 471 regs->r3 = args->a3; 472 regs->r4 = args->a4; 473 regs->r5 = args->a5; 474 } 475 #endif /*ARM32*/ 476 477 #ifdef ARM64 478 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 479 struct thread_smc_args *args) 480 { 481 /* 482 * Update returned values from RPC, values will appear in 483 * x0-x3 when thread is resumed. 484 */ 485 regs->x[0] = args->a0; 486 regs->x[1] = args->a1; 487 regs->x[2] = args->a2; 488 regs->x[3] = args->a3; 489 regs->x[4] = args->a4; 490 regs->x[5] = args->a5; 491 } 492 #endif /*ARM64*/ 493 494 #ifdef ARM32 495 static bool is_from_user(uint32_t cpsr) 496 { 497 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 498 } 499 #endif 500 501 #ifdef ARM64 502 static bool is_from_user(uint32_t cpsr) 503 { 504 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 505 return true; 506 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 507 SPSR_64_MODE_EL0) 508 return true; 509 return false; 510 } 511 #endif 512 513 static bool is_user_mode(struct thread_ctx_regs *regs) 514 { 515 return is_from_user((uint32_t)regs->cpsr); 516 } 517 518 static void thread_resume_from_rpc(struct thread_smc_args *args) 519 { 520 size_t n = args->a3; /* thread id */ 521 struct thread_core_local *l = thread_get_core_local(); 522 uint32_t rv = 0; 523 524 assert(l->curr_thread == -1); 525 526 lock_global(); 527 528 if (n < CFG_NUM_THREADS && 529 threads[n].state == THREAD_STATE_SUSPENDED && 530 args->a7 == threads[n].hyp_clnt_id) 531 threads[n].state = THREAD_STATE_ACTIVE; 532 else 533 rv = OPTEE_SMC_RETURN_ERESUME; 534 535 unlock_global(); 536 537 if (rv) { 538 args->a0 = rv; 539 return; 540 } 541 542 l->curr_thread = n; 543 544 if (is_user_mode(&threads[n].regs)) 545 tee_ta_update_session_utime_resume(); 546 547 if (threads[n].have_user_map) 548 core_mmu_set_user_map(&threads[n].user_map); 549 550 /* 551 * Return from RPC to request service of a foreign interrupt must not 552 * get parameters from non-secure world. 553 */ 554 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 555 copy_a0_to_a5(&threads[n].regs, args); 556 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 557 } 558 559 thread_lazy_save_ns_vfp(); 560 thread_resume(&threads[n].regs); 561 } 562 563 void thread_handle_fast_smc(struct thread_smc_args *args) 564 { 565 thread_check_canaries(); 566 thread_fast_smc_handler_ptr(args); 567 /* Fast handlers must not unmask any exceptions */ 568 assert(thread_get_exceptions() == THREAD_EXCP_ALL); 569 } 570 571 void thread_handle_std_smc(struct thread_smc_args *args) 572 { 573 thread_check_canaries(); 574 575 if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC) 576 thread_resume_from_rpc(args); 577 else 578 thread_alloc_and_run(args); 579 } 580 581 /* 582 * Helper routine for the assembly function thread_std_smc_entry() 583 * 584 * Note: this function is weak just to make it possible to exclude it from 585 * the unpaged area. 586 */ 587 void __weak __thread_std_smc_entry(struct thread_smc_args *args) 588 { 589 thread_std_smc_handler_ptr(args); 590 591 if (args->a0 == OPTEE_SMC_RETURN_OK) { 592 struct thread_ctx *thr = threads + thread_get_id(); 593 594 tee_fs_rpc_cache_clear(&thr->tsd); 595 if (!thread_prealloc_rpc_cache) { 596 thread_rpc_free_arg(thr->rpc_carg); 597 mobj_free(thr->rpc_mobj); 598 thr->rpc_carg = 0; 599 thr->rpc_arg = 0; 600 thr->rpc_mobj = NULL; 601 } 602 } 603 } 604 605 void *thread_get_tmp_sp(void) 606 { 607 struct thread_core_local *l = thread_get_core_local(); 608 609 return (void *)l->tmp_stack_va_end; 610 } 611 612 #ifdef ARM64 613 vaddr_t thread_get_saved_thread_sp(void) 614 { 615 struct thread_core_local *l = thread_get_core_local(); 616 int ct = l->curr_thread; 617 618 assert(ct != -1); 619 return threads[ct].kern_sp; 620 } 621 #endif /*ARM64*/ 622 623 vaddr_t thread_stack_start(void) 624 { 625 struct thread_ctx *thr; 626 int ct = thread_get_id_may_fail(); 627 628 if (ct == -1) 629 return 0; 630 631 thr = threads + ct; 632 return thr->stack_va_end - STACK_THREAD_SIZE; 633 } 634 635 size_t thread_stack_size(void) 636 { 637 return STACK_THREAD_SIZE; 638 } 639 640 bool thread_is_from_abort_mode(void) 641 { 642 struct thread_core_local *l = thread_get_core_local(); 643 644 return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT; 645 } 646 647 #ifdef ARM32 648 bool thread_is_in_normal_mode(void) 649 { 650 return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC; 651 } 652 #endif 653 654 #ifdef ARM64 655 bool thread_is_in_normal_mode(void) 656 { 657 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 658 struct thread_core_local *l = thread_get_core_local(); 659 bool ret; 660 661 /* If any bit in l->flags is set we're handling some exception. */ 662 ret = !l->flags; 663 thread_unmask_exceptions(exceptions); 664 665 return ret; 666 } 667 #endif 668 669 void thread_state_free(void) 670 { 671 struct thread_core_local *l = thread_get_core_local(); 672 int ct = l->curr_thread; 673 674 assert(ct != -1); 675 assert(TAILQ_EMPTY(&threads[ct].mutexes)); 676 677 thread_lazy_restore_ns_vfp(); 678 tee_pager_release_phys( 679 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 680 STACK_THREAD_SIZE); 681 682 lock_global(); 683 684 assert(threads[ct].state == THREAD_STATE_ACTIVE); 685 threads[ct].state = THREAD_STATE_FREE; 686 threads[ct].flags = 0; 687 l->curr_thread = -1; 688 689 unlock_global(); 690 } 691 692 #ifdef CFG_WITH_PAGER 693 static void release_unused_kernel_stack(struct thread_ctx *thr, 694 uint32_t cpsr __maybe_unused) 695 { 696 #ifdef ARM64 697 /* 698 * If we're from user mode then thr->regs.sp is the saved user 699 * stack pointer and thr->kern_sp holds the last kernel stack 700 * pointer. But if we're from kernel mode then thr->kern_sp isn't 701 * up to date so we need to read from thr->regs.sp instead. 702 */ 703 vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp; 704 #else 705 vaddr_t sp = thr->regs.svc_sp; 706 #endif 707 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 708 size_t len = sp - base; 709 710 tee_pager_release_phys((void *)base, len); 711 } 712 #else 713 static void release_unused_kernel_stack(struct thread_ctx *thr __unused, 714 uint32_t cpsr __unused) 715 { 716 } 717 #endif 718 719 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 720 { 721 struct thread_core_local *l = thread_get_core_local(); 722 int ct = l->curr_thread; 723 724 assert(ct != -1); 725 726 thread_check_canaries(); 727 728 release_unused_kernel_stack(threads + ct, cpsr); 729 730 if (is_from_user(cpsr)) { 731 thread_user_save_vfp(); 732 tee_ta_update_session_utime_suspend(); 733 tee_ta_gprof_sample_pc(pc); 734 } 735 thread_lazy_restore_ns_vfp(); 736 737 lock_global(); 738 739 assert(threads[ct].state == THREAD_STATE_ACTIVE); 740 threads[ct].flags |= flags; 741 threads[ct].regs.cpsr = cpsr; 742 threads[ct].regs.pc = pc; 743 threads[ct].state = THREAD_STATE_SUSPENDED; 744 745 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 746 if (threads[ct].have_user_map) { 747 core_mmu_get_user_map(&threads[ct].user_map); 748 core_mmu_set_user_map(NULL); 749 } 750 751 l->curr_thread = -1; 752 753 unlock_global(); 754 755 return ct; 756 } 757 758 #ifdef ARM32 759 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 760 { 761 l->tmp_stack_va_end = sp; 762 thread_set_irq_sp(sp); 763 thread_set_fiq_sp(sp); 764 } 765 766 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 767 { 768 l->abt_stack_va_end = sp; 769 thread_set_abt_sp((vaddr_t)l); 770 thread_set_und_sp((vaddr_t)l); 771 } 772 #endif /*ARM32*/ 773 774 #ifdef ARM64 775 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 776 { 777 /* 778 * We're already using the tmp stack when this function is called 779 * so there's no need to assign it to any stack pointer. However, 780 * we'll need to restore it at different times so store it here. 781 */ 782 l->tmp_stack_va_end = sp; 783 } 784 785 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 786 { 787 l->abt_stack_va_end = sp; 788 } 789 #endif /*ARM64*/ 790 791 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 792 { 793 if (thread_id >= CFG_NUM_THREADS) 794 return false; 795 threads[thread_id].stack_va_end = sp; 796 return true; 797 } 798 799 int thread_get_id_may_fail(void) 800 { 801 /* 802 * thread_get_core_local() requires foreign interrupts to be disabled 803 */ 804 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 805 struct thread_core_local *l = thread_get_core_local(); 806 int ct = l->curr_thread; 807 808 thread_unmask_exceptions(exceptions); 809 return ct; 810 } 811 812 int thread_get_id(void) 813 { 814 int ct = thread_get_id_may_fail(); 815 816 assert(ct >= 0 && ct < CFG_NUM_THREADS); 817 return ct; 818 } 819 820 static void init_handlers(const struct thread_handlers *handlers) 821 { 822 thread_std_smc_handler_ptr = handlers->std_smc; 823 thread_fast_smc_handler_ptr = handlers->fast_smc; 824 thread_nintr_handler_ptr = handlers->nintr; 825 thread_cpu_on_handler_ptr = handlers->cpu_on; 826 thread_cpu_off_handler_ptr = handlers->cpu_off; 827 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 828 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 829 thread_system_off_handler_ptr = handlers->system_off; 830 thread_system_reset_handler_ptr = handlers->system_reset; 831 } 832 833 #ifdef CFG_WITH_PAGER 834 static void init_thread_stacks(void) 835 { 836 size_t n; 837 838 /* 839 * Allocate virtual memory for thread stacks. 840 */ 841 for (n = 0; n < CFG_NUM_THREADS; n++) { 842 tee_mm_entry_t *mm; 843 vaddr_t sp; 844 845 /* Find vmem for thread stack and its protection gap */ 846 mm = tee_mm_alloc(&tee_mm_vcore, 847 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 848 assert(mm); 849 850 /* Claim eventual physical page */ 851 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 852 true); 853 854 /* Add the area to the pager */ 855 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 856 tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE, 857 TEE_MATTR_PRW | TEE_MATTR_LOCKED, 858 NULL, NULL); 859 860 /* init effective stack */ 861 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 862 asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp); 863 if (!thread_init_stack(n, sp)) 864 panic("init stack failed"); 865 } 866 } 867 #else 868 static void init_thread_stacks(void) 869 { 870 size_t n; 871 872 /* Assign the thread stacks */ 873 for (n = 0; n < CFG_NUM_THREADS; n++) { 874 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 875 panic("thread_init_stack failed"); 876 } 877 } 878 #endif /*CFG_WITH_PAGER*/ 879 880 static void init_user_kcode(void) 881 { 882 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 883 vaddr_t v = (vaddr_t)thread_excp_vect; 884 vaddr_t ve = (vaddr_t)thread_excp_vect_end; 885 886 thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE); 887 ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE); 888 thread_user_kcode_size = ve - thread_user_kcode_va; 889 890 core_mmu_get_user_va_range(&v, NULL); 891 thread_user_kcode_offset = thread_user_kcode_va - v; 892 893 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 894 /* 895 * When transitioning to EL0 subtract SP with this much to point to 896 * this special kdata page instead. SP is restored by add this much 897 * while transitioning back to EL1. 898 */ 899 v += thread_user_kcode_size; 900 thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v; 901 #endif 902 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/ 903 } 904 905 void thread_init_primary(const struct thread_handlers *handlers) 906 { 907 init_handlers(handlers); 908 909 /* Initialize canaries around the stacks */ 910 init_canaries(); 911 912 init_thread_stacks(); 913 pgt_init(); 914 915 init_user_kcode(); 916 } 917 918 static void init_sec_mon(size_t pos __maybe_unused) 919 { 920 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 921 /* Initialize secure monitor */ 922 sm_init(GET_STACK(stack_tmp[pos])); 923 #endif 924 } 925 926 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr) 927 { 928 return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK; 929 } 930 931 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr) 932 { 933 return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) & 934 MIDR_PRIMARY_PART_NUM_MASK; 935 } 936 937 #ifdef ARM64 938 static bool probe_workaround_available(void) 939 { 940 int32_t r; 941 942 r = thread_smc(SMCCC_VERSION, 0, 0, 0); 943 if (r < 0) 944 return false; 945 if (r < 0x10001) /* compare with version 1.1 */ 946 return false; 947 948 /* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */ 949 r = thread_smc(SMCCC_ARCH_FEATURES, SMCCC_ARCH_WORKAROUND_1, 0, 0); 950 return r >= 0; 951 } 952 953 static vaddr_t select_vector(vaddr_t a) 954 { 955 if (probe_workaround_available()) { 956 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available", 957 SMCCC_ARCH_WORKAROUND_1); 958 DMSG("SMC Workaround for CVE-2017-5715 used"); 959 return a; 960 } 961 962 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable", 963 SMCCC_ARCH_WORKAROUND_1); 964 DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)"); 965 return (vaddr_t)thread_excp_vect; 966 } 967 #else 968 static vaddr_t select_vector(vaddr_t a) 969 { 970 return a; 971 } 972 #endif 973 974 static vaddr_t get_excp_vect(void) 975 { 976 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC 977 uint32_t midr = read_midr(); 978 979 if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM) 980 return (vaddr_t)thread_excp_vect; 981 982 switch (get_midr_primary_part(midr)) { 983 #ifdef ARM32 984 case CORTEX_A8_PART_NUM: 985 case CORTEX_A9_PART_NUM: 986 case CORTEX_A17_PART_NUM: 987 #endif 988 case CORTEX_A57_PART_NUM: 989 case CORTEX_A72_PART_NUM: 990 case CORTEX_A73_PART_NUM: 991 case CORTEX_A75_PART_NUM: 992 return select_vector((vaddr_t)thread_excp_vect_workaround); 993 #ifdef ARM32 994 case CORTEX_A15_PART_NUM: 995 return select_vector((vaddr_t)thread_excp_vect_workaround_a15); 996 #endif 997 default: 998 return (vaddr_t)thread_excp_vect; 999 } 1000 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/ 1001 1002 return (vaddr_t)thread_excp_vect; 1003 } 1004 1005 void thread_init_per_cpu(void) 1006 { 1007 size_t pos = get_core_pos(); 1008 struct thread_core_local *l = thread_get_core_local(); 1009 1010 init_sec_mon(pos); 1011 1012 set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); 1013 set_abt_stack(l, GET_STACK(stack_abt[pos])); 1014 1015 thread_init_vbar(get_excp_vect()); 1016 } 1017 1018 struct thread_specific_data *thread_get_tsd(void) 1019 { 1020 return &threads[thread_get_id()].tsd; 1021 } 1022 1023 struct thread_ctx_regs *thread_get_ctx_regs(void) 1024 { 1025 struct thread_core_local *l = thread_get_core_local(); 1026 1027 assert(l->curr_thread != -1); 1028 return &threads[l->curr_thread].regs; 1029 } 1030 1031 void thread_set_foreign_intr(bool enable) 1032 { 1033 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1034 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1035 struct thread_core_local *l; 1036 1037 l = thread_get_core_local(); 1038 1039 assert(l->curr_thread != -1); 1040 1041 if (enable) { 1042 threads[l->curr_thread].flags |= 1043 THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1044 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1045 } else { 1046 /* 1047 * No need to disable foreign interrupts here since they're 1048 * already disabled above. 1049 */ 1050 threads[l->curr_thread].flags &= 1051 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1052 } 1053 } 1054 1055 void thread_restore_foreign_intr(void) 1056 { 1057 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1058 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1059 struct thread_core_local *l; 1060 1061 l = thread_get_core_local(); 1062 1063 assert(l->curr_thread != -1); 1064 1065 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) 1066 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1067 } 1068 1069 #ifdef CFG_WITH_VFP 1070 uint32_t thread_kernel_enable_vfp(void) 1071 { 1072 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1073 struct thread_ctx *thr = threads + thread_get_id(); 1074 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1075 1076 assert(!vfp_is_enabled()); 1077 1078 if (!thr->vfp_state.ns_saved) { 1079 vfp_lazy_save_state_final(&thr->vfp_state.ns); 1080 thr->vfp_state.ns_saved = true; 1081 } else if (thr->vfp_state.sec_lazy_saved && 1082 !thr->vfp_state.sec_saved) { 1083 /* 1084 * This happens when we're handling an abort while the 1085 * thread was using the VFP state. 1086 */ 1087 vfp_lazy_save_state_final(&thr->vfp_state.sec); 1088 thr->vfp_state.sec_saved = true; 1089 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 1090 /* 1091 * This can happen either during syscall or abort 1092 * processing (while processing a syscall). 1093 */ 1094 vfp_lazy_save_state_final(&tuv->vfp); 1095 tuv->saved = true; 1096 } 1097 1098 vfp_enable(); 1099 return exceptions; 1100 } 1101 1102 void thread_kernel_disable_vfp(uint32_t state) 1103 { 1104 uint32_t exceptions; 1105 1106 assert(vfp_is_enabled()); 1107 1108 vfp_disable(); 1109 exceptions = thread_get_exceptions(); 1110 assert(exceptions & THREAD_EXCP_FOREIGN_INTR); 1111 exceptions &= ~THREAD_EXCP_FOREIGN_INTR; 1112 exceptions |= state & THREAD_EXCP_FOREIGN_INTR; 1113 thread_set_exceptions(exceptions); 1114 } 1115 1116 void thread_kernel_save_vfp(void) 1117 { 1118 struct thread_ctx *thr = threads + thread_get_id(); 1119 1120 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1121 if (vfp_is_enabled()) { 1122 vfp_lazy_save_state_init(&thr->vfp_state.sec); 1123 thr->vfp_state.sec_lazy_saved = true; 1124 } 1125 } 1126 1127 void thread_kernel_restore_vfp(void) 1128 { 1129 struct thread_ctx *thr = threads + thread_get_id(); 1130 1131 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1132 assert(!vfp_is_enabled()); 1133 if (thr->vfp_state.sec_lazy_saved) { 1134 vfp_lazy_restore_state(&thr->vfp_state.sec, 1135 thr->vfp_state.sec_saved); 1136 thr->vfp_state.sec_saved = false; 1137 thr->vfp_state.sec_lazy_saved = false; 1138 } 1139 } 1140 1141 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 1142 { 1143 struct thread_ctx *thr = threads + thread_get_id(); 1144 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1145 1146 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1147 assert(!vfp_is_enabled()); 1148 1149 if (!thr->vfp_state.ns_saved) { 1150 vfp_lazy_save_state_final(&thr->vfp_state.ns); 1151 thr->vfp_state.ns_saved = true; 1152 } else if (tuv && uvfp != tuv) { 1153 if (tuv->lazy_saved && !tuv->saved) { 1154 vfp_lazy_save_state_final(&tuv->vfp); 1155 tuv->saved = true; 1156 } 1157 } 1158 1159 if (uvfp->lazy_saved) 1160 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 1161 uvfp->lazy_saved = false; 1162 uvfp->saved = false; 1163 1164 thr->vfp_state.uvfp = uvfp; 1165 vfp_enable(); 1166 } 1167 1168 void thread_user_save_vfp(void) 1169 { 1170 struct thread_ctx *thr = threads + thread_get_id(); 1171 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1172 1173 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1174 if (!vfp_is_enabled()) 1175 return; 1176 1177 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1178 vfp_lazy_save_state_init(&tuv->vfp); 1179 tuv->lazy_saved = true; 1180 } 1181 1182 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1183 { 1184 struct thread_ctx *thr = threads + thread_get_id(); 1185 1186 if (uvfp == thr->vfp_state.uvfp) 1187 thr->vfp_state.uvfp = NULL; 1188 uvfp->lazy_saved = false; 1189 uvfp->saved = false; 1190 } 1191 #endif /*CFG_WITH_VFP*/ 1192 1193 #ifdef ARM32 1194 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1195 { 1196 uint32_t s; 1197 1198 if (!is_32bit) 1199 return false; 1200 1201 s = read_spsr(); 1202 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1203 s |= CPSR_MODE_USR; 1204 if (entry_func & 1) 1205 s |= CPSR_T; 1206 *spsr = s; 1207 return true; 1208 } 1209 #endif 1210 1211 #ifdef ARM64 1212 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1213 { 1214 uint32_t s; 1215 1216 if (is_32bit) { 1217 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1218 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1219 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1220 } else { 1221 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1222 } 1223 1224 *spsr = s; 1225 return true; 1226 } 1227 #endif 1228 1229 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1230 unsigned long a2, unsigned long a3, unsigned long user_sp, 1231 unsigned long entry_func, bool is_32bit, 1232 uint32_t *exit_status0, uint32_t *exit_status1) 1233 { 1234 uint32_t spsr; 1235 1236 tee_ta_update_session_utime_resume(); 1237 1238 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1239 *exit_status0 = 1; /* panic */ 1240 *exit_status1 = 0xbadbadba; 1241 return 0; 1242 } 1243 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1244 spsr, exit_status0, exit_status1); 1245 } 1246 1247 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 1248 void thread_get_user_kcode(struct mobj **mobj, size_t *offset, 1249 vaddr_t *va, size_t *sz) 1250 { 1251 core_mmu_get_user_va_range(va, NULL); 1252 *mobj = mobj_tee_ram; 1253 *offset = thread_user_kcode_va - TEE_RAM_START; 1254 *sz = thread_user_kcode_size; 1255 } 1256 #endif 1257 1258 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 1259 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 1260 void thread_get_user_kdata(struct mobj **mobj, size_t *offset, 1261 vaddr_t *va, size_t *sz) 1262 { 1263 vaddr_t v; 1264 1265 core_mmu_get_user_va_range(&v, NULL); 1266 *va = v + thread_user_kcode_size; 1267 *mobj = mobj_tee_ram; 1268 *offset = (vaddr_t)thread_user_kdata_page - TEE_RAM_START; 1269 *sz = sizeof(thread_user_kdata_page); 1270 } 1271 #endif 1272 1273 void thread_add_mutex(struct mutex *m) 1274 { 1275 struct thread_core_local *l = thread_get_core_local(); 1276 int ct = l->curr_thread; 1277 1278 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1279 assert(m->owner_id == MUTEX_OWNER_ID_NONE); 1280 m->owner_id = ct; 1281 TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link); 1282 } 1283 1284 void thread_rem_mutex(struct mutex *m) 1285 { 1286 struct thread_core_local *l = thread_get_core_local(); 1287 int ct = l->curr_thread; 1288 1289 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1290 assert(m->owner_id == ct); 1291 m->owner_id = MUTEX_OWNER_ID_NONE; 1292 TAILQ_REMOVE(&threads[ct].mutexes, m, link); 1293 } 1294 1295 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie) 1296 { 1297 bool rv; 1298 size_t n; 1299 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1300 1301 lock_global(); 1302 1303 for (n = 0; n < CFG_NUM_THREADS; n++) { 1304 if (threads[n].state != THREAD_STATE_FREE) { 1305 rv = false; 1306 goto out; 1307 } 1308 } 1309 1310 rv = true; 1311 for (n = 0; n < CFG_NUM_THREADS; n++) { 1312 if (threads[n].rpc_arg) { 1313 mobj_free(threads[n].rpc_mobj); 1314 *cookie = threads[n].rpc_carg; 1315 threads[n].rpc_carg = 0; 1316 threads[n].rpc_arg = NULL; 1317 goto out; 1318 } 1319 } 1320 1321 *cookie = 0; 1322 thread_prealloc_rpc_cache = false; 1323 out: 1324 unlock_global(); 1325 thread_unmask_exceptions(exceptions); 1326 return rv; 1327 } 1328 1329 bool thread_enable_prealloc_rpc_cache(void) 1330 { 1331 bool rv; 1332 size_t n; 1333 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1334 1335 lock_global(); 1336 1337 for (n = 0; n < CFG_NUM_THREADS; n++) { 1338 if (threads[n].state != THREAD_STATE_FREE) { 1339 rv = false; 1340 goto out; 1341 } 1342 } 1343 1344 rv = true; 1345 thread_prealloc_rpc_cache = true; 1346 out: 1347 unlock_global(); 1348 thread_unmask_exceptions(exceptions); 1349 return rv; 1350 } 1351 1352 void thread_rpc_free_arg(uint64_t cookie) 1353 { 1354 if (cookie) { 1355 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1356 OPTEE_SMC_RETURN_RPC_FREE 1357 }; 1358 1359 reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2); 1360 thread_rpc(rpc_args); 1361 } 1362 } 1363 1364 struct mobj *thread_rpc_alloc_arg(size_t size, uint64_t *cookie) 1365 { 1366 paddr_t pa; 1367 uint64_t co; 1368 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1369 OPTEE_SMC_RETURN_RPC_ALLOC, size 1370 }; 1371 struct mobj *mobj = NULL; 1372 1373 thread_rpc(rpc_args); 1374 1375 pa = reg_pair_to_64(rpc_args[1], rpc_args[2]); 1376 co = reg_pair_to_64(rpc_args[4], rpc_args[5]); 1377 1378 if (!ALIGNMENT_IS_OK(pa, struct optee_msg_arg)) 1379 goto err; 1380 1381 /* Check if this region is in static shared space */ 1382 if (core_pbuf_is(CORE_MEM_NSEC_SHM, pa, size)) 1383 mobj = mobj_shm_alloc(pa, size); 1384 else if ((!(pa & SMALL_PAGE_MASK)) && size <= SMALL_PAGE_SIZE) 1385 mobj = mobj_mapped_shm_alloc(&pa, 1, 0, co); 1386 1387 if (!mobj) 1388 goto err; 1389 1390 *cookie = co; 1391 return mobj; 1392 err: 1393 thread_rpc_free_arg(co); 1394 mobj_free(mobj); 1395 *cookie = 0; 1396 return NULL; 1397 } 1398 1399 static bool get_rpc_arg(uint32_t cmd, size_t num_params, 1400 struct optee_msg_arg **arg_ret, uint64_t *carg_ret) 1401 { 1402 struct thread_ctx *thr = threads + thread_get_id(); 1403 struct optee_msg_arg *arg = thr->rpc_arg; 1404 struct mobj *mobj; 1405 size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS); 1406 uint64_t c; 1407 1408 if (num_params > THREAD_RPC_MAX_NUM_PARAMS) 1409 return false; 1410 1411 if (!arg) { 1412 mobj = thread_rpc_alloc_arg(sz, &c); 1413 if (!mobj) 1414 return false; 1415 1416 arg = mobj_get_va(mobj, 0); 1417 if (!arg) 1418 goto bad; 1419 1420 thr->rpc_arg = arg; 1421 thr->rpc_carg = c; 1422 thr->rpc_mobj = mobj; 1423 } 1424 1425 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); 1426 arg->cmd = cmd; 1427 arg->num_params = num_params; 1428 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1429 1430 *arg_ret = arg; 1431 *carg_ret = thr->rpc_carg; 1432 return true; 1433 1434 bad: 1435 thread_rpc_free_arg(c); 1436 return false; 1437 } 1438 1439 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1440 struct optee_msg_param *params) 1441 { 1442 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1443 struct optee_msg_arg *arg; 1444 uint64_t carg; 1445 size_t n; 1446 1447 /* The source CRYPTO_RNG_SRC_JITTER_RPC is safe to use here */ 1448 plat_prng_add_jitter_entropy(CRYPTO_RNG_SRC_JITTER_RPC, 1449 &thread_rpc_pnum); 1450 1451 if (!get_rpc_arg(cmd, num_params, &arg, &carg)) 1452 return TEE_ERROR_OUT_OF_MEMORY; 1453 1454 memcpy(arg->params, params, sizeof(*params) * num_params); 1455 1456 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1457 thread_rpc(rpc_args); 1458 for (n = 0; n < num_params; n++) { 1459 switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) { 1460 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 1461 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 1462 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 1463 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 1464 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 1465 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 1466 params[n] = arg->params[n]; 1467 break; 1468 default: 1469 break; 1470 } 1471 } 1472 return arg->ret; 1473 } 1474 1475 /** 1476 * Free physical memory previously allocated with thread_rpc_alloc() 1477 * 1478 * @cookie: cookie received when allocating the buffer 1479 * @bt: must be the same as supplied when allocating 1480 * @mobj: mobj that describes allocated buffer 1481 * 1482 * This function also frees corresponding mobj. 1483 */ 1484 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj) 1485 { 1486 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1487 struct optee_msg_arg *arg; 1488 uint64_t carg; 1489 1490 if (!get_rpc_arg(OPTEE_MSG_RPC_CMD_SHM_FREE, 1, &arg, &carg)) 1491 return; 1492 1493 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1494 arg->params[0].u.value.a = bt; 1495 arg->params[0].u.value.b = cookie; 1496 arg->params[0].u.value.c = 0; 1497 1498 mobj_free(mobj); 1499 1500 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1501 thread_rpc(rpc_args); 1502 } 1503 1504 /** 1505 * Allocates shared memory buffer via RPC 1506 * 1507 * @size: size in bytes of shared memory buffer 1508 * @align: required alignment of buffer 1509 * @bt: buffer type OPTEE_MSG_RPC_SHM_TYPE_* 1510 * @payload: returned physical pointer to buffer, 0 if allocation 1511 * failed. 1512 * @cookie: returned cookie used when freeing the buffer 1513 */ 1514 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt, 1515 uint64_t *cookie) 1516 { 1517 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1518 struct optee_msg_arg *arg; 1519 uint64_t carg; 1520 struct mobj *mobj = NULL; 1521 1522 if (!get_rpc_arg(OPTEE_MSG_RPC_CMD_SHM_ALLOC, 1, &arg, &carg)) 1523 goto fail; 1524 1525 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1526 arg->params[0].u.value.a = bt; 1527 arg->params[0].u.value.b = size; 1528 arg->params[0].u.value.c = align; 1529 1530 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1531 thread_rpc(rpc_args); 1532 1533 if (arg->ret != TEE_SUCCESS) 1534 goto fail; 1535 1536 if (arg->num_params != 1) 1537 goto fail; 1538 1539 if (arg->params[0].attr == OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT) { 1540 *cookie = arg->params[0].u.tmem.shm_ref; 1541 mobj = mobj_shm_alloc(arg->params[0].u.tmem.buf_ptr, 1542 arg->params[0].u.tmem.size); 1543 } else if (arg->params[0].attr == (OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 1544 OPTEE_MSG_ATTR_NONCONTIG)) { 1545 *cookie = arg->params[0].u.tmem.shm_ref; 1546 mobj = msg_param_mobj_from_noncontig( 1547 arg->params[0].u.tmem.buf_ptr, 1548 arg->params[0].u.tmem.size, 1549 *cookie, 1550 true); 1551 } else 1552 goto fail; 1553 1554 if (!mobj) 1555 goto free_first; 1556 1557 assert(mobj_is_nonsec(mobj)); 1558 return mobj; 1559 1560 free_first: 1561 thread_rpc_free(bt, *cookie, mobj); 1562 fail: 1563 *cookie = 0; 1564 return NULL; 1565 } 1566 1567 struct mobj *thread_rpc_alloc_payload(size_t size, uint64_t *cookie) 1568 { 1569 return thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie); 1570 } 1571 1572 void thread_rpc_free_payload(uint64_t cookie, struct mobj *mobj) 1573 { 1574 thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie, mobj); 1575 } 1576