1 /* 2 * Copyright (c) 2016, Linaro Limited 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * 2. Redistributions in binary form must reproduce the above copyright notice, 13 * this list of conditions and the following disclaimer in the documentation 14 * and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <platform_config.h> 30 31 #include <arm.h> 32 #include <assert.h> 33 #include <keep.h> 34 #include <kernel/misc.h> 35 #include <kernel/panic.h> 36 #include <kernel/spinlock.h> 37 #include <kernel/tee_ta_manager.h> 38 #include <kernel/thread_defs.h> 39 #include <kernel/thread.h> 40 #include <mm/core_memprot.h> 41 #include <mm/tee_mm.h> 42 #include <mm/tee_mmu.h> 43 #include <mm/tee_pager.h> 44 #include <optee_msg.h> 45 #include <sm/optee_smc.h> 46 #include <sm/sm.h> 47 #include <tee/tee_fs_rpc.h> 48 #include <tee/tee_cryp_utl.h> 49 #include <trace.h> 50 #include <util.h> 51 52 #include "thread_private.h" 53 54 #ifdef CFG_WITH_ARM_TRUSTED_FW 55 #define STACK_TMP_OFFS 0 56 #else 57 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE 58 #endif 59 60 61 #ifdef ARM32 62 #ifdef CFG_CORE_SANITIZE_KADDRESS 63 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) 64 #else 65 #define STACK_TMP_SIZE (1536 + STACK_TMP_OFFS) 66 #endif 67 #define STACK_THREAD_SIZE 8192 68 69 #ifdef CFG_CORE_SANITIZE_KADDRESS 70 #define STACK_ABT_SIZE 3072 71 #else 72 #define STACK_ABT_SIZE 2048 73 #endif 74 75 #endif /*ARM32*/ 76 77 #ifdef ARM64 78 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 79 #define STACK_THREAD_SIZE 8192 80 81 #if TRACE_LEVEL > 0 82 #define STACK_ABT_SIZE 3072 83 #else 84 #define STACK_ABT_SIZE 1024 85 #endif 86 #endif /*ARM64*/ 87 88 struct thread_ctx threads[CFG_NUM_THREADS]; 89 90 static struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE]; 91 92 #ifdef CFG_WITH_STACK_CANARIES 93 #ifdef ARM32 94 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 95 #endif 96 #ifdef ARM64 97 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 98 #endif 99 #define START_CANARY_VALUE 0xdededede 100 #define END_CANARY_VALUE 0xabababab 101 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 102 #define GET_END_CANARY(name, stack_num) \ 103 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 104 #else 105 #define STACK_CANARY_SIZE 0 106 #endif 107 108 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 109 linkage uint32_t name[num_stacks] \ 110 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 111 sizeof(uint32_t)] \ 112 __attribute__((section(".nozi_stack"), \ 113 aligned(STACK_ALIGNMENT))) 114 115 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 116 117 #define GET_STACK(stack) \ 118 ((vaddr_t)(stack) + STACK_SIZE(stack)) 119 120 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, static); 121 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 122 #ifndef CFG_WITH_PAGER 123 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 124 #endif 125 126 const void *stack_tmp_export = (uint8_t *)stack_tmp + sizeof(stack_tmp[0]) - 127 (STACK_TMP_OFFS + STACK_CANARY_SIZE / 2); 128 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]); 129 130 /* 131 * These stack setup info are required by secondary boot cores before they 132 * each locally enable the pager (the mmu). Hence kept in pager sections. 133 */ 134 KEEP_PAGER(stack_tmp_export); 135 KEEP_PAGER(stack_tmp_stride); 136 137 thread_smc_handler_t thread_std_smc_handler_ptr; 138 static thread_smc_handler_t thread_fast_smc_handler_ptr; 139 thread_nintr_handler_t thread_nintr_handler_ptr; 140 thread_pm_handler_t thread_cpu_on_handler_ptr; 141 thread_pm_handler_t thread_cpu_off_handler_ptr; 142 thread_pm_handler_t thread_cpu_suspend_handler_ptr; 143 thread_pm_handler_t thread_cpu_resume_handler_ptr; 144 thread_pm_handler_t thread_system_off_handler_ptr; 145 thread_pm_handler_t thread_system_reset_handler_ptr; 146 147 148 static unsigned int thread_global_lock = SPINLOCK_UNLOCK; 149 static bool thread_prealloc_rpc_cache; 150 151 static void init_canaries(void) 152 { 153 #ifdef CFG_WITH_STACK_CANARIES 154 size_t n; 155 #define INIT_CANARY(name) \ 156 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 157 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 158 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 159 \ 160 *start_canary = START_CANARY_VALUE; \ 161 *end_canary = END_CANARY_VALUE; \ 162 DMSG("#Stack canaries for %s[%zu] with top at %p\n", \ 163 #name, n, (void *)(end_canary - 1)); \ 164 DMSG("watch *%p\n", (void *)end_canary); \ 165 } 166 167 INIT_CANARY(stack_tmp); 168 INIT_CANARY(stack_abt); 169 #ifndef CFG_WITH_PAGER 170 INIT_CANARY(stack_thread); 171 #endif 172 #endif/*CFG_WITH_STACK_CANARIES*/ 173 } 174 175 #define CANARY_DIED(stack, loc, n) \ 176 do { \ 177 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 178 panic(); \ 179 } while (0) 180 181 void thread_check_canaries(void) 182 { 183 #ifdef CFG_WITH_STACK_CANARIES 184 size_t n; 185 186 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 187 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 188 CANARY_DIED(stack_tmp, start, n); 189 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 190 CANARY_DIED(stack_tmp, end, n); 191 } 192 193 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 194 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 195 CANARY_DIED(stack_abt, start, n); 196 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 197 CANARY_DIED(stack_abt, end, n); 198 199 } 200 #ifndef CFG_WITH_PAGER 201 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 202 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 203 CANARY_DIED(stack_thread, start, n); 204 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 205 CANARY_DIED(stack_thread, end, n); 206 } 207 #endif 208 #endif/*CFG_WITH_STACK_CANARIES*/ 209 } 210 211 static void lock_global(void) 212 { 213 cpu_spin_lock(&thread_global_lock); 214 } 215 216 static void unlock_global(void) 217 { 218 cpu_spin_unlock(&thread_global_lock); 219 } 220 221 #ifdef ARM32 222 uint32_t thread_get_exceptions(void) 223 { 224 uint32_t cpsr = read_cpsr(); 225 226 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 227 } 228 229 void thread_set_exceptions(uint32_t exceptions) 230 { 231 uint32_t cpsr = read_cpsr(); 232 233 /* Foreign interrupts must not be unmasked while holding a spinlock */ 234 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 235 assert_have_no_spinlock(); 236 237 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 238 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 239 write_cpsr(cpsr); 240 } 241 #endif /*ARM32*/ 242 243 #ifdef ARM64 244 uint32_t thread_get_exceptions(void) 245 { 246 uint32_t daif = read_daif(); 247 248 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 249 } 250 251 void thread_set_exceptions(uint32_t exceptions) 252 { 253 uint32_t daif = read_daif(); 254 255 /* Foreign interrupts must not be unmasked while holding a spinlock */ 256 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 257 assert_have_no_spinlock(); 258 259 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 260 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 261 write_daif(daif); 262 } 263 #endif /*ARM64*/ 264 265 uint32_t thread_mask_exceptions(uint32_t exceptions) 266 { 267 uint32_t state = thread_get_exceptions(); 268 269 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 270 return state; 271 } 272 273 void thread_unmask_exceptions(uint32_t state) 274 { 275 thread_set_exceptions(state & THREAD_EXCP_ALL); 276 } 277 278 279 struct thread_core_local *thread_get_core_local(void) 280 { 281 uint32_t cpu_id = get_core_pos(); 282 283 /* 284 * Foreign interrupts must be disabled before playing with core_local 285 * since we otherwise may be rescheduled to a different core in the 286 * middle of this function. 287 */ 288 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 289 290 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 291 return &thread_core_local[cpu_id]; 292 } 293 294 static void thread_lazy_save_ns_vfp(void) 295 { 296 #ifdef CFG_WITH_VFP 297 struct thread_ctx *thr = threads + thread_get_id(); 298 299 thr->vfp_state.ns_saved = false; 300 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW) 301 /* 302 * ARM TF saves and restores CPACR_EL1, so we must assume NS world 303 * uses VFP and always preserve the register file when secure world 304 * is about to use it 305 */ 306 thr->vfp_state.ns.force_save = true; 307 #endif 308 vfp_lazy_save_state_init(&thr->vfp_state.ns); 309 #endif /*CFG_WITH_VFP*/ 310 } 311 312 static void thread_lazy_restore_ns_vfp(void) 313 { 314 #ifdef CFG_WITH_VFP 315 struct thread_ctx *thr = threads + thread_get_id(); 316 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 317 318 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 319 320 if (tuv && tuv->lazy_saved && !tuv->saved) { 321 vfp_lazy_save_state_final(&tuv->vfp); 322 tuv->saved = true; 323 } 324 325 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 326 thr->vfp_state.ns_saved = false; 327 #endif /*CFG_WITH_VFP*/ 328 } 329 330 #ifdef ARM32 331 static void init_regs(struct thread_ctx *thread, 332 struct thread_smc_args *args) 333 { 334 thread->regs.pc = (uint32_t)thread_std_smc_entry; 335 336 /* 337 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 338 * Asynchronous abort and unmasked native interrupts. 339 */ 340 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 341 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A | 342 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT); 343 /* Enable thumb mode if it's a thumb instruction */ 344 if (thread->regs.pc & 1) 345 thread->regs.cpsr |= CPSR_T; 346 /* Reinitialize stack pointer */ 347 thread->regs.svc_sp = thread->stack_va_end; 348 349 /* 350 * Copy arguments into context. This will make the 351 * arguments appear in r0-r7 when thread is started. 352 */ 353 thread->regs.r0 = args->a0; 354 thread->regs.r1 = args->a1; 355 thread->regs.r2 = args->a2; 356 thread->regs.r3 = args->a3; 357 thread->regs.r4 = args->a4; 358 thread->regs.r5 = args->a5; 359 thread->regs.r6 = args->a6; 360 thread->regs.r7 = args->a7; 361 } 362 #endif /*ARM32*/ 363 364 #ifdef ARM64 365 static void init_regs(struct thread_ctx *thread, 366 struct thread_smc_args *args) 367 { 368 thread->regs.pc = (uint64_t)thread_std_smc_entry; 369 370 /* 371 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 372 * Asynchronous abort and unmasked native interrupts. 373 */ 374 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 375 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT); 376 /* Reinitialize stack pointer */ 377 thread->regs.sp = thread->stack_va_end; 378 379 /* 380 * Copy arguments into context. This will make the 381 * arguments appear in x0-x7 when thread is started. 382 */ 383 thread->regs.x[0] = args->a0; 384 thread->regs.x[1] = args->a1; 385 thread->regs.x[2] = args->a2; 386 thread->regs.x[3] = args->a3; 387 thread->regs.x[4] = args->a4; 388 thread->regs.x[5] = args->a5; 389 thread->regs.x[6] = args->a6; 390 thread->regs.x[7] = args->a7; 391 392 /* Set up frame pointer as per the Aarch64 AAPCS */ 393 thread->regs.x[29] = 0; 394 } 395 #endif /*ARM64*/ 396 397 void thread_init_boot_thread(void) 398 { 399 struct thread_core_local *l = thread_get_core_local(); 400 size_t n; 401 402 for (n = 0; n < CFG_NUM_THREADS; n++) { 403 TAILQ_INIT(&threads[n].mutexes); 404 TAILQ_INIT(&threads[n].tsd.sess_stack); 405 #ifdef CFG_SMALL_PAGE_USER_TA 406 SLIST_INIT(&threads[n].tsd.pgt_cache); 407 #endif 408 } 409 410 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 411 thread_core_local[n].curr_thread = -1; 412 413 l->curr_thread = 0; 414 threads[0].state = THREAD_STATE_ACTIVE; 415 } 416 417 void thread_clr_boot_thread(void) 418 { 419 struct thread_core_local *l = thread_get_core_local(); 420 421 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 422 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 423 assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes)); 424 threads[l->curr_thread].state = THREAD_STATE_FREE; 425 l->curr_thread = -1; 426 } 427 428 static void thread_alloc_and_run(struct thread_smc_args *args) 429 { 430 size_t n; 431 struct thread_core_local *l = thread_get_core_local(); 432 bool found_thread = false; 433 434 assert(l->curr_thread == -1); 435 436 lock_global(); 437 438 for (n = 0; n < CFG_NUM_THREADS; n++) { 439 if (threads[n].state == THREAD_STATE_FREE) { 440 threads[n].state = THREAD_STATE_ACTIVE; 441 found_thread = true; 442 break; 443 } 444 } 445 446 unlock_global(); 447 448 if (!found_thread) { 449 args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT; 450 return; 451 } 452 453 l->curr_thread = n; 454 455 threads[n].flags = 0; 456 init_regs(threads + n, args); 457 458 /* Save Hypervisor Client ID */ 459 threads[n].hyp_clnt_id = args->a7; 460 461 thread_lazy_save_ns_vfp(); 462 thread_resume(&threads[n].regs); 463 } 464 465 #ifdef ARM32 466 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 467 struct thread_smc_args *args) 468 { 469 /* 470 * Update returned values from RPC, values will appear in 471 * r0-r3 when thread is resumed. 472 */ 473 regs->r0 = args->a0; 474 regs->r1 = args->a1; 475 regs->r2 = args->a2; 476 regs->r3 = args->a3; 477 regs->r4 = args->a4; 478 regs->r5 = args->a5; 479 } 480 #endif /*ARM32*/ 481 482 #ifdef ARM64 483 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 484 struct thread_smc_args *args) 485 { 486 /* 487 * Update returned values from RPC, values will appear in 488 * x0-x3 when thread is resumed. 489 */ 490 regs->x[0] = args->a0; 491 regs->x[1] = args->a1; 492 regs->x[2] = args->a2; 493 regs->x[3] = args->a3; 494 regs->x[4] = args->a4; 495 regs->x[5] = args->a5; 496 } 497 #endif /*ARM64*/ 498 499 #ifdef ARM32 500 static bool is_from_user(uint32_t cpsr) 501 { 502 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 503 } 504 #endif 505 506 #ifdef ARM64 507 static bool is_from_user(uint32_t cpsr) 508 { 509 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 510 return true; 511 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 512 SPSR_64_MODE_EL0) 513 return true; 514 return false; 515 } 516 #endif 517 518 static bool is_user_mode(struct thread_ctx_regs *regs) 519 { 520 return is_from_user((uint32_t)regs->cpsr); 521 } 522 523 static void thread_resume_from_rpc(struct thread_smc_args *args) 524 { 525 size_t n = args->a3; /* thread id */ 526 struct thread_core_local *l = thread_get_core_local(); 527 uint32_t rv = 0; 528 529 assert(l->curr_thread == -1); 530 531 lock_global(); 532 533 if (n < CFG_NUM_THREADS && 534 threads[n].state == THREAD_STATE_SUSPENDED && 535 args->a7 == threads[n].hyp_clnt_id) 536 threads[n].state = THREAD_STATE_ACTIVE; 537 else 538 rv = OPTEE_SMC_RETURN_ERESUME; 539 540 unlock_global(); 541 542 if (rv) { 543 args->a0 = rv; 544 return; 545 } 546 547 l->curr_thread = n; 548 549 if (is_user_mode(&threads[n].regs)) 550 tee_ta_update_session_utime_resume(); 551 552 if (threads[n].have_user_map) 553 core_mmu_set_user_map(&threads[n].user_map); 554 555 /* 556 * Return from RPC to request service of a foreign interrupt must not 557 * get parameters from non-secure world. 558 */ 559 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 560 copy_a0_to_a5(&threads[n].regs, args); 561 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 562 } 563 564 thread_lazy_save_ns_vfp(); 565 thread_resume(&threads[n].regs); 566 } 567 568 void thread_handle_fast_smc(struct thread_smc_args *args) 569 { 570 thread_check_canaries(); 571 thread_fast_smc_handler_ptr(args); 572 /* Fast handlers must not unmask any exceptions */ 573 assert(thread_get_exceptions() == THREAD_EXCP_ALL); 574 } 575 576 void thread_handle_std_smc(struct thread_smc_args *args) 577 { 578 thread_check_canaries(); 579 580 if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC) 581 thread_resume_from_rpc(args); 582 else 583 thread_alloc_and_run(args); 584 } 585 586 /* Helper routine for the assembly function thread_std_smc_entry() */ 587 void __thread_std_smc_entry(struct thread_smc_args *args) 588 { 589 590 thread_std_smc_handler_ptr(args); 591 592 if (args->a0 == OPTEE_SMC_RETURN_OK) { 593 struct thread_ctx *thr = threads + thread_get_id(); 594 595 tee_fs_rpc_cache_clear(&thr->tsd); 596 if (!thread_prealloc_rpc_cache) { 597 thread_rpc_free_arg(thr->rpc_carg); 598 thr->rpc_carg = 0; 599 thr->rpc_arg = 0; 600 } 601 } 602 } 603 604 void *thread_get_tmp_sp(void) 605 { 606 struct thread_core_local *l = thread_get_core_local(); 607 608 return (void *)l->tmp_stack_va_end; 609 } 610 611 #ifdef ARM64 612 vaddr_t thread_get_saved_thread_sp(void) 613 { 614 struct thread_core_local *l = thread_get_core_local(); 615 int ct = l->curr_thread; 616 617 assert(ct != -1); 618 return threads[ct].kern_sp; 619 } 620 #endif /*ARM64*/ 621 622 vaddr_t thread_stack_start(void) 623 { 624 struct thread_ctx *thr; 625 int ct = thread_get_id_may_fail(); 626 627 if (ct == -1) 628 return 0; 629 630 thr = threads + ct; 631 return thr->stack_va_end - STACK_THREAD_SIZE; 632 } 633 634 size_t thread_stack_size(void) 635 { 636 return STACK_THREAD_SIZE; 637 } 638 639 void thread_state_free(void) 640 { 641 struct thread_core_local *l = thread_get_core_local(); 642 int ct = l->curr_thread; 643 644 assert(ct != -1); 645 assert(TAILQ_EMPTY(&threads[ct].mutexes)); 646 647 thread_lazy_restore_ns_vfp(); 648 tee_pager_release_phys( 649 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 650 STACK_THREAD_SIZE); 651 652 lock_global(); 653 654 assert(threads[ct].state == THREAD_STATE_ACTIVE); 655 threads[ct].state = THREAD_STATE_FREE; 656 threads[ct].flags = 0; 657 l->curr_thread = -1; 658 659 unlock_global(); 660 } 661 662 #ifdef CFG_WITH_PAGER 663 static void release_unused_kernel_stack(struct thread_ctx *thr) 664 { 665 vaddr_t sp = thr->regs.svc_sp; 666 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 667 size_t len = sp - base; 668 669 tee_pager_release_phys((void *)base, len); 670 } 671 #else 672 static void release_unused_kernel_stack(struct thread_ctx *thr __unused) 673 { 674 } 675 #endif 676 677 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 678 { 679 struct thread_core_local *l = thread_get_core_local(); 680 int ct = l->curr_thread; 681 682 assert(ct != -1); 683 684 thread_check_canaries(); 685 686 release_unused_kernel_stack(threads + ct); 687 688 if (is_from_user(cpsr)) { 689 thread_user_save_vfp(); 690 tee_ta_update_session_utime_suspend(); 691 tee_ta_gprof_sample_pc(pc); 692 } 693 thread_lazy_restore_ns_vfp(); 694 695 lock_global(); 696 697 assert(threads[ct].state == THREAD_STATE_ACTIVE); 698 threads[ct].flags |= flags; 699 threads[ct].regs.cpsr = cpsr; 700 threads[ct].regs.pc = pc; 701 threads[ct].state = THREAD_STATE_SUSPENDED; 702 703 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 704 if (threads[ct].have_user_map) { 705 core_mmu_get_user_map(&threads[ct].user_map); 706 core_mmu_set_user_map(NULL); 707 } 708 709 l->curr_thread = -1; 710 711 unlock_global(); 712 713 return ct; 714 } 715 716 #ifdef ARM32 717 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 718 { 719 l->tmp_stack_va_end = sp; 720 thread_set_irq_sp(sp); 721 thread_set_fiq_sp(sp); 722 } 723 724 static void set_abt_stack(struct thread_core_local *l __unused, vaddr_t sp) 725 { 726 thread_set_abt_sp(sp); 727 } 728 #endif /*ARM32*/ 729 730 #ifdef ARM64 731 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 732 { 733 /* 734 * We're already using the tmp stack when this function is called 735 * so there's no need to assign it to any stack pointer. However, 736 * we'll need to restore it at different times so store it here. 737 */ 738 l->tmp_stack_va_end = sp; 739 } 740 741 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 742 { 743 l->abt_stack_va_end = sp; 744 } 745 #endif /*ARM64*/ 746 747 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 748 { 749 if (thread_id >= CFG_NUM_THREADS) 750 return false; 751 threads[thread_id].stack_va_end = sp; 752 return true; 753 } 754 755 int thread_get_id_may_fail(void) 756 { 757 /* 758 * thread_get_core_local() requires foreign interrupts to be disabled 759 */ 760 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 761 struct thread_core_local *l = thread_get_core_local(); 762 int ct = l->curr_thread; 763 764 thread_unmask_exceptions(exceptions); 765 return ct; 766 } 767 768 int thread_get_id(void) 769 { 770 int ct = thread_get_id_may_fail(); 771 772 assert(ct >= 0 && ct < CFG_NUM_THREADS); 773 return ct; 774 } 775 776 static void init_handlers(const struct thread_handlers *handlers) 777 { 778 thread_std_smc_handler_ptr = handlers->std_smc; 779 thread_fast_smc_handler_ptr = handlers->fast_smc; 780 thread_nintr_handler_ptr = handlers->nintr; 781 thread_cpu_on_handler_ptr = handlers->cpu_on; 782 thread_cpu_off_handler_ptr = handlers->cpu_off; 783 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 784 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 785 thread_system_off_handler_ptr = handlers->system_off; 786 thread_system_reset_handler_ptr = handlers->system_reset; 787 } 788 789 #ifdef CFG_WITH_PAGER 790 static void init_thread_stacks(void) 791 { 792 size_t n; 793 794 /* 795 * Allocate virtual memory for thread stacks. 796 */ 797 for (n = 0; n < CFG_NUM_THREADS; n++) { 798 tee_mm_entry_t *mm; 799 vaddr_t sp; 800 801 /* Find vmem for thread stack and its protection gap */ 802 mm = tee_mm_alloc(&tee_mm_vcore, 803 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 804 assert(mm); 805 806 /* Claim eventual physical page */ 807 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 808 true); 809 810 /* Add the area to the pager */ 811 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 812 tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE, 813 TEE_MATTR_PRW | TEE_MATTR_LOCKED, 814 NULL, NULL); 815 816 /* init effective stack */ 817 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 818 if (!thread_init_stack(n, sp)) 819 panic("init stack failed"); 820 } 821 } 822 #else 823 static void init_thread_stacks(void) 824 { 825 size_t n; 826 827 /* Assign the thread stacks */ 828 for (n = 0; n < CFG_NUM_THREADS; n++) { 829 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 830 panic("thread_init_stack failed"); 831 } 832 } 833 #endif /*CFG_WITH_PAGER*/ 834 835 void thread_init_primary(const struct thread_handlers *handlers) 836 { 837 init_handlers(handlers); 838 839 /* Initialize canaries around the stacks */ 840 init_canaries(); 841 842 init_thread_stacks(); 843 pgt_init(); 844 } 845 846 static void init_sec_mon(size_t pos __maybe_unused) 847 { 848 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 849 /* Initialize secure monitor */ 850 sm_init(GET_STACK(stack_tmp[pos])); 851 #endif 852 } 853 854 void thread_init_per_cpu(void) 855 { 856 size_t pos = get_core_pos(); 857 struct thread_core_local *l = thread_get_core_local(); 858 859 init_sec_mon(pos); 860 861 set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); 862 set_abt_stack(l, GET_STACK(stack_abt[pos])); 863 864 thread_init_vbar(); 865 } 866 867 struct thread_specific_data *thread_get_tsd(void) 868 { 869 return &threads[thread_get_id()].tsd; 870 } 871 872 struct thread_ctx_regs *thread_get_ctx_regs(void) 873 { 874 struct thread_core_local *l = thread_get_core_local(); 875 876 assert(l->curr_thread != -1); 877 return &threads[l->curr_thread].regs; 878 } 879 880 void thread_set_foreign_intr(bool enable) 881 { 882 /* thread_get_core_local() requires foreign interrupts to be disabled */ 883 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 884 struct thread_core_local *l; 885 886 l = thread_get_core_local(); 887 888 assert(l->curr_thread != -1); 889 890 if (enable) { 891 threads[l->curr_thread].flags |= 892 THREAD_FLAGS_FOREIGN_INTR_ENABLE; 893 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 894 } else { 895 /* 896 * No need to disable foreign interrupts here since they're 897 * already disabled above. 898 */ 899 threads[l->curr_thread].flags &= 900 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; 901 } 902 } 903 904 void thread_restore_foreign_intr(void) 905 { 906 /* thread_get_core_local() requires foreign interrupts to be disabled */ 907 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 908 struct thread_core_local *l; 909 910 l = thread_get_core_local(); 911 912 assert(l->curr_thread != -1); 913 914 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) 915 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 916 } 917 918 #ifdef CFG_WITH_VFP 919 uint32_t thread_kernel_enable_vfp(void) 920 { 921 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 922 struct thread_ctx *thr = threads + thread_get_id(); 923 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 924 925 assert(!vfp_is_enabled()); 926 927 if (!thr->vfp_state.ns_saved) { 928 vfp_lazy_save_state_final(&thr->vfp_state.ns); 929 thr->vfp_state.ns_saved = true; 930 } else if (thr->vfp_state.sec_lazy_saved && 931 !thr->vfp_state.sec_saved) { 932 /* 933 * This happens when we're handling an abort while the 934 * thread was using the VFP state. 935 */ 936 vfp_lazy_save_state_final(&thr->vfp_state.sec); 937 thr->vfp_state.sec_saved = true; 938 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 939 /* 940 * This can happen either during syscall or abort 941 * processing (while processing a syscall). 942 */ 943 vfp_lazy_save_state_final(&tuv->vfp); 944 tuv->saved = true; 945 } 946 947 vfp_enable(); 948 return exceptions; 949 } 950 951 void thread_kernel_disable_vfp(uint32_t state) 952 { 953 uint32_t exceptions; 954 955 assert(vfp_is_enabled()); 956 957 vfp_disable(); 958 exceptions = thread_get_exceptions(); 959 assert(exceptions & THREAD_EXCP_FOREIGN_INTR); 960 exceptions &= ~THREAD_EXCP_FOREIGN_INTR; 961 exceptions |= state & THREAD_EXCP_FOREIGN_INTR; 962 thread_set_exceptions(exceptions); 963 } 964 965 void thread_kernel_save_vfp(void) 966 { 967 struct thread_ctx *thr = threads + thread_get_id(); 968 969 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 970 if (vfp_is_enabled()) { 971 vfp_lazy_save_state_init(&thr->vfp_state.sec); 972 thr->vfp_state.sec_lazy_saved = true; 973 } 974 } 975 976 void thread_kernel_restore_vfp(void) 977 { 978 struct thread_ctx *thr = threads + thread_get_id(); 979 980 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 981 assert(!vfp_is_enabled()); 982 if (thr->vfp_state.sec_lazy_saved) { 983 vfp_lazy_restore_state(&thr->vfp_state.sec, 984 thr->vfp_state.sec_saved); 985 thr->vfp_state.sec_saved = false; 986 thr->vfp_state.sec_lazy_saved = false; 987 } 988 } 989 990 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 991 { 992 struct thread_ctx *thr = threads + thread_get_id(); 993 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 994 995 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 996 assert(!vfp_is_enabled()); 997 998 if (!thr->vfp_state.ns_saved) { 999 vfp_lazy_save_state_final(&thr->vfp_state.ns); 1000 thr->vfp_state.ns_saved = true; 1001 } else if (tuv && uvfp != tuv) { 1002 if (tuv->lazy_saved && !tuv->saved) { 1003 vfp_lazy_save_state_final(&tuv->vfp); 1004 tuv->saved = true; 1005 } 1006 } 1007 1008 if (uvfp->lazy_saved) 1009 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 1010 uvfp->lazy_saved = false; 1011 uvfp->saved = false; 1012 1013 thr->vfp_state.uvfp = uvfp; 1014 vfp_enable(); 1015 } 1016 1017 void thread_user_save_vfp(void) 1018 { 1019 struct thread_ctx *thr = threads + thread_get_id(); 1020 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1021 1022 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1023 if (!vfp_is_enabled()) 1024 return; 1025 1026 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1027 vfp_lazy_save_state_init(&tuv->vfp); 1028 tuv->lazy_saved = true; 1029 } 1030 1031 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1032 { 1033 struct thread_ctx *thr = threads + thread_get_id(); 1034 1035 if (uvfp == thr->vfp_state.uvfp) 1036 thr->vfp_state.uvfp = NULL; 1037 uvfp->lazy_saved = false; 1038 uvfp->saved = false; 1039 } 1040 #endif /*CFG_WITH_VFP*/ 1041 1042 #ifdef ARM32 1043 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1044 { 1045 uint32_t s; 1046 1047 if (!is_32bit) 1048 return false; 1049 1050 s = read_spsr(); 1051 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1052 s |= CPSR_MODE_USR; 1053 if (entry_func & 1) 1054 s |= CPSR_T; 1055 *spsr = s; 1056 return true; 1057 } 1058 #endif 1059 1060 #ifdef ARM64 1061 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1062 { 1063 uint32_t s; 1064 1065 if (is_32bit) { 1066 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1067 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1068 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1069 } else { 1070 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1071 } 1072 1073 *spsr = s; 1074 return true; 1075 } 1076 #endif 1077 1078 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1079 unsigned long a2, unsigned long a3, unsigned long user_sp, 1080 unsigned long entry_func, bool is_32bit, 1081 uint32_t *exit_status0, uint32_t *exit_status1) 1082 { 1083 uint32_t spsr; 1084 1085 tee_ta_update_session_utime_resume(); 1086 1087 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1088 *exit_status0 = 1; /* panic */ 1089 *exit_status1 = 0xbadbadba; 1090 return 0; 1091 } 1092 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1093 spsr, exit_status0, exit_status1); 1094 } 1095 1096 void thread_add_mutex(struct mutex *m) 1097 { 1098 struct thread_core_local *l = thread_get_core_local(); 1099 int ct = l->curr_thread; 1100 1101 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1102 assert(m->owner_id == MUTEX_OWNER_ID_NONE); 1103 m->owner_id = ct; 1104 TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link); 1105 } 1106 1107 void thread_rem_mutex(struct mutex *m) 1108 { 1109 struct thread_core_local *l = thread_get_core_local(); 1110 int ct = l->curr_thread; 1111 1112 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1113 assert(m->owner_id == ct); 1114 m->owner_id = MUTEX_OWNER_ID_NONE; 1115 TAILQ_REMOVE(&threads[ct].mutexes, m, link); 1116 } 1117 1118 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie) 1119 { 1120 bool rv; 1121 size_t n; 1122 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1123 1124 lock_global(); 1125 1126 for (n = 0; n < CFG_NUM_THREADS; n++) { 1127 if (threads[n].state != THREAD_STATE_FREE) { 1128 rv = false; 1129 goto out; 1130 } 1131 } 1132 1133 rv = true; 1134 for (n = 0; n < CFG_NUM_THREADS; n++) { 1135 if (threads[n].rpc_arg) { 1136 *cookie = threads[n].rpc_carg; 1137 threads[n].rpc_carg = 0; 1138 threads[n].rpc_arg = NULL; 1139 goto out; 1140 } 1141 } 1142 1143 *cookie = 0; 1144 thread_prealloc_rpc_cache = false; 1145 out: 1146 unlock_global(); 1147 thread_unmask_exceptions(exceptions); 1148 return rv; 1149 } 1150 1151 bool thread_enable_prealloc_rpc_cache(void) 1152 { 1153 bool rv; 1154 size_t n; 1155 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1156 1157 lock_global(); 1158 1159 for (n = 0; n < CFG_NUM_THREADS; n++) { 1160 if (threads[n].state != THREAD_STATE_FREE) { 1161 rv = false; 1162 goto out; 1163 } 1164 } 1165 1166 rv = true; 1167 thread_prealloc_rpc_cache = true; 1168 out: 1169 unlock_global(); 1170 thread_unmask_exceptions(exceptions); 1171 return rv; 1172 } 1173 1174 static bool check_alloced_shm(paddr_t pa, size_t len, size_t align) 1175 { 1176 if (pa & (align - 1)) 1177 return false; 1178 return core_pbuf_is(CORE_MEM_NSEC_SHM, pa, len); 1179 } 1180 1181 void thread_rpc_free_arg(uint64_t cookie) 1182 { 1183 if (cookie) { 1184 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1185 OPTEE_SMC_RETURN_RPC_FREE 1186 }; 1187 1188 reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2); 1189 thread_rpc(rpc_args); 1190 } 1191 } 1192 1193 void thread_rpc_alloc_arg(size_t size, paddr_t *arg, uint64_t *cookie) 1194 { 1195 paddr_t pa; 1196 uint64_t co; 1197 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1198 OPTEE_SMC_RETURN_RPC_ALLOC, size 1199 }; 1200 1201 thread_rpc(rpc_args); 1202 1203 pa = reg_pair_to_64(rpc_args[1], rpc_args[2]); 1204 co = reg_pair_to_64(rpc_args[4], rpc_args[5]); 1205 if (!check_alloced_shm(pa, size, sizeof(uint64_t))) { 1206 thread_rpc_free_arg(co); 1207 pa = 0; 1208 co = 0; 1209 } 1210 1211 *arg = pa; 1212 *cookie = co; 1213 } 1214 1215 static bool get_rpc_arg(uint32_t cmd, size_t num_params, 1216 struct optee_msg_arg **arg_ret, uint64_t *carg_ret) 1217 { 1218 struct thread_ctx *thr = threads + thread_get_id(); 1219 struct optee_msg_arg *arg = thr->rpc_arg; 1220 size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS); 1221 paddr_t p; 1222 uint64_t c; 1223 1224 if (num_params > THREAD_RPC_MAX_NUM_PARAMS) 1225 return false; 1226 1227 if (!arg) { 1228 thread_rpc_alloc_arg(sz, &p, &c); 1229 if (!p) 1230 return false; 1231 if (!ALIGNMENT_IS_OK(p, struct optee_msg_arg)) 1232 goto bad; 1233 arg = phys_to_virt(p, MEM_AREA_NSEC_SHM); 1234 if (!arg) 1235 goto bad; 1236 1237 thr->rpc_arg = arg; 1238 thr->rpc_carg = c; 1239 } 1240 1241 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); 1242 arg->cmd = cmd; 1243 arg->num_params = num_params; 1244 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1245 1246 *arg_ret = arg; 1247 *carg_ret = thr->rpc_carg; 1248 return true; 1249 1250 bad: 1251 thread_rpc_free_arg(c); 1252 return false; 1253 } 1254 1255 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1256 struct optee_msg_param *params) 1257 { 1258 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1259 struct optee_msg_arg *arg; 1260 uint64_t carg; 1261 size_t n; 1262 1263 /* 1264 * Break recursion in case plat_prng_add_jitter_entropy_norpc() 1265 * sleeps on a mutex or unlocks a mutex with a sleeper (contended 1266 * mutex). 1267 */ 1268 if (cmd != OPTEE_MSG_RPC_CMD_WAIT_QUEUE) 1269 plat_prng_add_jitter_entropy_norpc(); 1270 1271 if (!get_rpc_arg(cmd, num_params, &arg, &carg)) 1272 return TEE_ERROR_OUT_OF_MEMORY; 1273 1274 memcpy(arg->params, params, sizeof(*params) * num_params); 1275 1276 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1277 thread_rpc(rpc_args); 1278 for (n = 0; n < num_params; n++) { 1279 switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) { 1280 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 1281 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 1282 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 1283 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 1284 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 1285 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 1286 params[n] = arg->params[n]; 1287 break; 1288 default: 1289 break; 1290 } 1291 } 1292 return arg->ret; 1293 } 1294 1295 /** 1296 * Free physical memory previously allocated with thread_rpc_alloc() 1297 * 1298 * @cookie: cookie received when allocating the buffer 1299 * @bt: must be the same as supplied when allocating 1300 */ 1301 static void thread_rpc_free(unsigned int bt, uint64_t cookie) 1302 { 1303 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1304 struct optee_msg_arg *arg; 1305 uint64_t carg; 1306 1307 if (!get_rpc_arg(OPTEE_MSG_RPC_CMD_SHM_FREE, 1, &arg, &carg)) 1308 return; 1309 1310 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1311 arg->params[0].u.value.a = bt; 1312 arg->params[0].u.value.b = cookie; 1313 arg->params[0].u.value.c = 0; 1314 1315 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1316 thread_rpc(rpc_args); 1317 } 1318 1319 /** 1320 * Allocates shared memory buffer via RPC 1321 * 1322 * @size: size in bytes of shared memory buffer 1323 * @align: required alignment of buffer 1324 * @bt: buffer type OPTEE_MSG_RPC_SHM_TYPE_* 1325 * @payload: returned physical pointer to buffer, 0 if allocation 1326 * failed. 1327 * @cookie: returned cookie used when freeing the buffer 1328 */ 1329 static void thread_rpc_alloc(size_t size, size_t align, unsigned int bt, 1330 paddr_t *payload, uint64_t *cookie) 1331 { 1332 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1333 struct optee_msg_arg *arg; 1334 uint64_t carg; 1335 1336 if (!get_rpc_arg(OPTEE_MSG_RPC_CMD_SHM_ALLOC, 1, &arg, &carg)) 1337 goto fail; 1338 1339 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1340 arg->params[0].u.value.a = bt; 1341 arg->params[0].u.value.b = size; 1342 arg->params[0].u.value.c = align; 1343 1344 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1345 thread_rpc(rpc_args); 1346 if (arg->ret != TEE_SUCCESS) 1347 goto fail; 1348 1349 if (arg->num_params != 1) 1350 goto fail; 1351 1352 if (arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT) 1353 goto fail; 1354 1355 if (!check_alloced_shm(arg->params[0].u.tmem.buf_ptr, size, align)) { 1356 thread_rpc_free(bt, arg->params[0].u.tmem.shm_ref); 1357 goto fail; 1358 } 1359 1360 *payload = arg->params[0].u.tmem.buf_ptr; 1361 *cookie = arg->params[0].u.tmem.shm_ref; 1362 return; 1363 fail: 1364 *payload = 0; 1365 *cookie = 0; 1366 } 1367 1368 void thread_rpc_alloc_payload(size_t size, paddr_t *payload, uint64_t *cookie) 1369 { 1370 thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, payload, cookie); 1371 } 1372 1373 void thread_rpc_free_payload(uint64_t cookie) 1374 { 1375 thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie); 1376 } 1377