1 /* 2 * Copyright (c) 2016, Linaro Limited 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * 2. Redistributions in binary form must reproduce the above copyright notice, 13 * this list of conditions and the following disclaimer in the documentation 14 * and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <platform_config.h> 30 31 #include <arm.h> 32 #include <assert.h> 33 #include <keep.h> 34 #include <kernel/asan.h> 35 #include <kernel/misc.h> 36 #include <kernel/msg_param.h> 37 #include <kernel/panic.h> 38 #include <kernel/spinlock.h> 39 #include <kernel/tee_ta_manager.h> 40 #include <kernel/thread_defs.h> 41 #include <kernel/thread.h> 42 #include <mm/core_memprot.h> 43 #include <mm/mobj.h> 44 #include <mm/tee_mm.h> 45 #include <mm/tee_mmu.h> 46 #include <mm/tee_pager.h> 47 #include <optee_msg.h> 48 #include <sm/optee_smc.h> 49 #include <sm/sm.h> 50 #include <tee/tee_cryp_utl.h> 51 #include <tee/tee_fs_rpc.h> 52 #include <trace.h> 53 #include <util.h> 54 55 #include "thread_private.h" 56 57 #ifdef CFG_WITH_ARM_TRUSTED_FW 58 #define STACK_TMP_OFFS 0 59 #else 60 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE 61 #endif 62 63 64 #ifdef ARM32 65 #ifdef CFG_CORE_SANITIZE_KADDRESS 66 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) 67 #else 68 #define STACK_TMP_SIZE (1536 + STACK_TMP_OFFS) 69 #endif 70 #define STACK_THREAD_SIZE 8192 71 72 #ifdef CFG_CORE_SANITIZE_KADDRESS 73 #define STACK_ABT_SIZE 3072 74 #else 75 #define STACK_ABT_SIZE 2048 76 #endif 77 78 #endif /*ARM32*/ 79 80 #ifdef ARM64 81 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 82 #define STACK_THREAD_SIZE 8192 83 84 #if TRACE_LEVEL > 0 85 #define STACK_ABT_SIZE 3072 86 #else 87 #define STACK_ABT_SIZE 1024 88 #endif 89 #endif /*ARM64*/ 90 91 struct thread_ctx threads[CFG_NUM_THREADS]; 92 93 struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE]; 94 95 #ifdef CFG_WITH_STACK_CANARIES 96 #ifdef ARM32 97 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 98 #endif 99 #ifdef ARM64 100 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 101 #endif 102 #define START_CANARY_VALUE 0xdededede 103 #define END_CANARY_VALUE 0xabababab 104 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 105 #define GET_END_CANARY(name, stack_num) \ 106 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 107 #else 108 #define STACK_CANARY_SIZE 0 109 #endif 110 111 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 112 linkage uint32_t name[num_stacks] \ 113 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 114 sizeof(uint32_t)] \ 115 __attribute__((section(".nozi_stack"), \ 116 aligned(STACK_ALIGNMENT))) 117 118 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 119 120 #define GET_STACK(stack) \ 121 ((vaddr_t)(stack) + STACK_SIZE(stack)) 122 123 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, static); 124 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 125 #ifndef CFG_WITH_PAGER 126 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 127 #endif 128 129 const void *stack_tmp_export = (uint8_t *)stack_tmp + sizeof(stack_tmp[0]) - 130 (STACK_TMP_OFFS + STACK_CANARY_SIZE / 2); 131 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]); 132 133 /* 134 * These stack setup info are required by secondary boot cores before they 135 * each locally enable the pager (the mmu). Hence kept in pager sections. 136 */ 137 KEEP_PAGER(stack_tmp_export); 138 KEEP_PAGER(stack_tmp_stride); 139 140 thread_smc_handler_t thread_std_smc_handler_ptr; 141 static thread_smc_handler_t thread_fast_smc_handler_ptr; 142 thread_nintr_handler_t thread_nintr_handler_ptr; 143 thread_pm_handler_t thread_cpu_on_handler_ptr; 144 thread_pm_handler_t thread_cpu_off_handler_ptr; 145 thread_pm_handler_t thread_cpu_suspend_handler_ptr; 146 thread_pm_handler_t thread_cpu_resume_handler_ptr; 147 thread_pm_handler_t thread_system_off_handler_ptr; 148 thread_pm_handler_t thread_system_reset_handler_ptr; 149 150 151 static unsigned int thread_global_lock = SPINLOCK_UNLOCK; 152 static bool thread_prealloc_rpc_cache; 153 154 static void init_canaries(void) 155 { 156 #ifdef CFG_WITH_STACK_CANARIES 157 size_t n; 158 #define INIT_CANARY(name) \ 159 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 160 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 161 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 162 \ 163 *start_canary = START_CANARY_VALUE; \ 164 *end_canary = END_CANARY_VALUE; \ 165 DMSG("#Stack canaries for %s[%zu] with top at %p\n", \ 166 #name, n, (void *)(end_canary - 1)); \ 167 DMSG("watch *%p\n", (void *)end_canary); \ 168 } 169 170 INIT_CANARY(stack_tmp); 171 INIT_CANARY(stack_abt); 172 #ifndef CFG_WITH_PAGER 173 INIT_CANARY(stack_thread); 174 #endif 175 #endif/*CFG_WITH_STACK_CANARIES*/ 176 } 177 178 #define CANARY_DIED(stack, loc, n) \ 179 do { \ 180 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 181 panic(); \ 182 } while (0) 183 184 void thread_check_canaries(void) 185 { 186 #ifdef CFG_WITH_STACK_CANARIES 187 size_t n; 188 189 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 190 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 191 CANARY_DIED(stack_tmp, start, n); 192 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 193 CANARY_DIED(stack_tmp, end, n); 194 } 195 196 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 197 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 198 CANARY_DIED(stack_abt, start, n); 199 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 200 CANARY_DIED(stack_abt, end, n); 201 202 } 203 #ifndef CFG_WITH_PAGER 204 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 205 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 206 CANARY_DIED(stack_thread, start, n); 207 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 208 CANARY_DIED(stack_thread, end, n); 209 } 210 #endif 211 #endif/*CFG_WITH_STACK_CANARIES*/ 212 } 213 214 static void lock_global(void) 215 { 216 cpu_spin_lock(&thread_global_lock); 217 } 218 219 static void unlock_global(void) 220 { 221 cpu_spin_unlock(&thread_global_lock); 222 } 223 224 #ifdef ARM32 225 uint32_t thread_get_exceptions(void) 226 { 227 uint32_t cpsr = read_cpsr(); 228 229 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 230 } 231 232 void thread_set_exceptions(uint32_t exceptions) 233 { 234 uint32_t cpsr = read_cpsr(); 235 236 /* Foreign interrupts must not be unmasked while holding a spinlock */ 237 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 238 assert_have_no_spinlock(); 239 240 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 241 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 242 write_cpsr(cpsr); 243 } 244 #endif /*ARM32*/ 245 246 #ifdef ARM64 247 uint32_t thread_get_exceptions(void) 248 { 249 uint32_t daif = read_daif(); 250 251 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 252 } 253 254 void thread_set_exceptions(uint32_t exceptions) 255 { 256 uint32_t daif = read_daif(); 257 258 /* Foreign interrupts must not be unmasked while holding a spinlock */ 259 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 260 assert_have_no_spinlock(); 261 262 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 263 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 264 write_daif(daif); 265 } 266 #endif /*ARM64*/ 267 268 uint32_t thread_mask_exceptions(uint32_t exceptions) 269 { 270 uint32_t state = thread_get_exceptions(); 271 272 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 273 return state; 274 } 275 276 void thread_unmask_exceptions(uint32_t state) 277 { 278 thread_set_exceptions(state & THREAD_EXCP_ALL); 279 } 280 281 282 struct thread_core_local *thread_get_core_local(void) 283 { 284 uint32_t cpu_id = get_core_pos(); 285 286 /* 287 * Foreign interrupts must be disabled before playing with core_local 288 * since we otherwise may be rescheduled to a different core in the 289 * middle of this function. 290 */ 291 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 292 293 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 294 return &thread_core_local[cpu_id]; 295 } 296 297 static void thread_lazy_save_ns_vfp(void) 298 { 299 #ifdef CFG_WITH_VFP 300 struct thread_ctx *thr = threads + thread_get_id(); 301 302 thr->vfp_state.ns_saved = false; 303 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW) 304 /* 305 * ARM TF saves and restores CPACR_EL1, so we must assume NS world 306 * uses VFP and always preserve the register file when secure world 307 * is about to use it 308 */ 309 thr->vfp_state.ns.force_save = true; 310 #endif 311 vfp_lazy_save_state_init(&thr->vfp_state.ns); 312 #endif /*CFG_WITH_VFP*/ 313 } 314 315 static void thread_lazy_restore_ns_vfp(void) 316 { 317 #ifdef CFG_WITH_VFP 318 struct thread_ctx *thr = threads + thread_get_id(); 319 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 320 321 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 322 323 if (tuv && tuv->lazy_saved && !tuv->saved) { 324 vfp_lazy_save_state_final(&tuv->vfp); 325 tuv->saved = true; 326 } 327 328 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 329 thr->vfp_state.ns_saved = false; 330 #endif /*CFG_WITH_VFP*/ 331 } 332 333 #ifdef ARM32 334 static void init_regs(struct thread_ctx *thread, 335 struct thread_smc_args *args) 336 { 337 thread->regs.pc = (uint32_t)thread_std_smc_entry; 338 339 /* 340 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 341 * Asynchronous abort and unmasked native interrupts. 342 */ 343 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 344 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A | 345 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT); 346 /* Enable thumb mode if it's a thumb instruction */ 347 if (thread->regs.pc & 1) 348 thread->regs.cpsr |= CPSR_T; 349 /* Reinitialize stack pointer */ 350 thread->regs.svc_sp = thread->stack_va_end; 351 352 /* 353 * Copy arguments into context. This will make the 354 * arguments appear in r0-r7 when thread is started. 355 */ 356 thread->regs.r0 = args->a0; 357 thread->regs.r1 = args->a1; 358 thread->regs.r2 = args->a2; 359 thread->regs.r3 = args->a3; 360 thread->regs.r4 = args->a4; 361 thread->regs.r5 = args->a5; 362 thread->regs.r6 = args->a6; 363 thread->regs.r7 = args->a7; 364 } 365 #endif /*ARM32*/ 366 367 #ifdef ARM64 368 static void init_regs(struct thread_ctx *thread, 369 struct thread_smc_args *args) 370 { 371 thread->regs.pc = (uint64_t)thread_std_smc_entry; 372 373 /* 374 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 375 * Asynchronous abort and unmasked native interrupts. 376 */ 377 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 378 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT); 379 /* Reinitialize stack pointer */ 380 thread->regs.sp = thread->stack_va_end; 381 382 /* 383 * Copy arguments into context. This will make the 384 * arguments appear in x0-x7 when thread is started. 385 */ 386 thread->regs.x[0] = args->a0; 387 thread->regs.x[1] = args->a1; 388 thread->regs.x[2] = args->a2; 389 thread->regs.x[3] = args->a3; 390 thread->regs.x[4] = args->a4; 391 thread->regs.x[5] = args->a5; 392 thread->regs.x[6] = args->a6; 393 thread->regs.x[7] = args->a7; 394 395 /* Set up frame pointer as per the Aarch64 AAPCS */ 396 thread->regs.x[29] = 0; 397 } 398 #endif /*ARM64*/ 399 400 void thread_init_boot_thread(void) 401 { 402 struct thread_core_local *l = thread_get_core_local(); 403 size_t n; 404 405 for (n = 0; n < CFG_NUM_THREADS; n++) { 406 TAILQ_INIT(&threads[n].mutexes); 407 TAILQ_INIT(&threads[n].tsd.sess_stack); 408 SLIST_INIT(&threads[n].tsd.pgt_cache); 409 } 410 411 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 412 thread_core_local[n].curr_thread = -1; 413 414 l->curr_thread = 0; 415 threads[0].state = THREAD_STATE_ACTIVE; 416 } 417 418 void thread_clr_boot_thread(void) 419 { 420 struct thread_core_local *l = thread_get_core_local(); 421 422 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 423 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 424 assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes)); 425 threads[l->curr_thread].state = THREAD_STATE_FREE; 426 l->curr_thread = -1; 427 } 428 429 static void thread_alloc_and_run(struct thread_smc_args *args) 430 { 431 size_t n; 432 struct thread_core_local *l = thread_get_core_local(); 433 bool found_thread = false; 434 435 assert(l->curr_thread == -1); 436 437 lock_global(); 438 439 for (n = 0; n < CFG_NUM_THREADS; n++) { 440 if (threads[n].state == THREAD_STATE_FREE) { 441 threads[n].state = THREAD_STATE_ACTIVE; 442 found_thread = true; 443 break; 444 } 445 } 446 447 unlock_global(); 448 449 if (!found_thread) { 450 args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT; 451 return; 452 } 453 454 l->curr_thread = n; 455 456 threads[n].flags = 0; 457 init_regs(threads + n, args); 458 459 /* Save Hypervisor Client ID */ 460 threads[n].hyp_clnt_id = args->a7; 461 462 thread_lazy_save_ns_vfp(); 463 thread_resume(&threads[n].regs); 464 } 465 466 #ifdef ARM32 467 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 468 struct thread_smc_args *args) 469 { 470 /* 471 * Update returned values from RPC, values will appear in 472 * r0-r3 when thread is resumed. 473 */ 474 regs->r0 = args->a0; 475 regs->r1 = args->a1; 476 regs->r2 = args->a2; 477 regs->r3 = args->a3; 478 regs->r4 = args->a4; 479 regs->r5 = args->a5; 480 } 481 #endif /*ARM32*/ 482 483 #ifdef ARM64 484 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 485 struct thread_smc_args *args) 486 { 487 /* 488 * Update returned values from RPC, values will appear in 489 * x0-x3 when thread is resumed. 490 */ 491 regs->x[0] = args->a0; 492 regs->x[1] = args->a1; 493 regs->x[2] = args->a2; 494 regs->x[3] = args->a3; 495 regs->x[4] = args->a4; 496 regs->x[5] = args->a5; 497 } 498 #endif /*ARM64*/ 499 500 #ifdef ARM32 501 static bool is_from_user(uint32_t cpsr) 502 { 503 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 504 } 505 #endif 506 507 #ifdef ARM64 508 static bool is_from_user(uint32_t cpsr) 509 { 510 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 511 return true; 512 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 513 SPSR_64_MODE_EL0) 514 return true; 515 return false; 516 } 517 #endif 518 519 static bool is_user_mode(struct thread_ctx_regs *regs) 520 { 521 return is_from_user((uint32_t)regs->cpsr); 522 } 523 524 static void thread_resume_from_rpc(struct thread_smc_args *args) 525 { 526 size_t n = args->a3; /* thread id */ 527 struct thread_core_local *l = thread_get_core_local(); 528 uint32_t rv = 0; 529 530 assert(l->curr_thread == -1); 531 532 lock_global(); 533 534 if (n < CFG_NUM_THREADS && 535 threads[n].state == THREAD_STATE_SUSPENDED && 536 args->a7 == threads[n].hyp_clnt_id) 537 threads[n].state = THREAD_STATE_ACTIVE; 538 else 539 rv = OPTEE_SMC_RETURN_ERESUME; 540 541 unlock_global(); 542 543 if (rv) { 544 args->a0 = rv; 545 return; 546 } 547 548 l->curr_thread = n; 549 550 if (is_user_mode(&threads[n].regs)) 551 tee_ta_update_session_utime_resume(); 552 553 if (threads[n].have_user_map) 554 core_mmu_set_user_map(&threads[n].user_map); 555 556 /* 557 * Return from RPC to request service of a foreign interrupt must not 558 * get parameters from non-secure world. 559 */ 560 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 561 copy_a0_to_a5(&threads[n].regs, args); 562 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 563 } 564 565 thread_lazy_save_ns_vfp(); 566 thread_resume(&threads[n].regs); 567 } 568 569 void thread_handle_fast_smc(struct thread_smc_args *args) 570 { 571 thread_check_canaries(); 572 thread_fast_smc_handler_ptr(args); 573 /* Fast handlers must not unmask any exceptions */ 574 assert(thread_get_exceptions() == THREAD_EXCP_ALL); 575 } 576 577 void thread_handle_std_smc(struct thread_smc_args *args) 578 { 579 thread_check_canaries(); 580 581 if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC) 582 thread_resume_from_rpc(args); 583 else 584 thread_alloc_and_run(args); 585 } 586 587 /* 588 * Helper routine for the assembly function thread_std_smc_entry() 589 * 590 * Note: this function is weak just to make it possible to exclude it from 591 * the unpaged area. 592 */ 593 void __weak __thread_std_smc_entry(struct thread_smc_args *args) 594 { 595 thread_std_smc_handler_ptr(args); 596 597 if (args->a0 == OPTEE_SMC_RETURN_OK) { 598 struct thread_ctx *thr = threads + thread_get_id(); 599 600 tee_fs_rpc_cache_clear(&thr->tsd); 601 if (!thread_prealloc_rpc_cache) { 602 thread_rpc_free_arg(thr->rpc_carg); 603 mobj_free(thr->rpc_mobj); 604 thr->rpc_carg = 0; 605 thr->rpc_arg = 0; 606 thr->rpc_mobj = NULL; 607 } 608 } 609 } 610 611 void *thread_get_tmp_sp(void) 612 { 613 struct thread_core_local *l = thread_get_core_local(); 614 615 return (void *)l->tmp_stack_va_end; 616 } 617 618 #ifdef ARM64 619 vaddr_t thread_get_saved_thread_sp(void) 620 { 621 struct thread_core_local *l = thread_get_core_local(); 622 int ct = l->curr_thread; 623 624 assert(ct != -1); 625 return threads[ct].kern_sp; 626 } 627 #endif /*ARM64*/ 628 629 vaddr_t thread_stack_start(void) 630 { 631 struct thread_ctx *thr; 632 int ct = thread_get_id_may_fail(); 633 634 if (ct == -1) 635 return 0; 636 637 thr = threads + ct; 638 return thr->stack_va_end - STACK_THREAD_SIZE; 639 } 640 641 size_t thread_stack_size(void) 642 { 643 return STACK_THREAD_SIZE; 644 } 645 646 bool thread_is_from_abort_mode(void) 647 { 648 struct thread_core_local *l = thread_get_core_local(); 649 650 return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT; 651 } 652 653 #ifdef ARM32 654 bool thread_is_in_normal_mode(void) 655 { 656 return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC; 657 } 658 #endif 659 660 #ifdef ARM64 661 bool thread_is_in_normal_mode(void) 662 { 663 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 664 struct thread_core_local *l = thread_get_core_local(); 665 bool ret; 666 667 /* If any bit in l->flags is set we're handling some exception. */ 668 ret = !l->flags; 669 thread_unmask_exceptions(exceptions); 670 671 return ret; 672 } 673 #endif 674 675 void thread_state_free(void) 676 { 677 struct thread_core_local *l = thread_get_core_local(); 678 int ct = l->curr_thread; 679 680 assert(ct != -1); 681 assert(TAILQ_EMPTY(&threads[ct].mutexes)); 682 683 thread_lazy_restore_ns_vfp(); 684 tee_pager_release_phys( 685 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 686 STACK_THREAD_SIZE); 687 688 lock_global(); 689 690 assert(threads[ct].state == THREAD_STATE_ACTIVE); 691 threads[ct].state = THREAD_STATE_FREE; 692 threads[ct].flags = 0; 693 l->curr_thread = -1; 694 695 unlock_global(); 696 } 697 698 #ifdef CFG_WITH_PAGER 699 static void release_unused_kernel_stack(struct thread_ctx *thr, 700 uint32_t cpsr __maybe_unused) 701 { 702 #ifdef ARM64 703 /* 704 * If we're from user mode then thr->regs.sp is the saved user 705 * stack pointer and thr->kern_sp holds the last kernel stack 706 * pointer. But if we're from kernel mode then thr->kern_sp isn't 707 * up to date so we need to read from thr->regs.sp instead. 708 */ 709 vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp; 710 #else 711 vaddr_t sp = thr->regs.svc_sp; 712 #endif 713 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 714 size_t len = sp - base; 715 716 tee_pager_release_phys((void *)base, len); 717 } 718 #else 719 static void release_unused_kernel_stack(struct thread_ctx *thr __unused, 720 uint32_t cpsr __unused) 721 { 722 } 723 #endif 724 725 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 726 { 727 struct thread_core_local *l = thread_get_core_local(); 728 int ct = l->curr_thread; 729 730 assert(ct != -1); 731 732 thread_check_canaries(); 733 734 release_unused_kernel_stack(threads + ct, cpsr); 735 736 if (is_from_user(cpsr)) { 737 thread_user_save_vfp(); 738 tee_ta_update_session_utime_suspend(); 739 tee_ta_gprof_sample_pc(pc); 740 } 741 thread_lazy_restore_ns_vfp(); 742 743 lock_global(); 744 745 assert(threads[ct].state == THREAD_STATE_ACTIVE); 746 threads[ct].flags |= flags; 747 threads[ct].regs.cpsr = cpsr; 748 threads[ct].regs.pc = pc; 749 threads[ct].state = THREAD_STATE_SUSPENDED; 750 751 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 752 if (threads[ct].have_user_map) { 753 core_mmu_get_user_map(&threads[ct].user_map); 754 core_mmu_set_user_map(NULL); 755 } 756 757 l->curr_thread = -1; 758 759 unlock_global(); 760 761 return ct; 762 } 763 764 #ifdef ARM32 765 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 766 { 767 l->tmp_stack_va_end = sp; 768 thread_set_irq_sp(sp); 769 thread_set_fiq_sp(sp); 770 } 771 772 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 773 { 774 l->abt_stack_va_end = sp; 775 thread_set_abt_sp((vaddr_t)l); 776 thread_set_und_sp((vaddr_t)l); 777 } 778 #endif /*ARM32*/ 779 780 #ifdef ARM64 781 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 782 { 783 /* 784 * We're already using the tmp stack when this function is called 785 * so there's no need to assign it to any stack pointer. However, 786 * we'll need to restore it at different times so store it here. 787 */ 788 l->tmp_stack_va_end = sp; 789 } 790 791 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 792 { 793 l->abt_stack_va_end = sp; 794 } 795 #endif /*ARM64*/ 796 797 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 798 { 799 if (thread_id >= CFG_NUM_THREADS) 800 return false; 801 threads[thread_id].stack_va_end = sp; 802 return true; 803 } 804 805 int thread_get_id_may_fail(void) 806 { 807 /* 808 * thread_get_core_local() requires foreign interrupts to be disabled 809 */ 810 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 811 struct thread_core_local *l = thread_get_core_local(); 812 int ct = l->curr_thread; 813 814 thread_unmask_exceptions(exceptions); 815 return ct; 816 } 817 818 int thread_get_id(void) 819 { 820 int ct = thread_get_id_may_fail(); 821 822 assert(ct >= 0 && ct < CFG_NUM_THREADS); 823 return ct; 824 } 825 826 static void init_handlers(const struct thread_handlers *handlers) 827 { 828 thread_std_smc_handler_ptr = handlers->std_smc; 829 thread_fast_smc_handler_ptr = handlers->fast_smc; 830 thread_nintr_handler_ptr = handlers->nintr; 831 thread_cpu_on_handler_ptr = handlers->cpu_on; 832 thread_cpu_off_handler_ptr = handlers->cpu_off; 833 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 834 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 835 thread_system_off_handler_ptr = handlers->system_off; 836 thread_system_reset_handler_ptr = handlers->system_reset; 837 } 838 839 #ifdef CFG_WITH_PAGER 840 static void init_thread_stacks(void) 841 { 842 size_t n; 843 844 /* 845 * Allocate virtual memory for thread stacks. 846 */ 847 for (n = 0; n < CFG_NUM_THREADS; n++) { 848 tee_mm_entry_t *mm; 849 vaddr_t sp; 850 851 /* Find vmem for thread stack and its protection gap */ 852 mm = tee_mm_alloc(&tee_mm_vcore, 853 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 854 assert(mm); 855 856 /* Claim eventual physical page */ 857 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 858 true); 859 860 /* Add the area to the pager */ 861 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 862 tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE, 863 TEE_MATTR_PRW | TEE_MATTR_LOCKED, 864 NULL, NULL); 865 866 /* init effective stack */ 867 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 868 asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp); 869 if (!thread_init_stack(n, sp)) 870 panic("init stack failed"); 871 } 872 } 873 #else 874 static void init_thread_stacks(void) 875 { 876 size_t n; 877 878 /* Assign the thread stacks */ 879 for (n = 0; n < CFG_NUM_THREADS; n++) { 880 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 881 panic("thread_init_stack failed"); 882 } 883 } 884 #endif /*CFG_WITH_PAGER*/ 885 886 void thread_init_primary(const struct thread_handlers *handlers) 887 { 888 init_handlers(handlers); 889 890 /* Initialize canaries around the stacks */ 891 init_canaries(); 892 893 init_thread_stacks(); 894 pgt_init(); 895 } 896 897 static void init_sec_mon(size_t pos __maybe_unused) 898 { 899 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 900 /* Initialize secure monitor */ 901 sm_init(GET_STACK(stack_tmp[pos])); 902 #endif 903 } 904 905 void thread_init_per_cpu(void) 906 { 907 size_t pos = get_core_pos(); 908 struct thread_core_local *l = thread_get_core_local(); 909 910 init_sec_mon(pos); 911 912 set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); 913 set_abt_stack(l, GET_STACK(stack_abt[pos])); 914 915 thread_init_vbar(); 916 } 917 918 struct thread_specific_data *thread_get_tsd(void) 919 { 920 return &threads[thread_get_id()].tsd; 921 } 922 923 struct thread_ctx_regs *thread_get_ctx_regs(void) 924 { 925 struct thread_core_local *l = thread_get_core_local(); 926 927 assert(l->curr_thread != -1); 928 return &threads[l->curr_thread].regs; 929 } 930 931 void thread_set_foreign_intr(bool enable) 932 { 933 /* thread_get_core_local() requires foreign interrupts to be disabled */ 934 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 935 struct thread_core_local *l; 936 937 l = thread_get_core_local(); 938 939 assert(l->curr_thread != -1); 940 941 if (enable) { 942 threads[l->curr_thread].flags |= 943 THREAD_FLAGS_FOREIGN_INTR_ENABLE; 944 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 945 } else { 946 /* 947 * No need to disable foreign interrupts here since they're 948 * already disabled above. 949 */ 950 threads[l->curr_thread].flags &= 951 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; 952 } 953 } 954 955 void thread_restore_foreign_intr(void) 956 { 957 /* thread_get_core_local() requires foreign interrupts to be disabled */ 958 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 959 struct thread_core_local *l; 960 961 l = thread_get_core_local(); 962 963 assert(l->curr_thread != -1); 964 965 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) 966 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 967 } 968 969 #ifdef CFG_WITH_VFP 970 uint32_t thread_kernel_enable_vfp(void) 971 { 972 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 973 struct thread_ctx *thr = threads + thread_get_id(); 974 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 975 976 assert(!vfp_is_enabled()); 977 978 if (!thr->vfp_state.ns_saved) { 979 vfp_lazy_save_state_final(&thr->vfp_state.ns); 980 thr->vfp_state.ns_saved = true; 981 } else if (thr->vfp_state.sec_lazy_saved && 982 !thr->vfp_state.sec_saved) { 983 /* 984 * This happens when we're handling an abort while the 985 * thread was using the VFP state. 986 */ 987 vfp_lazy_save_state_final(&thr->vfp_state.sec); 988 thr->vfp_state.sec_saved = true; 989 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 990 /* 991 * This can happen either during syscall or abort 992 * processing (while processing a syscall). 993 */ 994 vfp_lazy_save_state_final(&tuv->vfp); 995 tuv->saved = true; 996 } 997 998 vfp_enable(); 999 return exceptions; 1000 } 1001 1002 void thread_kernel_disable_vfp(uint32_t state) 1003 { 1004 uint32_t exceptions; 1005 1006 assert(vfp_is_enabled()); 1007 1008 vfp_disable(); 1009 exceptions = thread_get_exceptions(); 1010 assert(exceptions & THREAD_EXCP_FOREIGN_INTR); 1011 exceptions &= ~THREAD_EXCP_FOREIGN_INTR; 1012 exceptions |= state & THREAD_EXCP_FOREIGN_INTR; 1013 thread_set_exceptions(exceptions); 1014 } 1015 1016 void thread_kernel_save_vfp(void) 1017 { 1018 struct thread_ctx *thr = threads + thread_get_id(); 1019 1020 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1021 if (vfp_is_enabled()) { 1022 vfp_lazy_save_state_init(&thr->vfp_state.sec); 1023 thr->vfp_state.sec_lazy_saved = true; 1024 } 1025 } 1026 1027 void thread_kernel_restore_vfp(void) 1028 { 1029 struct thread_ctx *thr = threads + thread_get_id(); 1030 1031 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1032 assert(!vfp_is_enabled()); 1033 if (thr->vfp_state.sec_lazy_saved) { 1034 vfp_lazy_restore_state(&thr->vfp_state.sec, 1035 thr->vfp_state.sec_saved); 1036 thr->vfp_state.sec_saved = false; 1037 thr->vfp_state.sec_lazy_saved = false; 1038 } 1039 } 1040 1041 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 1042 { 1043 struct thread_ctx *thr = threads + thread_get_id(); 1044 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1045 1046 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1047 assert(!vfp_is_enabled()); 1048 1049 if (!thr->vfp_state.ns_saved) { 1050 vfp_lazy_save_state_final(&thr->vfp_state.ns); 1051 thr->vfp_state.ns_saved = true; 1052 } else if (tuv && uvfp != tuv) { 1053 if (tuv->lazy_saved && !tuv->saved) { 1054 vfp_lazy_save_state_final(&tuv->vfp); 1055 tuv->saved = true; 1056 } 1057 } 1058 1059 if (uvfp->lazy_saved) 1060 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 1061 uvfp->lazy_saved = false; 1062 uvfp->saved = false; 1063 1064 thr->vfp_state.uvfp = uvfp; 1065 vfp_enable(); 1066 } 1067 1068 void thread_user_save_vfp(void) 1069 { 1070 struct thread_ctx *thr = threads + thread_get_id(); 1071 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1072 1073 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1074 if (!vfp_is_enabled()) 1075 return; 1076 1077 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1078 vfp_lazy_save_state_init(&tuv->vfp); 1079 tuv->lazy_saved = true; 1080 } 1081 1082 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1083 { 1084 struct thread_ctx *thr = threads + thread_get_id(); 1085 1086 if (uvfp == thr->vfp_state.uvfp) 1087 thr->vfp_state.uvfp = NULL; 1088 uvfp->lazy_saved = false; 1089 uvfp->saved = false; 1090 } 1091 #endif /*CFG_WITH_VFP*/ 1092 1093 #ifdef ARM32 1094 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1095 { 1096 uint32_t s; 1097 1098 if (!is_32bit) 1099 return false; 1100 1101 s = read_spsr(); 1102 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1103 s |= CPSR_MODE_USR; 1104 if (entry_func & 1) 1105 s |= CPSR_T; 1106 *spsr = s; 1107 return true; 1108 } 1109 #endif 1110 1111 #ifdef ARM64 1112 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1113 { 1114 uint32_t s; 1115 1116 if (is_32bit) { 1117 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1118 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1119 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1120 } else { 1121 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1122 } 1123 1124 *spsr = s; 1125 return true; 1126 } 1127 #endif 1128 1129 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1130 unsigned long a2, unsigned long a3, unsigned long user_sp, 1131 unsigned long entry_func, bool is_32bit, 1132 uint32_t *exit_status0, uint32_t *exit_status1) 1133 { 1134 uint32_t spsr; 1135 1136 tee_ta_update_session_utime_resume(); 1137 1138 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1139 *exit_status0 = 1; /* panic */ 1140 *exit_status1 = 0xbadbadba; 1141 return 0; 1142 } 1143 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1144 spsr, exit_status0, exit_status1); 1145 } 1146 1147 void thread_add_mutex(struct mutex *m) 1148 { 1149 struct thread_core_local *l = thread_get_core_local(); 1150 int ct = l->curr_thread; 1151 1152 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1153 assert(m->owner_id == MUTEX_OWNER_ID_NONE); 1154 m->owner_id = ct; 1155 TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link); 1156 } 1157 1158 void thread_rem_mutex(struct mutex *m) 1159 { 1160 struct thread_core_local *l = thread_get_core_local(); 1161 int ct = l->curr_thread; 1162 1163 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1164 assert(m->owner_id == ct); 1165 m->owner_id = MUTEX_OWNER_ID_NONE; 1166 TAILQ_REMOVE(&threads[ct].mutexes, m, link); 1167 } 1168 1169 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie) 1170 { 1171 bool rv; 1172 size_t n; 1173 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1174 1175 lock_global(); 1176 1177 for (n = 0; n < CFG_NUM_THREADS; n++) { 1178 if (threads[n].state != THREAD_STATE_FREE) { 1179 rv = false; 1180 goto out; 1181 } 1182 } 1183 1184 rv = true; 1185 for (n = 0; n < CFG_NUM_THREADS; n++) { 1186 if (threads[n].rpc_arg) { 1187 mobj_free(threads[n].rpc_mobj); 1188 *cookie = threads[n].rpc_carg; 1189 threads[n].rpc_carg = 0; 1190 threads[n].rpc_arg = NULL; 1191 goto out; 1192 } 1193 } 1194 1195 *cookie = 0; 1196 thread_prealloc_rpc_cache = false; 1197 out: 1198 unlock_global(); 1199 thread_unmask_exceptions(exceptions); 1200 return rv; 1201 } 1202 1203 bool thread_enable_prealloc_rpc_cache(void) 1204 { 1205 bool rv; 1206 size_t n; 1207 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1208 1209 lock_global(); 1210 1211 for (n = 0; n < CFG_NUM_THREADS; n++) { 1212 if (threads[n].state != THREAD_STATE_FREE) { 1213 rv = false; 1214 goto out; 1215 } 1216 } 1217 1218 rv = true; 1219 thread_prealloc_rpc_cache = true; 1220 out: 1221 unlock_global(); 1222 thread_unmask_exceptions(exceptions); 1223 return rv; 1224 } 1225 1226 void thread_rpc_free_arg(uint64_t cookie) 1227 { 1228 if (cookie) { 1229 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1230 OPTEE_SMC_RETURN_RPC_FREE 1231 }; 1232 1233 reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2); 1234 thread_rpc(rpc_args); 1235 } 1236 } 1237 1238 struct mobj *thread_rpc_alloc_arg(size_t size, uint64_t *cookie) 1239 { 1240 paddr_t pa; 1241 uint64_t co; 1242 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1243 OPTEE_SMC_RETURN_RPC_ALLOC, size 1244 }; 1245 struct mobj *mobj = NULL; 1246 1247 thread_rpc(rpc_args); 1248 1249 pa = reg_pair_to_64(rpc_args[1], rpc_args[2]); 1250 co = reg_pair_to_64(rpc_args[4], rpc_args[5]); 1251 1252 if (!ALIGNMENT_IS_OK(pa, struct optee_msg_arg)) 1253 goto err; 1254 1255 /* Check if this region is in static shared space */ 1256 if (core_pbuf_is(CORE_MEM_NSEC_SHM, pa, size)) 1257 mobj = mobj_shm_alloc(pa, size); 1258 else if ((!(pa & SMALL_PAGE_MASK)) && size <= SMALL_PAGE_SIZE) 1259 mobj = mobj_mapped_shm_alloc(&pa, 1, 0, co); 1260 1261 if (!mobj) 1262 goto err; 1263 1264 *cookie = co; 1265 return mobj; 1266 err: 1267 thread_rpc_free_arg(co); 1268 mobj_free(mobj); 1269 *cookie = 0; 1270 return NULL; 1271 } 1272 1273 static bool get_rpc_arg(uint32_t cmd, size_t num_params, 1274 struct optee_msg_arg **arg_ret, uint64_t *carg_ret) 1275 { 1276 struct thread_ctx *thr = threads + thread_get_id(); 1277 struct optee_msg_arg *arg = thr->rpc_arg; 1278 struct mobj *mobj; 1279 size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS); 1280 uint64_t c; 1281 1282 if (num_params > THREAD_RPC_MAX_NUM_PARAMS) 1283 return false; 1284 1285 if (!arg) { 1286 mobj = thread_rpc_alloc_arg(sz, &c); 1287 if (!mobj) 1288 return false; 1289 1290 arg = mobj_get_va(mobj, 0); 1291 if (!arg) 1292 goto bad; 1293 1294 thr->rpc_arg = arg; 1295 thr->rpc_carg = c; 1296 thr->rpc_mobj = mobj; 1297 } 1298 1299 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); 1300 arg->cmd = cmd; 1301 arg->num_params = num_params; 1302 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1303 1304 *arg_ret = arg; 1305 *carg_ret = thr->rpc_carg; 1306 return true; 1307 1308 bad: 1309 thread_rpc_free_arg(c); 1310 return false; 1311 } 1312 1313 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1314 struct optee_msg_param *params) 1315 { 1316 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1317 struct optee_msg_arg *arg; 1318 uint64_t carg; 1319 size_t n; 1320 1321 /* 1322 * Break recursion in case plat_prng_add_jitter_entropy_norpc() 1323 * sleeps on a mutex or unlocks a mutex with a sleeper (contended 1324 * mutex). 1325 */ 1326 if (cmd != OPTEE_MSG_RPC_CMD_WAIT_QUEUE) 1327 plat_prng_add_jitter_entropy_norpc(); 1328 1329 if (!get_rpc_arg(cmd, num_params, &arg, &carg)) 1330 return TEE_ERROR_OUT_OF_MEMORY; 1331 1332 memcpy(arg->params, params, sizeof(*params) * num_params); 1333 1334 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1335 thread_rpc(rpc_args); 1336 for (n = 0; n < num_params; n++) { 1337 switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) { 1338 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 1339 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 1340 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 1341 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 1342 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 1343 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 1344 params[n] = arg->params[n]; 1345 break; 1346 default: 1347 break; 1348 } 1349 } 1350 return arg->ret; 1351 } 1352 1353 /** 1354 * Free physical memory previously allocated with thread_rpc_alloc() 1355 * 1356 * @cookie: cookie received when allocating the buffer 1357 * @bt: must be the same as supplied when allocating 1358 * @mobj: mobj that describes allocated buffer 1359 * 1360 * This function also frees corresponding mobj. 1361 */ 1362 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj) 1363 { 1364 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1365 struct optee_msg_arg *arg; 1366 uint64_t carg; 1367 1368 if (!get_rpc_arg(OPTEE_MSG_RPC_CMD_SHM_FREE, 1, &arg, &carg)) 1369 return; 1370 1371 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1372 arg->params[0].u.value.a = bt; 1373 arg->params[0].u.value.b = cookie; 1374 arg->params[0].u.value.c = 0; 1375 1376 mobj_free(mobj); 1377 1378 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1379 thread_rpc(rpc_args); 1380 } 1381 1382 /** 1383 * Allocates shared memory buffer via RPC 1384 * 1385 * @size: size in bytes of shared memory buffer 1386 * @align: required alignment of buffer 1387 * @bt: buffer type OPTEE_MSG_RPC_SHM_TYPE_* 1388 * @payload: returned physical pointer to buffer, 0 if allocation 1389 * failed. 1390 * @cookie: returned cookie used when freeing the buffer 1391 */ 1392 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt, 1393 uint64_t *cookie) 1394 { 1395 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1396 struct optee_msg_arg *arg; 1397 uint64_t carg; 1398 struct mobj *mobj = NULL; 1399 1400 if (!get_rpc_arg(OPTEE_MSG_RPC_CMD_SHM_ALLOC, 1, &arg, &carg)) 1401 goto fail; 1402 1403 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1404 arg->params[0].u.value.a = bt; 1405 arg->params[0].u.value.b = size; 1406 arg->params[0].u.value.c = align; 1407 1408 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1409 thread_rpc(rpc_args); 1410 1411 if (arg->ret != TEE_SUCCESS) 1412 goto fail; 1413 1414 if (arg->num_params != 1) 1415 goto fail; 1416 1417 if (arg->params[0].attr == OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT) { 1418 *cookie = arg->params[0].u.tmem.shm_ref; 1419 mobj = mobj_shm_alloc(arg->params[0].u.tmem.buf_ptr, 1420 arg->params[0].u.tmem.size); 1421 } else if (arg->params[0].attr == (OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 1422 OPTEE_MSG_ATTR_NONCONTIG)) { 1423 *cookie = arg->params[0].u.tmem.shm_ref; 1424 mobj = msg_param_mobj_from_noncontig( 1425 arg->params[0].u.tmem.buf_ptr, 1426 arg->params[0].u.tmem.size, 1427 *cookie, 1428 true); 1429 } else 1430 goto fail; 1431 1432 if (!mobj) 1433 goto free_first; 1434 1435 assert(mobj_is_nonsec(mobj)); 1436 return mobj; 1437 1438 free_first: 1439 thread_rpc_free(bt, *cookie, mobj); 1440 fail: 1441 *cookie = 0; 1442 return NULL; 1443 } 1444 1445 struct mobj *thread_rpc_alloc_payload(size_t size, uint64_t *cookie) 1446 { 1447 return thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie); 1448 } 1449 1450 void thread_rpc_free_payload(uint64_t cookie, struct mobj *mobj) 1451 { 1452 thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie, mobj); 1453 } 1454