xref: /optee_os/core/arch/arm/kernel/thread.c (revision abe38974ad2d4cbb72940f322210364fb3a9a490)
1 /*
2  * Copyright (c) 2014, STMicroelectronics International N.V.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  * this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
19  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 #include <platform_config.h>
28 
29 #include <kernel/panic.h>
30 #include <kernel/thread.h>
31 #include <kernel/thread_defs.h>
32 #include "thread_private.h"
33 #include <sm/sm_defs.h>
34 #include <sm/sm.h>
35 #include <sm/teesmc.h>
36 #include <sm/teesmc_optee.h>
37 #include <arm.h>
38 #include <kernel/tz_proc_def.h>
39 #include <kernel/tz_proc.h>
40 #include <kernel/misc.h>
41 #include <mm/tee_mmu.h>
42 #include <mm/tee_mmu_defs.h>
43 #include <mm/tee_mm.h>
44 #include <mm/tee_pager.h>
45 #include <kernel/tee_ta_manager.h>
46 #include <util.h>
47 #include <trace.h>
48 
49 #include <assert.h>
50 
51 #ifdef ARM32
52 #define STACK_TMP_SIZE		1024
53 #define STACK_THREAD_SIZE	8192
54 
55 #if TRACE_LEVEL > 0
56 #define STACK_ABT_SIZE		2048
57 #else
58 #define STACK_ABT_SIZE		1024
59 #endif
60 
61 #endif /*ARM32*/
62 
63 static struct thread_ctx threads[CFG_NUM_THREADS];
64 
65 static struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE];
66 
67 #ifdef CFG_WITH_VFP
68 struct thread_vfp_state {
69 	bool ns_saved;
70 	bool sec_saved;
71 	bool sec_lazy_saved;
72 	struct vfp_state ns;
73 	struct vfp_state sec;
74 };
75 
76 static struct thread_vfp_state thread_vfp_state;
77 #endif /*CFG_WITH_VFP*/
78 
79 #ifdef CFG_WITH_STACK_CANARIES
80 #ifdef ARM32
81 #define STACK_CANARY_SIZE	(4 * sizeof(uint32_t))
82 #endif
83 #define START_CANARY_VALUE	0xdededede
84 #define END_CANARY_VALUE	0xabababab
85 #define GET_START_CANARY(name, stack_num) name[stack_num][0]
86 #define GET_END_CANARY(name, stack_num) \
87 	name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1]
88 #else
89 #define STACK_CANARY_SIZE	0
90 #endif
91 
92 #define DECLARE_STACK(name, num_stacks, stack_size) \
93 	static uint32_t name[num_stacks][ \
94 		ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \
95 		sizeof(uint32_t)] \
96 		__attribute__((section(".nozi.stack"), \
97 			       aligned(STACK_ALIGNMENT)))
98 
99 #define GET_STACK(stack) \
100 	((vaddr_t)(stack) + sizeof(stack) - STACK_CANARY_SIZE / 2)
101 
102 DECLARE_STACK(stack_tmp,	CFG_TEE_CORE_NB_CORE,	STACK_TMP_SIZE);
103 DECLARE_STACK(stack_abt,	CFG_TEE_CORE_NB_CORE,	STACK_ABT_SIZE);
104 #if defined(CFG_WITH_SEC_MON)
105 DECLARE_STACK(stack_sm,		CFG_TEE_CORE_NB_CORE,	SM_STACK_SIZE);
106 #endif
107 #ifndef CFG_WITH_PAGER
108 DECLARE_STACK(stack_thread,	CFG_NUM_THREADS,	STACK_THREAD_SIZE);
109 #endif
110 
111 const vaddr_t stack_tmp_top[CFG_TEE_CORE_NB_CORE] = {
112 	GET_STACK(stack_tmp[0]),
113 #if CFG_TEE_CORE_NB_CORE > 1
114 	GET_STACK(stack_tmp[1]),
115 #endif
116 #if CFG_TEE_CORE_NB_CORE > 2
117 	GET_STACK(stack_tmp[2]),
118 #endif
119 #if CFG_TEE_CORE_NB_CORE > 3
120 	GET_STACK(stack_tmp[3]),
121 #endif
122 #if CFG_TEE_CORE_NB_CORE > 4
123 	GET_STACK(stack_tmp[4]),
124 #endif
125 #if CFG_TEE_CORE_NB_CORE > 5
126 	GET_STACK(stack_tmp[5]),
127 #endif
128 #if CFG_TEE_CORE_NB_CORE > 6
129 	GET_STACK(stack_tmp[6]),
130 #endif
131 #if CFG_TEE_CORE_NB_CORE > 7
132 	GET_STACK(stack_tmp[7]),
133 #endif
134 #if CFG_TEE_CORE_NB_CORE > 8
135 #error "Top of tmp stacks aren't defined for more than 8 CPUS"
136 #endif
137 };
138 
139 thread_smc_handler_t thread_std_smc_handler_ptr;
140 static thread_smc_handler_t thread_fast_smc_handler_ptr;
141 thread_fiq_handler_t thread_fiq_handler_ptr;
142 thread_svc_handler_t thread_svc_handler_ptr;
143 static thread_abort_handler_t thread_abort_handler_ptr;
144 thread_pm_handler_t thread_cpu_on_handler_ptr;
145 thread_pm_handler_t thread_cpu_off_handler_ptr;
146 thread_pm_handler_t thread_cpu_suspend_handler_ptr;
147 thread_pm_handler_t thread_cpu_resume_handler_ptr;
148 thread_pm_handler_t thread_system_off_handler_ptr;
149 thread_pm_handler_t thread_system_reset_handler_ptr;
150 
151 
152 static unsigned int thread_global_lock = SPINLOCK_UNLOCK;
153 
154 static void init_canaries(void)
155 {
156 #ifdef CFG_WITH_STACK_CANARIES
157 	size_t n;
158 #define INIT_CANARY(name)						\
159 	for (n = 0; n < ARRAY_SIZE(name); n++) {			\
160 		uint32_t *start_canary = &GET_START_CANARY(name, n);	\
161 		uint32_t *end_canary = &GET_END_CANARY(name, n);	\
162 									\
163 		*start_canary = START_CANARY_VALUE;			\
164 		*end_canary = END_CANARY_VALUE;				\
165 		DMSG("#Stack canaries for %s[%zu] with top at %p\n",	\
166 			#name, n, (void *)(end_canary - 1));		\
167 		DMSG("watch *%p\n", (void *)end_canary);		\
168 	}
169 
170 	INIT_CANARY(stack_tmp);
171 	INIT_CANARY(stack_abt);
172 #ifdef CFG_WITH_SEC_MON
173 	INIT_CANARY(stack_sm);
174 #endif
175 #ifndef CFG_WITH_PAGER
176 	INIT_CANARY(stack_thread);
177 #endif
178 #endif/*CFG_WITH_STACK_CANARIES*/
179 }
180 
181 void thread_check_canaries(void)
182 {
183 #ifdef CFG_WITH_STACK_CANARIES
184 	size_t n;
185 
186 	for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) {
187 		assert(GET_START_CANARY(stack_tmp, n) == START_CANARY_VALUE);
188 		assert(GET_END_CANARY(stack_tmp, n) == END_CANARY_VALUE);
189 	}
190 
191 	for (n = 0; n < ARRAY_SIZE(stack_abt); n++) {
192 		assert(GET_START_CANARY(stack_abt, n) == START_CANARY_VALUE);
193 		assert(GET_END_CANARY(stack_abt, n) == END_CANARY_VALUE);
194 	}
195 #ifdef CFG_WITH_SEC_MON
196 	for (n = 0; n < ARRAY_SIZE(stack_sm); n++) {
197 		assert(GET_START_CANARY(stack_sm, n) == START_CANARY_VALUE);
198 		assert(GET_END_CANARY(stack_sm, n) == END_CANARY_VALUE);
199 	}
200 #endif
201 #ifndef CFG_WITH_PAGER
202 	for (n = 0; n < ARRAY_SIZE(stack_thread); n++) {
203 		assert(GET_START_CANARY(stack_thread, n) == START_CANARY_VALUE);
204 		assert(GET_END_CANARY(stack_thread, n) == END_CANARY_VALUE);
205 	}
206 #endif
207 #endif/*CFG_WITH_STACK_CANARIES*/
208 }
209 
210 static void lock_global(void)
211 {
212 	cpu_spin_lock(&thread_global_lock);
213 }
214 
215 static void unlock_global(void)
216 {
217 	cpu_spin_unlock(&thread_global_lock);
218 }
219 
220 #ifdef ARM32
221 uint32_t thread_get_exceptions(void)
222 {
223 	uint32_t cpsr = read_cpsr();
224 
225 	return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
226 }
227 
228 void thread_set_exceptions(uint32_t exceptions)
229 {
230 	uint32_t cpsr = read_cpsr();
231 
232 	cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
233 	write_cpsr(cpsr);
234 }
235 #endif /*ARM32*/
236 
237 uint32_t thread_mask_exceptions(uint32_t exceptions)
238 {
239 	uint32_t state = thread_get_exceptions();
240 
241 	thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
242 	return state;
243 }
244 
245 void thread_unmask_exceptions(uint32_t state)
246 {
247 	thread_set_exceptions(state & THREAD_EXCP_ALL);
248 }
249 
250 
251 struct thread_core_local *thread_get_core_local(void)
252 {
253 	uint32_t cpu_id = get_core_pos();
254 
255 	/*
256 	 * IRQs must be disabled before playing with core_local since
257 	 * we otherwise may be rescheduled to a different core in the
258 	 * middle of this function.
259 	 */
260 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
261 
262 	assert(cpu_id < CFG_TEE_CORE_NB_CORE);
263 	return &thread_core_local[cpu_id];
264 }
265 
266 static bool have_one_active_thread(void)
267 {
268 	size_t n;
269 
270 	for (n = 0; n < CFG_NUM_THREADS; n++) {
271 		if (threads[n].state == THREAD_STATE_ACTIVE)
272 			return true;
273 	}
274 
275 	return false;
276 }
277 
278 static bool have_one_preempted_thread(void)
279 {
280 	size_t n;
281 
282 	for (n = 0; n < CFG_NUM_THREADS; n++) {
283 		if (threads[n].state == THREAD_STATE_SUSPENDED &&
284 		    (threads[n].flags & THREAD_FLAGS_EXIT_ON_IRQ))
285 			return true;
286 	}
287 
288 	return false;
289 }
290 
291 static void thread_lazy_save_ns_vfp(void)
292 {
293 #ifdef CFG_WITH_VFP
294 	thread_vfp_state.ns_saved = false;
295 	vfp_lazy_save_state_init(&thread_vfp_state.ns);
296 #endif /*CFG_WITH_VFP*/
297 }
298 
299 static void thread_lazy_restore_ns_vfp(void)
300 {
301 #ifdef CFG_WITH_VFP
302 	assert(!thread_vfp_state.sec_lazy_saved && !thread_vfp_state.sec_saved);
303 	vfp_lazy_restore_state(&thread_vfp_state.ns, thread_vfp_state.ns_saved);
304 	thread_vfp_state.ns_saved = false;
305 #endif /*CFG_WITH_VFP*/
306 }
307 
308 #ifdef ARM32
309 static void init_regs(struct thread_ctx *thread,
310 		struct thread_smc_args *args)
311 {
312 	thread->regs.pc = (uint32_t)thread_std_smc_entry;
313 
314 	/*
315 	 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous
316 	 * abort and unmasked FIQ.
317 	  */
318 	thread->regs.cpsr = CPSR_MODE_SVC | CPSR_I | CPSR_A;
319 	/* Enable thumb mode if it's a thumb instruction */
320 	if (thread->regs.pc & 1)
321 		thread->regs.cpsr |= CPSR_T;
322 	/* Reinitialize stack pointer */
323 	thread->regs.svc_sp = thread->stack_va_end;
324 
325 	/*
326 	 * Copy arguments into context. This will make the
327 	 * arguments appear in r0-r7 when thread is started.
328 	 */
329 	thread->regs.r0 = args->a0;
330 	thread->regs.r1 = args->a1;
331 	thread->regs.r2 = args->a2;
332 	thread->regs.r3 = args->a3;
333 	thread->regs.r4 = args->a4;
334 	thread->regs.r5 = args->a5;
335 	thread->regs.r6 = args->a6;
336 	thread->regs.r7 = args->a7;
337 }
338 #endif /*ARM32*/
339 
340 static void thread_alloc_and_run(struct thread_smc_args *args)
341 {
342 	size_t n;
343 	struct thread_core_local *l = thread_get_core_local();
344 	bool found_thread = false;
345 
346 	assert(l->curr_thread == -1);
347 
348 	lock_global();
349 
350 	if (!have_one_active_thread() && !have_one_preempted_thread()) {
351 		for (n = 0; n < CFG_NUM_THREADS; n++) {
352 			if (threads[n].state == THREAD_STATE_FREE) {
353 				threads[n].state = THREAD_STATE_ACTIVE;
354 				found_thread = true;
355 				break;
356 			}
357 		}
358 	}
359 
360 	unlock_global();
361 
362 	if (!found_thread) {
363 		args->a0 = TEESMC_RETURN_EBUSY;
364 		return;
365 	}
366 
367 	l->curr_thread = n;
368 
369 	threads[n].flags = 0;
370 	init_regs(threads + n, args);
371 
372 	/* Save Hypervisor Client ID */
373 	threads[n].hyp_clnt_id = args->a7;
374 
375 	thread_lazy_save_ns_vfp();
376 	thread_resume(&threads[n].regs);
377 }
378 
379 #ifdef ARM32
380 static void copy_a0_to_a3(struct thread_ctx_regs *regs,
381 		struct thread_smc_args *args)
382 {
383 	/*
384 	 * Update returned values from RPC, values will appear in
385 	 * r0-r3 when thread is resumed.
386 	 */
387 	regs->r0 = args->a0;
388 	regs->r1 = args->a1;
389 	regs->r2 = args->a2;
390 	regs->r3 = args->a3;
391 }
392 #endif /*ARM32*/
393 
394 static void thread_resume_from_rpc(struct thread_smc_args *args)
395 {
396 	size_t n = args->a3; /* thread id */
397 	struct thread_core_local *l = thread_get_core_local();
398 	uint32_t rv = 0;
399 
400 	assert(l->curr_thread == -1);
401 
402 	lock_global();
403 
404 	if (have_one_active_thread()) {
405 		rv = TEESMC_RETURN_EBUSY;
406 	} else if (n < CFG_NUM_THREADS &&
407 		threads[n].state == THREAD_STATE_SUSPENDED &&
408 		args->a7 == threads[n].hyp_clnt_id) {
409 		/*
410 		 * If there's one preempted thread it has to be the one
411 		 * we're resuming.
412 		 */
413 		if (have_one_preempted_thread()) {
414 			if (threads[n].flags & THREAD_FLAGS_EXIT_ON_IRQ) {
415 				threads[n].flags &= ~THREAD_FLAGS_EXIT_ON_IRQ;
416 				threads[n].state = THREAD_STATE_ACTIVE;
417 			} else {
418 				rv = TEESMC_RETURN_EBUSY;
419 			}
420 		} else {
421 			threads[n].state = THREAD_STATE_ACTIVE;
422 		}
423 	} else {
424 		rv = TEESMC_RETURN_ERESUME;
425 	}
426 
427 	unlock_global();
428 
429 	if (rv) {
430 		args->a0 = rv;
431 		return;
432 	}
433 
434 	l->curr_thread = n;
435 
436 	if (threads[n].have_user_map)
437 		core_mmu_set_user_map(&threads[n].user_map);
438 
439 	/*
440 	 * Return from RPC to request service of an IRQ must not
441 	 * get parameters from non-secure world.
442 	 */
443 	if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
444 		copy_a0_to_a3(&threads[n].regs, args);
445 		threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
446 	}
447 
448 	thread_lazy_save_ns_vfp();
449 	thread_resume(&threads[n].regs);
450 }
451 
452 void thread_handle_fast_smc(struct thread_smc_args *args)
453 {
454 	thread_check_canaries();
455 	thread_fast_smc_handler_ptr(args);
456 	/* Fast handlers must not unmask any exceptions */
457 	assert(thread_get_exceptions() == THREAD_EXCP_ALL);
458 }
459 
460 void thread_handle_std_smc(struct thread_smc_args *args)
461 {
462 	thread_check_canaries();
463 
464 	if (args->a0 == TEESMC32_CALL_RETURN_FROM_RPC)
465 		thread_resume_from_rpc(args);
466 	else
467 		thread_alloc_and_run(args);
468 }
469 
470 void thread_handle_abort(uint32_t abort_type, struct thread_abort_regs *regs)
471 {
472 #ifdef CFG_WITH_VFP
473 	if (vfp_is_enabled()) {
474 		vfp_lazy_save_state_init(&thread_vfp_state.sec);
475 		thread_vfp_state.sec_lazy_saved = true;
476 	}
477 #endif
478 
479 	thread_abort_handler_ptr(abort_type, regs);
480 
481 #ifdef CFG_WITH_VFP
482 	assert(!vfp_is_enabled());
483 	if (thread_vfp_state.sec_lazy_saved) {
484 		vfp_lazy_restore_state(&thread_vfp_state.sec,
485 				       thread_vfp_state.sec_saved);
486 		thread_vfp_state.sec_saved = false;
487 		thread_vfp_state.sec_lazy_saved = false;
488 	}
489 #endif
490 }
491 
492 void *thread_get_tmp_sp(void)
493 {
494 	struct thread_core_local *l = thread_get_core_local();
495 
496 	return (void *)l->tmp_stack_va_end;
497 }
498 
499 void thread_state_free(void)
500 {
501 	struct thread_core_local *l = thread_get_core_local();
502 	int ct = l->curr_thread;
503 
504 	assert(ct != -1);
505 
506 	thread_lazy_restore_ns_vfp();
507 
508 	lock_global();
509 
510 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
511 	threads[ct].state = THREAD_STATE_FREE;
512 	threads[ct].flags = 0;
513 	l->curr_thread = -1;
514 
515 	unlock_global();
516 }
517 
518 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
519 {
520 	struct thread_core_local *l = thread_get_core_local();
521 	int ct = l->curr_thread;
522 
523 	assert(ct != -1);
524 
525 	thread_check_canaries();
526 
527 	thread_lazy_restore_ns_vfp();
528 
529 	lock_global();
530 
531 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
532 	threads[ct].flags |= flags;
533 	threads[ct].regs.cpsr = cpsr;
534 	threads[ct].regs.pc = pc;
535 	threads[ct].state = THREAD_STATE_SUSPENDED;
536 
537 	threads[ct].have_user_map = core_mmu_user_mapping_is_active();
538 	if (threads[ct].have_user_map) {
539 		core_mmu_get_user_map(&threads[ct].user_map);
540 		core_mmu_set_user_map(NULL);
541 	}
542 
543 
544 	l->curr_thread = -1;
545 
546 	unlock_global();
547 
548 	return ct;
549 }
550 
551 #ifdef ARM32
552 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
553 {
554 	l->tmp_stack_va_end = sp;
555 	thread_set_irq_sp(sp);
556 	thread_set_fiq_sp(sp);
557 }
558 
559 static void set_abt_stack(struct thread_core_local *l __unused, vaddr_t sp)
560 {
561 	thread_set_abt_sp(sp);
562 }
563 #endif /*ARM32*/
564 
565 bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
566 {
567 	if (thread_id >= CFG_NUM_THREADS)
568 		return false;
569 	if (threads[thread_id].state != THREAD_STATE_FREE)
570 		return false;
571 
572 	threads[thread_id].stack_va_end = sp;
573 	return true;
574 }
575 
576 uint32_t thread_get_id(void)
577 {
578 	/* thread_get_core_local() requires IRQs to be disabled */
579 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
580 	struct thread_core_local *l;
581 	int ct;
582 
583 	l = thread_get_core_local();
584 	ct = l->curr_thread;
585 
586 	thread_unmask_exceptions(exceptions);
587 	return ct;
588 }
589 
590 static void init_handlers(const struct thread_handlers *handlers)
591 {
592 	thread_std_smc_handler_ptr = handlers->std_smc;
593 	thread_fast_smc_handler_ptr = handlers->fast_smc;
594 	thread_fiq_handler_ptr = handlers->fiq;
595 	thread_svc_handler_ptr = handlers->svc;
596 	thread_abort_handler_ptr = handlers->abort;
597 	thread_cpu_on_handler_ptr = handlers->cpu_on;
598 	thread_cpu_off_handler_ptr = handlers->cpu_off;
599 	thread_cpu_suspend_handler_ptr = handlers->cpu_suspend;
600 	thread_cpu_resume_handler_ptr = handlers->cpu_resume;
601 	thread_system_off_handler_ptr = handlers->system_off;
602 	thread_system_reset_handler_ptr = handlers->system_reset;
603 }
604 
605 
606 #ifdef CFG_WITH_PAGER
607 static void init_thread_stacks(void)
608 {
609 	size_t n;
610 
611 	/*
612 	 * Allocate virtual memory for thread stacks.
613 	 */
614 	for (n = 0; n < CFG_NUM_THREADS; n++) {
615 		tee_mm_entry_t *mm;
616 		vaddr_t sp;
617 
618 		/* Get unmapped page at bottom of stack */
619 		mm = tee_mm_alloc(&tee_mm_vcore, SMALL_PAGE_SIZE);
620 		TEE_ASSERT(mm);
621 		/* Claim eventual physical page */
622 		tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm),
623 				    true);
624 
625 		/* Allocate the actual stack */
626 		mm = tee_mm_alloc(&tee_mm_vcore, STACK_THREAD_SIZE);
627 		TEE_ASSERT(mm);
628 		sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm);
629 		if (!thread_init_stack(n, sp))
630 			panic();
631 		/* Claim eventual physical page */
632 		tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm),
633 				    true);
634 		/* Add the area to the pager */
635 		tee_pager_add_area(mm, TEE_PAGER_AREA_RW, NULL, NULL);
636 	}
637 }
638 #else
639 static void init_thread_stacks(void)
640 {
641 	size_t n;
642 
643 	/* Assign the thread stacks */
644 	for (n = 0; n < CFG_NUM_THREADS; n++) {
645 		if (!thread_init_stack(n, GET_STACK(stack_thread[n])))
646 			panic();
647 	}
648 }
649 #endif /*CFG_WITH_PAGER*/
650 
651 void thread_init_primary(const struct thread_handlers *handlers)
652 {
653 	/*
654 	 * The COMPILE_TIME_ASSERT only works in function context. These
655 	 * checks verifies that the offsets used in assembly code matches
656 	 * what's used in C code.
657 	 */
658 #ifdef ARM32
659 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r0) ==
660 				THREAD_SVC_REG_R0_OFFS);
661 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r1) ==
662 				THREAD_SVC_REG_R1_OFFS);
663 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r2) ==
664 				THREAD_SVC_REG_R2_OFFS);
665 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r3) ==
666 				THREAD_SVC_REG_R3_OFFS);
667 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r4) ==
668 				THREAD_SVC_REG_R4_OFFS);
669 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r5) ==
670 				THREAD_SVC_REG_R5_OFFS);
671 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r6) ==
672 				THREAD_SVC_REG_R6_OFFS);
673 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r7) ==
674 				THREAD_SVC_REG_R7_OFFS);
675 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, lr) ==
676 				THREAD_SVC_REG_LR_OFFS);
677 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, spsr) ==
678 				THREAD_SVC_REG_SPSR_OFFS);
679 #endif /*ARM32*/
680 
681 	init_handlers(handlers);
682 
683 	/* Initialize canaries around the stacks */
684 	init_canaries();
685 
686 	init_thread_stacks();
687 }
688 
689 static void init_sec_mon(size_t __unused pos)
690 {
691 #if defined(CFG_WITH_SEC_MON)
692 	/* Initialize secure monitor */
693 	sm_init(GET_STACK(stack_sm[pos]));
694 	sm_set_entry_vector(thread_vector_table);
695 #endif /*CFG_WITH_SEC_MON*/
696 }
697 
698 void thread_init_per_cpu(void)
699 {
700 	size_t pos = get_core_pos();
701 	struct thread_core_local *l = thread_get_core_local();
702 
703 	init_sec_mon(pos);
704 
705 	l->curr_thread = -1;
706 	set_tmp_stack(l, GET_STACK(stack_tmp[pos]));
707 	set_abt_stack(l, GET_STACK(stack_abt[pos]));
708 
709 	thread_init_vbar();
710 }
711 
712 void thread_set_tsd(void *tsd)
713 {
714 	/* thread_get_core_local() requires IRQs to be disabled */
715 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
716 	struct thread_core_local *l;
717 	int ct;
718 
719 	l = thread_get_core_local();
720 	ct = l->curr_thread;
721 
722 	assert(ct != -1);
723 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
724 	threads[ct].tsd = tsd;
725 
726 	thread_unmask_exceptions(exceptions);
727 }
728 
729 void *thread_get_tsd(void)
730 {
731 	/* thread_get_core_local() requires IRQs to be disabled */
732 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
733 	struct thread_core_local *l;
734 	int ct;
735 	void *tsd;
736 
737 	l = thread_get_core_local();
738 	ct = l->curr_thread;
739 
740 	if (ct == -1 || threads[ct].state != THREAD_STATE_ACTIVE)
741 		tsd = NULL;
742 	else
743 		tsd = threads[ct].tsd;
744 
745 	thread_unmask_exceptions(exceptions);
746 	return tsd;
747 }
748 
749 struct thread_ctx_regs *thread_get_ctx_regs(void)
750 {
751 	struct thread_core_local *l = thread_get_core_local();
752 
753 	assert(l->curr_thread != -1);
754 	return &threads[l->curr_thread].regs;
755 }
756 
757 void thread_set_irq(bool enable)
758 {
759 	/* thread_get_core_local() requires IRQs to be disabled */
760 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
761 	struct thread_core_local *l;
762 
763 	l = thread_get_core_local();
764 
765 	assert(l->curr_thread != -1);
766 
767 	if (enable) {
768 		threads[l->curr_thread].flags |= THREAD_FLAGS_IRQ_ENABLE;
769 		thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ);
770 	} else {
771 		/*
772 		 * No need to disable IRQ here since it's already disabled
773 		 * above.
774 		 */
775 		threads[l->curr_thread].flags &= ~THREAD_FLAGS_IRQ_ENABLE;
776 	}
777 }
778 
779 void thread_restore_irq(void)
780 {
781 	/* thread_get_core_local() requires IRQs to be disabled */
782 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
783 	struct thread_core_local *l;
784 
785 	l = thread_get_core_local();
786 
787 	assert(l->curr_thread != -1);
788 
789 	if (threads[l->curr_thread].flags & THREAD_FLAGS_IRQ_ENABLE)
790 		thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ);
791 }
792 
793 #ifdef CFG_WITH_VFP
794 uint32_t thread_kernel_enable_vfp(void)
795 {
796 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
797 
798 	assert(!vfp_is_enabled());
799 
800 	if (!thread_vfp_state.ns_saved) {
801 		vfp_lazy_save_state_final(&thread_vfp_state.ns);
802 		thread_vfp_state.ns_saved = true;
803 	} else if (thread_vfp_state.sec_lazy_saved &&
804 		   !thread_vfp_state.sec_saved) {
805 		vfp_lazy_save_state_final(&thread_vfp_state.sec);
806 		thread_vfp_state.sec_saved = true;
807 	}
808 
809 	vfp_enable();
810 	return exceptions;
811 }
812 
813 void thread_kernel_disable_vfp(uint32_t state)
814 {
815 	uint32_t exceptions;
816 
817 	assert(vfp_is_enabled());
818 
819 	vfp_disable();
820 	exceptions = thread_get_exceptions();
821 	assert(exceptions & THREAD_EXCP_IRQ);
822 	exceptions &= ~THREAD_EXCP_IRQ;
823 	exceptions |= state & THREAD_EXCP_IRQ;
824 	thread_set_exceptions(exceptions);
825 }
826 #endif /*CFG_WITH_VFP*/
827 
828 
829 paddr_t thread_rpc_alloc_arg(size_t size)
830 {
831 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
832 		TEESMC_RETURN_RPC_ALLOC_ARG, size};
833 
834 	thread_rpc(rpc_args);
835 	return rpc_args[1];
836 }
837 
838 paddr_t thread_rpc_alloc_payload(size_t size)
839 {
840 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
841 		TEESMC_RETURN_RPC_ALLOC_PAYLOAD, size};
842 
843 	thread_rpc(rpc_args);
844 	return rpc_args[1];
845 }
846 
847 void thread_rpc_free_arg(paddr_t arg)
848 {
849 	if (arg) {
850 		uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
851 			TEESMC_RETURN_RPC_FREE_ARG, arg};
852 
853 		thread_rpc(rpc_args);
854 	}
855 }
856 void thread_rpc_free_payload(paddr_t payload)
857 {
858 	if (payload) {
859 		uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
860 			TEESMC_RETURN_RPC_FREE_PAYLOAD, payload};
861 
862 		thread_rpc(rpc_args);
863 	}
864 }
865 
866 void thread_rpc_cmd(paddr_t arg)
867 {
868 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {TEESMC_RETURN_RPC_CMD, arg};
869 
870 	thread_rpc(rpc_args);
871 }
872 
873 void thread_optee_rpc_alloc_payload(size_t size, paddr_t *payload,
874 		paddr_t *cookie)
875 {
876 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
877 		TEESMC_RETURN_OPTEE_RPC_ALLOC_PAYLOAD, size};
878 
879 	thread_rpc(rpc_args);
880 	if (payload)
881 		*payload = rpc_args[1];
882 	if (cookie)
883 		*cookie = rpc_args[2];
884 }
885 
886 void thread_optee_rpc_free_payload(paddr_t cookie)
887 {
888 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] ={
889 		TEESMC_RETURN_OPTEE_RPC_FREE_PAYLOAD, cookie};
890 
891 	thread_rpc(rpc_args);
892 }
893