1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 */ 6 7 #include <platform_config.h> 8 9 #include <arm.h> 10 #include <assert.h> 11 #include <keep.h> 12 #include <kernel/asan.h> 13 #include <kernel/misc.h> 14 #include <kernel/msg_param.h> 15 #include <kernel/panic.h> 16 #include <kernel/spinlock.h> 17 #include <kernel/tee_ta_manager.h> 18 #include <kernel/thread_defs.h> 19 #include <kernel/thread.h> 20 #include <mm/core_memprot.h> 21 #include <mm/mobj.h> 22 #include <mm/tee_mm.h> 23 #include <mm/tee_mmu.h> 24 #include <mm/tee_pager.h> 25 #include <optee_msg.h> 26 #include <smccc.h> 27 #include <sm/optee_smc.h> 28 #include <sm/sm.h> 29 #include <tee/tee_cryp_utl.h> 30 #include <tee/tee_fs_rpc.h> 31 #include <trace.h> 32 #include <util.h> 33 34 #include "thread_private.h" 35 36 #ifdef CFG_WITH_ARM_TRUSTED_FW 37 #define STACK_TMP_OFFS 0 38 #else 39 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE 40 #endif 41 42 43 #ifdef ARM32 44 #ifdef CFG_CORE_SANITIZE_KADDRESS 45 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) 46 #else 47 #define STACK_TMP_SIZE (1536 + STACK_TMP_OFFS) 48 #endif 49 #define STACK_THREAD_SIZE 8192 50 51 #ifdef CFG_CORE_SANITIZE_KADDRESS 52 #define STACK_ABT_SIZE 3072 53 #else 54 #define STACK_ABT_SIZE 2048 55 #endif 56 57 #endif /*ARM32*/ 58 59 #ifdef ARM64 60 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 61 #define STACK_THREAD_SIZE 8192 62 63 #if TRACE_LEVEL > 0 64 #define STACK_ABT_SIZE 3072 65 #else 66 #define STACK_ABT_SIZE 1024 67 #endif 68 #endif /*ARM64*/ 69 70 struct thread_ctx threads[CFG_NUM_THREADS]; 71 72 struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE]; 73 74 #ifdef CFG_WITH_STACK_CANARIES 75 #ifdef ARM32 76 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 77 #endif 78 #ifdef ARM64 79 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 80 #endif 81 #define START_CANARY_VALUE 0xdededede 82 #define END_CANARY_VALUE 0xabababab 83 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 84 #define GET_END_CANARY(name, stack_num) \ 85 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 86 #else 87 #define STACK_CANARY_SIZE 0 88 #endif 89 90 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 91 linkage uint32_t name[num_stacks] \ 92 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 93 sizeof(uint32_t)] \ 94 __attribute__((section(".nozi_stack"), \ 95 aligned(STACK_ALIGNMENT))) 96 97 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 98 99 #define GET_STACK(stack) \ 100 ((vaddr_t)(stack) + STACK_SIZE(stack)) 101 102 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, static); 103 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 104 #ifndef CFG_WITH_PAGER 105 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 106 #endif 107 108 const void *stack_tmp_export = (uint8_t *)stack_tmp + sizeof(stack_tmp[0]) - 109 (STACK_TMP_OFFS + STACK_CANARY_SIZE / 2); 110 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]); 111 112 /* 113 * These stack setup info are required by secondary boot cores before they 114 * each locally enable the pager (the mmu). Hence kept in pager sections. 115 */ 116 KEEP_PAGER(stack_tmp_export); 117 KEEP_PAGER(stack_tmp_stride); 118 119 thread_smc_handler_t thread_std_smc_handler_ptr; 120 static thread_smc_handler_t thread_fast_smc_handler_ptr; 121 thread_nintr_handler_t thread_nintr_handler_ptr; 122 thread_pm_handler_t thread_cpu_on_handler_ptr; 123 thread_pm_handler_t thread_cpu_off_handler_ptr; 124 thread_pm_handler_t thread_cpu_suspend_handler_ptr; 125 thread_pm_handler_t thread_cpu_resume_handler_ptr; 126 thread_pm_handler_t thread_system_off_handler_ptr; 127 thread_pm_handler_t thread_system_reset_handler_ptr; 128 129 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 130 static vaddr_t thread_user_kcode_va; 131 long thread_user_kcode_offset; 132 static size_t thread_user_kcode_size; 133 #endif 134 135 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 136 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 137 long thread_user_kdata_sp_offset; 138 static uint8_t thread_user_kdata_page[ 139 ROUNDUP(sizeof(thread_core_local), SMALL_PAGE_SIZE)] 140 __aligned(SMALL_PAGE_SIZE) __section(".nozi.kdata_page"); 141 #endif 142 143 static unsigned int thread_global_lock = SPINLOCK_UNLOCK; 144 static bool thread_prealloc_rpc_cache; 145 146 static void init_canaries(void) 147 { 148 #ifdef CFG_WITH_STACK_CANARIES 149 size_t n; 150 #define INIT_CANARY(name) \ 151 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 152 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 153 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 154 \ 155 *start_canary = START_CANARY_VALUE; \ 156 *end_canary = END_CANARY_VALUE; \ 157 DMSG("#Stack canaries for %s[%zu] with top at %p\n", \ 158 #name, n, (void *)(end_canary - 1)); \ 159 DMSG("watch *%p\n", (void *)end_canary); \ 160 } 161 162 INIT_CANARY(stack_tmp); 163 INIT_CANARY(stack_abt); 164 #ifndef CFG_WITH_PAGER 165 INIT_CANARY(stack_thread); 166 #endif 167 #endif/*CFG_WITH_STACK_CANARIES*/ 168 } 169 170 #define CANARY_DIED(stack, loc, n) \ 171 do { \ 172 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 173 panic(); \ 174 } while (0) 175 176 void thread_check_canaries(void) 177 { 178 #ifdef CFG_WITH_STACK_CANARIES 179 size_t n; 180 181 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 182 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 183 CANARY_DIED(stack_tmp, start, n); 184 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 185 CANARY_DIED(stack_tmp, end, n); 186 } 187 188 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 189 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 190 CANARY_DIED(stack_abt, start, n); 191 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 192 CANARY_DIED(stack_abt, end, n); 193 194 } 195 #ifndef CFG_WITH_PAGER 196 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 197 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 198 CANARY_DIED(stack_thread, start, n); 199 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 200 CANARY_DIED(stack_thread, end, n); 201 } 202 #endif 203 #endif/*CFG_WITH_STACK_CANARIES*/ 204 } 205 206 static void lock_global(void) 207 { 208 cpu_spin_lock(&thread_global_lock); 209 } 210 211 static void unlock_global(void) 212 { 213 cpu_spin_unlock(&thread_global_lock); 214 } 215 216 #ifdef ARM32 217 uint32_t thread_get_exceptions(void) 218 { 219 uint32_t cpsr = read_cpsr(); 220 221 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 222 } 223 224 void thread_set_exceptions(uint32_t exceptions) 225 { 226 uint32_t cpsr = read_cpsr(); 227 228 /* Foreign interrupts must not be unmasked while holding a spinlock */ 229 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 230 assert_have_no_spinlock(); 231 232 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 233 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 234 write_cpsr(cpsr); 235 } 236 #endif /*ARM32*/ 237 238 #ifdef ARM64 239 uint32_t thread_get_exceptions(void) 240 { 241 uint32_t daif = read_daif(); 242 243 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 244 } 245 246 void thread_set_exceptions(uint32_t exceptions) 247 { 248 uint32_t daif = read_daif(); 249 250 /* Foreign interrupts must not be unmasked while holding a spinlock */ 251 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 252 assert_have_no_spinlock(); 253 254 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 255 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 256 write_daif(daif); 257 } 258 #endif /*ARM64*/ 259 260 uint32_t thread_mask_exceptions(uint32_t exceptions) 261 { 262 uint32_t state = thread_get_exceptions(); 263 264 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 265 return state; 266 } 267 268 void thread_unmask_exceptions(uint32_t state) 269 { 270 thread_set_exceptions(state & THREAD_EXCP_ALL); 271 } 272 273 274 struct thread_core_local *thread_get_core_local(void) 275 { 276 uint32_t cpu_id = get_core_pos(); 277 278 /* 279 * Foreign interrupts must be disabled before playing with core_local 280 * since we otherwise may be rescheduled to a different core in the 281 * middle of this function. 282 */ 283 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 284 285 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 286 return &thread_core_local[cpu_id]; 287 } 288 289 static void thread_lazy_save_ns_vfp(void) 290 { 291 #ifdef CFG_WITH_VFP 292 struct thread_ctx *thr = threads + thread_get_id(); 293 294 thr->vfp_state.ns_saved = false; 295 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW) 296 /* 297 * ARM TF saves and restores CPACR_EL1, so we must assume NS world 298 * uses VFP and always preserve the register file when secure world 299 * is about to use it 300 */ 301 thr->vfp_state.ns.force_save = true; 302 #endif 303 vfp_lazy_save_state_init(&thr->vfp_state.ns); 304 #endif /*CFG_WITH_VFP*/ 305 } 306 307 static void thread_lazy_restore_ns_vfp(void) 308 { 309 #ifdef CFG_WITH_VFP 310 struct thread_ctx *thr = threads + thread_get_id(); 311 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 312 313 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 314 315 if (tuv && tuv->lazy_saved && !tuv->saved) { 316 vfp_lazy_save_state_final(&tuv->vfp); 317 tuv->saved = true; 318 } 319 320 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 321 thr->vfp_state.ns_saved = false; 322 #endif /*CFG_WITH_VFP*/ 323 } 324 325 #ifdef ARM32 326 static void init_regs(struct thread_ctx *thread, 327 struct thread_smc_args *args) 328 { 329 thread->regs.pc = (uint32_t)thread_std_smc_entry; 330 331 /* 332 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 333 * Asynchronous abort and unmasked native interrupts. 334 */ 335 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 336 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A | 337 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT); 338 /* Enable thumb mode if it's a thumb instruction */ 339 if (thread->regs.pc & 1) 340 thread->regs.cpsr |= CPSR_T; 341 /* Reinitialize stack pointer */ 342 thread->regs.svc_sp = thread->stack_va_end; 343 344 /* 345 * Copy arguments into context. This will make the 346 * arguments appear in r0-r7 when thread is started. 347 */ 348 thread->regs.r0 = args->a0; 349 thread->regs.r1 = args->a1; 350 thread->regs.r2 = args->a2; 351 thread->regs.r3 = args->a3; 352 thread->regs.r4 = args->a4; 353 thread->regs.r5 = args->a5; 354 thread->regs.r6 = args->a6; 355 thread->regs.r7 = args->a7; 356 } 357 #endif /*ARM32*/ 358 359 #ifdef ARM64 360 static void init_regs(struct thread_ctx *thread, 361 struct thread_smc_args *args) 362 { 363 thread->regs.pc = (uint64_t)thread_std_smc_entry; 364 365 /* 366 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 367 * Asynchronous abort and unmasked native interrupts. 368 */ 369 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 370 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT); 371 /* Reinitialize stack pointer */ 372 thread->regs.sp = thread->stack_va_end; 373 374 /* 375 * Copy arguments into context. This will make the 376 * arguments appear in x0-x7 when thread is started. 377 */ 378 thread->regs.x[0] = args->a0; 379 thread->regs.x[1] = args->a1; 380 thread->regs.x[2] = args->a2; 381 thread->regs.x[3] = args->a3; 382 thread->regs.x[4] = args->a4; 383 thread->regs.x[5] = args->a5; 384 thread->regs.x[6] = args->a6; 385 thread->regs.x[7] = args->a7; 386 387 /* Set up frame pointer as per the Aarch64 AAPCS */ 388 thread->regs.x[29] = 0; 389 } 390 #endif /*ARM64*/ 391 392 void thread_init_boot_thread(void) 393 { 394 struct thread_core_local *l = thread_get_core_local(); 395 size_t n; 396 397 for (n = 0; n < CFG_NUM_THREADS; n++) { 398 TAILQ_INIT(&threads[n].mutexes); 399 TAILQ_INIT(&threads[n].tsd.sess_stack); 400 SLIST_INIT(&threads[n].tsd.pgt_cache); 401 } 402 403 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 404 thread_core_local[n].curr_thread = -1; 405 406 l->curr_thread = 0; 407 threads[0].state = THREAD_STATE_ACTIVE; 408 } 409 410 void thread_clr_boot_thread(void) 411 { 412 struct thread_core_local *l = thread_get_core_local(); 413 414 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 415 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 416 assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes)); 417 threads[l->curr_thread].state = THREAD_STATE_FREE; 418 l->curr_thread = -1; 419 } 420 421 static void thread_alloc_and_run(struct thread_smc_args *args) 422 { 423 size_t n; 424 struct thread_core_local *l = thread_get_core_local(); 425 bool found_thread = false; 426 427 assert(l->curr_thread == -1); 428 429 lock_global(); 430 431 for (n = 0; n < CFG_NUM_THREADS; n++) { 432 if (threads[n].state == THREAD_STATE_FREE) { 433 threads[n].state = THREAD_STATE_ACTIVE; 434 found_thread = true; 435 break; 436 } 437 } 438 439 unlock_global(); 440 441 if (!found_thread) { 442 args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT; 443 return; 444 } 445 446 l->curr_thread = n; 447 448 threads[n].flags = 0; 449 init_regs(threads + n, args); 450 451 /* Save Hypervisor Client ID */ 452 threads[n].hyp_clnt_id = args->a7; 453 454 thread_lazy_save_ns_vfp(); 455 thread_resume(&threads[n].regs); 456 } 457 458 #ifdef ARM32 459 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 460 struct thread_smc_args *args) 461 { 462 /* 463 * Update returned values from RPC, values will appear in 464 * r0-r3 when thread is resumed. 465 */ 466 regs->r0 = args->a0; 467 regs->r1 = args->a1; 468 regs->r2 = args->a2; 469 regs->r3 = args->a3; 470 regs->r4 = args->a4; 471 regs->r5 = args->a5; 472 } 473 #endif /*ARM32*/ 474 475 #ifdef ARM64 476 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 477 struct thread_smc_args *args) 478 { 479 /* 480 * Update returned values from RPC, values will appear in 481 * x0-x3 when thread is resumed. 482 */ 483 regs->x[0] = args->a0; 484 regs->x[1] = args->a1; 485 regs->x[2] = args->a2; 486 regs->x[3] = args->a3; 487 regs->x[4] = args->a4; 488 regs->x[5] = args->a5; 489 } 490 #endif /*ARM64*/ 491 492 #ifdef ARM32 493 static bool is_from_user(uint32_t cpsr) 494 { 495 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 496 } 497 #endif 498 499 #ifdef ARM64 500 static bool is_from_user(uint32_t cpsr) 501 { 502 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 503 return true; 504 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 505 SPSR_64_MODE_EL0) 506 return true; 507 return false; 508 } 509 #endif 510 511 static bool is_user_mode(struct thread_ctx_regs *regs) 512 { 513 return is_from_user((uint32_t)regs->cpsr); 514 } 515 516 static void thread_resume_from_rpc(struct thread_smc_args *args) 517 { 518 size_t n = args->a3; /* thread id */ 519 struct thread_core_local *l = thread_get_core_local(); 520 uint32_t rv = 0; 521 522 assert(l->curr_thread == -1); 523 524 lock_global(); 525 526 if (n < CFG_NUM_THREADS && 527 threads[n].state == THREAD_STATE_SUSPENDED && 528 args->a7 == threads[n].hyp_clnt_id) 529 threads[n].state = THREAD_STATE_ACTIVE; 530 else 531 rv = OPTEE_SMC_RETURN_ERESUME; 532 533 unlock_global(); 534 535 if (rv) { 536 args->a0 = rv; 537 return; 538 } 539 540 l->curr_thread = n; 541 542 if (is_user_mode(&threads[n].regs)) 543 tee_ta_update_session_utime_resume(); 544 545 if (threads[n].have_user_map) 546 core_mmu_set_user_map(&threads[n].user_map); 547 548 /* 549 * Return from RPC to request service of a foreign interrupt must not 550 * get parameters from non-secure world. 551 */ 552 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 553 copy_a0_to_a5(&threads[n].regs, args); 554 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 555 } 556 557 thread_lazy_save_ns_vfp(); 558 thread_resume(&threads[n].regs); 559 } 560 561 void thread_handle_fast_smc(struct thread_smc_args *args) 562 { 563 thread_check_canaries(); 564 thread_fast_smc_handler_ptr(args); 565 /* Fast handlers must not unmask any exceptions */ 566 assert(thread_get_exceptions() == THREAD_EXCP_ALL); 567 } 568 569 void thread_handle_std_smc(struct thread_smc_args *args) 570 { 571 thread_check_canaries(); 572 573 if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC) 574 thread_resume_from_rpc(args); 575 else 576 thread_alloc_and_run(args); 577 } 578 579 /* 580 * Helper routine for the assembly function thread_std_smc_entry() 581 * 582 * Note: this function is weak just to make it possible to exclude it from 583 * the unpaged area. 584 */ 585 void __weak __thread_std_smc_entry(struct thread_smc_args *args) 586 { 587 thread_std_smc_handler_ptr(args); 588 589 if (args->a0 == OPTEE_SMC_RETURN_OK) { 590 struct thread_ctx *thr = threads + thread_get_id(); 591 592 tee_fs_rpc_cache_clear(&thr->tsd); 593 if (!thread_prealloc_rpc_cache) { 594 thread_rpc_free_arg(thr->rpc_carg); 595 mobj_free(thr->rpc_mobj); 596 thr->rpc_carg = 0; 597 thr->rpc_arg = 0; 598 thr->rpc_mobj = NULL; 599 } 600 } 601 } 602 603 void *thread_get_tmp_sp(void) 604 { 605 struct thread_core_local *l = thread_get_core_local(); 606 607 return (void *)l->tmp_stack_va_end; 608 } 609 610 #ifdef ARM64 611 vaddr_t thread_get_saved_thread_sp(void) 612 { 613 struct thread_core_local *l = thread_get_core_local(); 614 int ct = l->curr_thread; 615 616 assert(ct != -1); 617 return threads[ct].kern_sp; 618 } 619 #endif /*ARM64*/ 620 621 vaddr_t thread_stack_start(void) 622 { 623 struct thread_ctx *thr; 624 int ct = thread_get_id_may_fail(); 625 626 if (ct == -1) 627 return 0; 628 629 thr = threads + ct; 630 return thr->stack_va_end - STACK_THREAD_SIZE; 631 } 632 633 size_t thread_stack_size(void) 634 { 635 return STACK_THREAD_SIZE; 636 } 637 638 bool thread_is_from_abort_mode(void) 639 { 640 struct thread_core_local *l = thread_get_core_local(); 641 642 return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT; 643 } 644 645 #ifdef ARM32 646 bool thread_is_in_normal_mode(void) 647 { 648 return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC; 649 } 650 #endif 651 652 #ifdef ARM64 653 bool thread_is_in_normal_mode(void) 654 { 655 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 656 struct thread_core_local *l = thread_get_core_local(); 657 bool ret; 658 659 /* If any bit in l->flags is set we're handling some exception. */ 660 ret = !l->flags; 661 thread_unmask_exceptions(exceptions); 662 663 return ret; 664 } 665 #endif 666 667 void thread_state_free(void) 668 { 669 struct thread_core_local *l = thread_get_core_local(); 670 int ct = l->curr_thread; 671 672 assert(ct != -1); 673 assert(TAILQ_EMPTY(&threads[ct].mutexes)); 674 675 thread_lazy_restore_ns_vfp(); 676 tee_pager_release_phys( 677 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 678 STACK_THREAD_SIZE); 679 680 lock_global(); 681 682 assert(threads[ct].state == THREAD_STATE_ACTIVE); 683 threads[ct].state = THREAD_STATE_FREE; 684 threads[ct].flags = 0; 685 l->curr_thread = -1; 686 687 unlock_global(); 688 } 689 690 #ifdef CFG_WITH_PAGER 691 static void release_unused_kernel_stack(struct thread_ctx *thr, 692 uint32_t cpsr __maybe_unused) 693 { 694 #ifdef ARM64 695 /* 696 * If we're from user mode then thr->regs.sp is the saved user 697 * stack pointer and thr->kern_sp holds the last kernel stack 698 * pointer. But if we're from kernel mode then thr->kern_sp isn't 699 * up to date so we need to read from thr->regs.sp instead. 700 */ 701 vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp; 702 #else 703 vaddr_t sp = thr->regs.svc_sp; 704 #endif 705 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 706 size_t len = sp - base; 707 708 tee_pager_release_phys((void *)base, len); 709 } 710 #else 711 static void release_unused_kernel_stack(struct thread_ctx *thr __unused, 712 uint32_t cpsr __unused) 713 { 714 } 715 #endif 716 717 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 718 { 719 struct thread_core_local *l = thread_get_core_local(); 720 int ct = l->curr_thread; 721 722 assert(ct != -1); 723 724 thread_check_canaries(); 725 726 release_unused_kernel_stack(threads + ct, cpsr); 727 728 if (is_from_user(cpsr)) { 729 thread_user_save_vfp(); 730 tee_ta_update_session_utime_suspend(); 731 tee_ta_gprof_sample_pc(pc); 732 } 733 thread_lazy_restore_ns_vfp(); 734 735 lock_global(); 736 737 assert(threads[ct].state == THREAD_STATE_ACTIVE); 738 threads[ct].flags |= flags; 739 threads[ct].regs.cpsr = cpsr; 740 threads[ct].regs.pc = pc; 741 threads[ct].state = THREAD_STATE_SUSPENDED; 742 743 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 744 if (threads[ct].have_user_map) { 745 core_mmu_get_user_map(&threads[ct].user_map); 746 core_mmu_set_user_map(NULL); 747 } 748 749 l->curr_thread = -1; 750 751 unlock_global(); 752 753 return ct; 754 } 755 756 #ifdef ARM32 757 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 758 { 759 l->tmp_stack_va_end = sp; 760 thread_set_irq_sp(sp); 761 thread_set_fiq_sp(sp); 762 } 763 764 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 765 { 766 l->abt_stack_va_end = sp; 767 thread_set_abt_sp((vaddr_t)l); 768 thread_set_und_sp((vaddr_t)l); 769 } 770 #endif /*ARM32*/ 771 772 #ifdef ARM64 773 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 774 { 775 /* 776 * We're already using the tmp stack when this function is called 777 * so there's no need to assign it to any stack pointer. However, 778 * we'll need to restore it at different times so store it here. 779 */ 780 l->tmp_stack_va_end = sp; 781 } 782 783 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 784 { 785 l->abt_stack_va_end = sp; 786 } 787 #endif /*ARM64*/ 788 789 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 790 { 791 if (thread_id >= CFG_NUM_THREADS) 792 return false; 793 threads[thread_id].stack_va_end = sp; 794 return true; 795 } 796 797 int thread_get_id_may_fail(void) 798 { 799 /* 800 * thread_get_core_local() requires foreign interrupts to be disabled 801 */ 802 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 803 struct thread_core_local *l = thread_get_core_local(); 804 int ct = l->curr_thread; 805 806 thread_unmask_exceptions(exceptions); 807 return ct; 808 } 809 810 int thread_get_id(void) 811 { 812 int ct = thread_get_id_may_fail(); 813 814 assert(ct >= 0 && ct < CFG_NUM_THREADS); 815 return ct; 816 } 817 818 static void init_handlers(const struct thread_handlers *handlers) 819 { 820 thread_std_smc_handler_ptr = handlers->std_smc; 821 thread_fast_smc_handler_ptr = handlers->fast_smc; 822 thread_nintr_handler_ptr = handlers->nintr; 823 thread_cpu_on_handler_ptr = handlers->cpu_on; 824 thread_cpu_off_handler_ptr = handlers->cpu_off; 825 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 826 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 827 thread_system_off_handler_ptr = handlers->system_off; 828 thread_system_reset_handler_ptr = handlers->system_reset; 829 } 830 831 #ifdef CFG_WITH_PAGER 832 static void init_thread_stacks(void) 833 { 834 size_t n; 835 836 /* 837 * Allocate virtual memory for thread stacks. 838 */ 839 for (n = 0; n < CFG_NUM_THREADS; n++) { 840 tee_mm_entry_t *mm; 841 vaddr_t sp; 842 843 /* Find vmem for thread stack and its protection gap */ 844 mm = tee_mm_alloc(&tee_mm_vcore, 845 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 846 assert(mm); 847 848 /* Claim eventual physical page */ 849 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 850 true); 851 852 /* Add the area to the pager */ 853 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 854 tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE, 855 TEE_MATTR_PRW | TEE_MATTR_LOCKED, 856 NULL, NULL); 857 858 /* init effective stack */ 859 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 860 asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp); 861 if (!thread_init_stack(n, sp)) 862 panic("init stack failed"); 863 } 864 } 865 #else 866 static void init_thread_stacks(void) 867 { 868 size_t n; 869 870 /* Assign the thread stacks */ 871 for (n = 0; n < CFG_NUM_THREADS; n++) { 872 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 873 panic("thread_init_stack failed"); 874 } 875 } 876 #endif /*CFG_WITH_PAGER*/ 877 878 static void init_user_kcode(void) 879 { 880 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 881 vaddr_t v = (vaddr_t)thread_excp_vect; 882 vaddr_t ve = (vaddr_t)thread_excp_vect_end; 883 884 thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE); 885 ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE); 886 thread_user_kcode_size = ve - thread_user_kcode_va; 887 888 core_mmu_get_user_va_range(&v, NULL); 889 thread_user_kcode_offset = thread_user_kcode_va - v; 890 891 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 892 /* 893 * When transitioning to EL0 subtract SP with this much to point to 894 * this special kdata page instead. SP is restored by add this much 895 * while transitioning back to EL1. 896 */ 897 v += thread_user_kcode_size; 898 thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v; 899 #endif 900 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/ 901 } 902 903 void thread_init_primary(const struct thread_handlers *handlers) 904 { 905 init_handlers(handlers); 906 907 /* Initialize canaries around the stacks */ 908 init_canaries(); 909 910 init_thread_stacks(); 911 pgt_init(); 912 913 init_user_kcode(); 914 } 915 916 static void init_sec_mon(size_t pos __maybe_unused) 917 { 918 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 919 /* Initialize secure monitor */ 920 sm_init(GET_STACK(stack_tmp[pos])); 921 #endif 922 } 923 924 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr) 925 { 926 return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK; 927 } 928 929 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr) 930 { 931 return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) & 932 MIDR_PRIMARY_PART_NUM_MASK; 933 } 934 935 #ifdef ARM64 936 static bool probe_workaround_available(void) 937 { 938 int32_t r; 939 940 r = thread_smc(SMCCC_VERSION, 0, 0, 0); 941 if (r < 0) 942 return false; 943 if (r < 0x10001) /* compare with version 1.1 */ 944 return false; 945 946 /* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */ 947 r = thread_smc(SMCCC_ARCH_FEATURES, SMCCC_ARCH_WORKAROUND_1, 0, 0); 948 return r >= 0; 949 } 950 951 static vaddr_t select_vector(vaddr_t a) 952 { 953 if (probe_workaround_available()) { 954 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available", 955 SMCCC_ARCH_WORKAROUND_1); 956 DMSG("SMC Workaround for CVE-2017-5715 used"); 957 return a; 958 } 959 960 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable", 961 SMCCC_ARCH_WORKAROUND_1); 962 DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)"); 963 return (vaddr_t)thread_excp_vect; 964 } 965 #else 966 static vaddr_t select_vector(vaddr_t a) 967 { 968 return a; 969 } 970 #endif 971 972 static vaddr_t get_excp_vect(void) 973 { 974 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC 975 uint32_t midr = read_midr(); 976 977 if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM) 978 return (vaddr_t)thread_excp_vect; 979 980 switch (get_midr_primary_part(midr)) { 981 #ifdef ARM32 982 case CORTEX_A8_PART_NUM: 983 case CORTEX_A9_PART_NUM: 984 case CORTEX_A17_PART_NUM: 985 #endif 986 case CORTEX_A57_PART_NUM: 987 case CORTEX_A72_PART_NUM: 988 case CORTEX_A73_PART_NUM: 989 case CORTEX_A75_PART_NUM: 990 return select_vector((vaddr_t)thread_excp_vect_workaround); 991 #ifdef ARM32 992 case CORTEX_A15_PART_NUM: 993 return select_vector((vaddr_t)thread_excp_vect_workaround_a15); 994 #endif 995 default: 996 return (vaddr_t)thread_excp_vect; 997 } 998 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/ 999 1000 return (vaddr_t)thread_excp_vect; 1001 } 1002 1003 void thread_init_per_cpu(void) 1004 { 1005 size_t pos = get_core_pos(); 1006 struct thread_core_local *l = thread_get_core_local(); 1007 1008 init_sec_mon(pos); 1009 1010 set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); 1011 set_abt_stack(l, GET_STACK(stack_abt[pos])); 1012 1013 thread_init_vbar(get_excp_vect()); 1014 } 1015 1016 struct thread_specific_data *thread_get_tsd(void) 1017 { 1018 return &threads[thread_get_id()].tsd; 1019 } 1020 1021 struct thread_ctx_regs *thread_get_ctx_regs(void) 1022 { 1023 struct thread_core_local *l = thread_get_core_local(); 1024 1025 assert(l->curr_thread != -1); 1026 return &threads[l->curr_thread].regs; 1027 } 1028 1029 void thread_set_foreign_intr(bool enable) 1030 { 1031 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1032 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1033 struct thread_core_local *l; 1034 1035 l = thread_get_core_local(); 1036 1037 assert(l->curr_thread != -1); 1038 1039 if (enable) { 1040 threads[l->curr_thread].flags |= 1041 THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1042 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1043 } else { 1044 /* 1045 * No need to disable foreign interrupts here since they're 1046 * already disabled above. 1047 */ 1048 threads[l->curr_thread].flags &= 1049 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1050 } 1051 } 1052 1053 void thread_restore_foreign_intr(void) 1054 { 1055 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1056 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1057 struct thread_core_local *l; 1058 1059 l = thread_get_core_local(); 1060 1061 assert(l->curr_thread != -1); 1062 1063 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) 1064 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1065 } 1066 1067 #ifdef CFG_WITH_VFP 1068 uint32_t thread_kernel_enable_vfp(void) 1069 { 1070 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1071 struct thread_ctx *thr = threads + thread_get_id(); 1072 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1073 1074 assert(!vfp_is_enabled()); 1075 1076 if (!thr->vfp_state.ns_saved) { 1077 vfp_lazy_save_state_final(&thr->vfp_state.ns); 1078 thr->vfp_state.ns_saved = true; 1079 } else if (thr->vfp_state.sec_lazy_saved && 1080 !thr->vfp_state.sec_saved) { 1081 /* 1082 * This happens when we're handling an abort while the 1083 * thread was using the VFP state. 1084 */ 1085 vfp_lazy_save_state_final(&thr->vfp_state.sec); 1086 thr->vfp_state.sec_saved = true; 1087 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 1088 /* 1089 * This can happen either during syscall or abort 1090 * processing (while processing a syscall). 1091 */ 1092 vfp_lazy_save_state_final(&tuv->vfp); 1093 tuv->saved = true; 1094 } 1095 1096 vfp_enable(); 1097 return exceptions; 1098 } 1099 1100 void thread_kernel_disable_vfp(uint32_t state) 1101 { 1102 uint32_t exceptions; 1103 1104 assert(vfp_is_enabled()); 1105 1106 vfp_disable(); 1107 exceptions = thread_get_exceptions(); 1108 assert(exceptions & THREAD_EXCP_FOREIGN_INTR); 1109 exceptions &= ~THREAD_EXCP_FOREIGN_INTR; 1110 exceptions |= state & THREAD_EXCP_FOREIGN_INTR; 1111 thread_set_exceptions(exceptions); 1112 } 1113 1114 void thread_kernel_save_vfp(void) 1115 { 1116 struct thread_ctx *thr = threads + thread_get_id(); 1117 1118 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1119 if (vfp_is_enabled()) { 1120 vfp_lazy_save_state_init(&thr->vfp_state.sec); 1121 thr->vfp_state.sec_lazy_saved = true; 1122 } 1123 } 1124 1125 void thread_kernel_restore_vfp(void) 1126 { 1127 struct thread_ctx *thr = threads + thread_get_id(); 1128 1129 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1130 assert(!vfp_is_enabled()); 1131 if (thr->vfp_state.sec_lazy_saved) { 1132 vfp_lazy_restore_state(&thr->vfp_state.sec, 1133 thr->vfp_state.sec_saved); 1134 thr->vfp_state.sec_saved = false; 1135 thr->vfp_state.sec_lazy_saved = false; 1136 } 1137 } 1138 1139 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 1140 { 1141 struct thread_ctx *thr = threads + thread_get_id(); 1142 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1143 1144 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1145 assert(!vfp_is_enabled()); 1146 1147 if (!thr->vfp_state.ns_saved) { 1148 vfp_lazy_save_state_final(&thr->vfp_state.ns); 1149 thr->vfp_state.ns_saved = true; 1150 } else if (tuv && uvfp != tuv) { 1151 if (tuv->lazy_saved && !tuv->saved) { 1152 vfp_lazy_save_state_final(&tuv->vfp); 1153 tuv->saved = true; 1154 } 1155 } 1156 1157 if (uvfp->lazy_saved) 1158 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 1159 uvfp->lazy_saved = false; 1160 uvfp->saved = false; 1161 1162 thr->vfp_state.uvfp = uvfp; 1163 vfp_enable(); 1164 } 1165 1166 void thread_user_save_vfp(void) 1167 { 1168 struct thread_ctx *thr = threads + thread_get_id(); 1169 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1170 1171 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1172 if (!vfp_is_enabled()) 1173 return; 1174 1175 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1176 vfp_lazy_save_state_init(&tuv->vfp); 1177 tuv->lazy_saved = true; 1178 } 1179 1180 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1181 { 1182 struct thread_ctx *thr = threads + thread_get_id(); 1183 1184 if (uvfp == thr->vfp_state.uvfp) 1185 thr->vfp_state.uvfp = NULL; 1186 uvfp->lazy_saved = false; 1187 uvfp->saved = false; 1188 } 1189 #endif /*CFG_WITH_VFP*/ 1190 1191 #ifdef ARM32 1192 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1193 { 1194 uint32_t s; 1195 1196 if (!is_32bit) 1197 return false; 1198 1199 s = read_spsr(); 1200 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1201 s |= CPSR_MODE_USR; 1202 if (entry_func & 1) 1203 s |= CPSR_T; 1204 *spsr = s; 1205 return true; 1206 } 1207 #endif 1208 1209 #ifdef ARM64 1210 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1211 { 1212 uint32_t s; 1213 1214 if (is_32bit) { 1215 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1216 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1217 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1218 } else { 1219 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1220 } 1221 1222 *spsr = s; 1223 return true; 1224 } 1225 #endif 1226 1227 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1228 unsigned long a2, unsigned long a3, unsigned long user_sp, 1229 unsigned long entry_func, bool is_32bit, 1230 uint32_t *exit_status0, uint32_t *exit_status1) 1231 { 1232 uint32_t spsr; 1233 1234 tee_ta_update_session_utime_resume(); 1235 1236 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1237 *exit_status0 = 1; /* panic */ 1238 *exit_status1 = 0xbadbadba; 1239 return 0; 1240 } 1241 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1242 spsr, exit_status0, exit_status1); 1243 } 1244 1245 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 1246 void thread_get_user_kcode(struct mobj **mobj, size_t *offset, 1247 vaddr_t *va, size_t *sz) 1248 { 1249 core_mmu_get_user_va_range(va, NULL); 1250 *mobj = mobj_tee_ram; 1251 *offset = thread_user_kcode_va - TEE_RAM_START; 1252 *sz = thread_user_kcode_size; 1253 } 1254 #endif 1255 1256 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 1257 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 1258 void thread_get_user_kdata(struct mobj **mobj, size_t *offset, 1259 vaddr_t *va, size_t *sz) 1260 { 1261 vaddr_t v; 1262 1263 core_mmu_get_user_va_range(&v, NULL); 1264 *va = v + thread_user_kcode_size; 1265 *mobj = mobj_tee_ram; 1266 *offset = (vaddr_t)thread_user_kdata_page - TEE_RAM_START; 1267 *sz = sizeof(thread_user_kdata_page); 1268 } 1269 #endif 1270 1271 void thread_add_mutex(struct mutex *m) 1272 { 1273 struct thread_core_local *l = thread_get_core_local(); 1274 int ct = l->curr_thread; 1275 1276 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1277 assert(m->owner_id == MUTEX_OWNER_ID_NONE); 1278 m->owner_id = ct; 1279 TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link); 1280 } 1281 1282 void thread_rem_mutex(struct mutex *m) 1283 { 1284 struct thread_core_local *l = thread_get_core_local(); 1285 int ct = l->curr_thread; 1286 1287 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1288 assert(m->owner_id == ct); 1289 m->owner_id = MUTEX_OWNER_ID_NONE; 1290 TAILQ_REMOVE(&threads[ct].mutexes, m, link); 1291 } 1292 1293 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie) 1294 { 1295 bool rv; 1296 size_t n; 1297 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1298 1299 lock_global(); 1300 1301 for (n = 0; n < CFG_NUM_THREADS; n++) { 1302 if (threads[n].state != THREAD_STATE_FREE) { 1303 rv = false; 1304 goto out; 1305 } 1306 } 1307 1308 rv = true; 1309 for (n = 0; n < CFG_NUM_THREADS; n++) { 1310 if (threads[n].rpc_arg) { 1311 mobj_free(threads[n].rpc_mobj); 1312 *cookie = threads[n].rpc_carg; 1313 threads[n].rpc_carg = 0; 1314 threads[n].rpc_arg = NULL; 1315 goto out; 1316 } 1317 } 1318 1319 *cookie = 0; 1320 thread_prealloc_rpc_cache = false; 1321 out: 1322 unlock_global(); 1323 thread_unmask_exceptions(exceptions); 1324 return rv; 1325 } 1326 1327 bool thread_enable_prealloc_rpc_cache(void) 1328 { 1329 bool rv; 1330 size_t n; 1331 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1332 1333 lock_global(); 1334 1335 for (n = 0; n < CFG_NUM_THREADS; n++) { 1336 if (threads[n].state != THREAD_STATE_FREE) { 1337 rv = false; 1338 goto out; 1339 } 1340 } 1341 1342 rv = true; 1343 thread_prealloc_rpc_cache = true; 1344 out: 1345 unlock_global(); 1346 thread_unmask_exceptions(exceptions); 1347 return rv; 1348 } 1349 1350 void thread_rpc_free_arg(uint64_t cookie) 1351 { 1352 if (cookie) { 1353 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1354 OPTEE_SMC_RETURN_RPC_FREE 1355 }; 1356 1357 reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2); 1358 thread_rpc(rpc_args); 1359 } 1360 } 1361 1362 struct mobj *thread_rpc_alloc_arg(size_t size, uint64_t *cookie) 1363 { 1364 paddr_t pa; 1365 uint64_t co; 1366 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1367 OPTEE_SMC_RETURN_RPC_ALLOC, size 1368 }; 1369 struct mobj *mobj = NULL; 1370 1371 thread_rpc(rpc_args); 1372 1373 pa = reg_pair_to_64(rpc_args[1], rpc_args[2]); 1374 co = reg_pair_to_64(rpc_args[4], rpc_args[5]); 1375 1376 if (!ALIGNMENT_IS_OK(pa, struct optee_msg_arg)) 1377 goto err; 1378 1379 /* Check if this region is in static shared space */ 1380 if (core_pbuf_is(CORE_MEM_NSEC_SHM, pa, size)) 1381 mobj = mobj_shm_alloc(pa, size); 1382 else if ((!(pa & SMALL_PAGE_MASK)) && size <= SMALL_PAGE_SIZE) 1383 mobj = mobj_mapped_shm_alloc(&pa, 1, 0, co); 1384 1385 if (!mobj) 1386 goto err; 1387 1388 *cookie = co; 1389 return mobj; 1390 err: 1391 thread_rpc_free_arg(co); 1392 mobj_free(mobj); 1393 *cookie = 0; 1394 return NULL; 1395 } 1396 1397 static bool get_rpc_arg(uint32_t cmd, size_t num_params, 1398 struct optee_msg_arg **arg_ret, uint64_t *carg_ret) 1399 { 1400 struct thread_ctx *thr = threads + thread_get_id(); 1401 struct optee_msg_arg *arg = thr->rpc_arg; 1402 struct mobj *mobj; 1403 size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS); 1404 uint64_t c; 1405 1406 if (num_params > THREAD_RPC_MAX_NUM_PARAMS) 1407 return false; 1408 1409 if (!arg) { 1410 mobj = thread_rpc_alloc_arg(sz, &c); 1411 if (!mobj) 1412 return false; 1413 1414 arg = mobj_get_va(mobj, 0); 1415 if (!arg) 1416 goto bad; 1417 1418 thr->rpc_arg = arg; 1419 thr->rpc_carg = c; 1420 thr->rpc_mobj = mobj; 1421 } 1422 1423 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); 1424 arg->cmd = cmd; 1425 arg->num_params = num_params; 1426 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1427 1428 *arg_ret = arg; 1429 *carg_ret = thr->rpc_carg; 1430 return true; 1431 1432 bad: 1433 thread_rpc_free_arg(c); 1434 return false; 1435 } 1436 1437 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1438 struct optee_msg_param *params) 1439 { 1440 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1441 struct optee_msg_arg *arg; 1442 uint64_t carg; 1443 size_t n; 1444 1445 /* 1446 * Break recursion in case plat_prng_add_jitter_entropy_norpc() 1447 * sleeps on a mutex or unlocks a mutex with a sleeper (contended 1448 * mutex). 1449 */ 1450 if (cmd != OPTEE_MSG_RPC_CMD_WAIT_QUEUE) 1451 plat_prng_add_jitter_entropy_norpc(); 1452 1453 if (!get_rpc_arg(cmd, num_params, &arg, &carg)) 1454 return TEE_ERROR_OUT_OF_MEMORY; 1455 1456 memcpy(arg->params, params, sizeof(*params) * num_params); 1457 1458 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1459 thread_rpc(rpc_args); 1460 for (n = 0; n < num_params; n++) { 1461 switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) { 1462 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 1463 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 1464 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 1465 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 1466 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 1467 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 1468 params[n] = arg->params[n]; 1469 break; 1470 default: 1471 break; 1472 } 1473 } 1474 return arg->ret; 1475 } 1476 1477 /** 1478 * Free physical memory previously allocated with thread_rpc_alloc() 1479 * 1480 * @cookie: cookie received when allocating the buffer 1481 * @bt: must be the same as supplied when allocating 1482 * @mobj: mobj that describes allocated buffer 1483 * 1484 * This function also frees corresponding mobj. 1485 */ 1486 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj) 1487 { 1488 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1489 struct optee_msg_arg *arg; 1490 uint64_t carg; 1491 1492 if (!get_rpc_arg(OPTEE_MSG_RPC_CMD_SHM_FREE, 1, &arg, &carg)) 1493 return; 1494 1495 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1496 arg->params[0].u.value.a = bt; 1497 arg->params[0].u.value.b = cookie; 1498 arg->params[0].u.value.c = 0; 1499 1500 mobj_free(mobj); 1501 1502 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1503 thread_rpc(rpc_args); 1504 } 1505 1506 /** 1507 * Allocates shared memory buffer via RPC 1508 * 1509 * @size: size in bytes of shared memory buffer 1510 * @align: required alignment of buffer 1511 * @bt: buffer type OPTEE_MSG_RPC_SHM_TYPE_* 1512 * @payload: returned physical pointer to buffer, 0 if allocation 1513 * failed. 1514 * @cookie: returned cookie used when freeing the buffer 1515 */ 1516 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt, 1517 uint64_t *cookie) 1518 { 1519 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1520 struct optee_msg_arg *arg; 1521 uint64_t carg; 1522 struct mobj *mobj = NULL; 1523 1524 if (!get_rpc_arg(OPTEE_MSG_RPC_CMD_SHM_ALLOC, 1, &arg, &carg)) 1525 goto fail; 1526 1527 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1528 arg->params[0].u.value.a = bt; 1529 arg->params[0].u.value.b = size; 1530 arg->params[0].u.value.c = align; 1531 1532 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1533 thread_rpc(rpc_args); 1534 1535 if (arg->ret != TEE_SUCCESS) 1536 goto fail; 1537 1538 if (arg->num_params != 1) 1539 goto fail; 1540 1541 if (arg->params[0].attr == OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT) { 1542 *cookie = arg->params[0].u.tmem.shm_ref; 1543 mobj = mobj_shm_alloc(arg->params[0].u.tmem.buf_ptr, 1544 arg->params[0].u.tmem.size); 1545 } else if (arg->params[0].attr == (OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 1546 OPTEE_MSG_ATTR_NONCONTIG)) { 1547 *cookie = arg->params[0].u.tmem.shm_ref; 1548 mobj = msg_param_mobj_from_noncontig( 1549 arg->params[0].u.tmem.buf_ptr, 1550 arg->params[0].u.tmem.size, 1551 *cookie, 1552 true); 1553 } else 1554 goto fail; 1555 1556 if (!mobj) 1557 goto free_first; 1558 1559 assert(mobj_is_nonsec(mobj)); 1560 return mobj; 1561 1562 free_first: 1563 thread_rpc_free(bt, *cookie, mobj); 1564 fail: 1565 *cookie = 0; 1566 return NULL; 1567 } 1568 1569 struct mobj *thread_rpc_alloc_payload(size_t size, uint64_t *cookie) 1570 { 1571 return thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie); 1572 } 1573 1574 void thread_rpc_free_payload(uint64_t cookie, struct mobj *mobj) 1575 { 1576 thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie, mobj); 1577 } 1578