1 /* 2 * Copyright (c) 2016, Linaro Limited 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * 2. Redistributions in binary form must reproduce the above copyright notice, 13 * this list of conditions and the following disclaimer in the documentation 14 * and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <platform_config.h> 30 31 #include <arm.h> 32 #include <assert.h> 33 #include <keep.h> 34 #include <kernel/misc.h> 35 #include <kernel/panic.h> 36 #include <kernel/tee_ta_manager.h> 37 #include <kernel/thread.h> 38 #include <kernel/thread_defs.h> 39 #include <kernel/tz_proc.h> 40 #include <kernel/tz_proc_def.h> 41 #include <mm/core_memprot.h> 42 #include <mm/tee_mm.h> 43 #include <mm/tee_mmu.h> 44 #include <mm/tee_mmu_defs.h> 45 #include <mm/tee_pager.h> 46 #include <optee_msg.h> 47 #include <sm/optee_smc.h> 48 #include <sm/sm_defs.h> 49 #include <sm/sm.h> 50 #include <trace.h> 51 #include <util.h> 52 53 #include "thread_private.h" 54 55 #ifdef ARM32 56 #define STACK_TMP_SIZE 1024 57 #define STACK_THREAD_SIZE 8192 58 59 #if TRACE_LEVEL > 0 60 #define STACK_ABT_SIZE 2048 61 #else 62 #define STACK_ABT_SIZE 1024 63 #endif 64 65 #endif /*ARM32*/ 66 67 #ifdef ARM64 68 #define STACK_TMP_SIZE 2048 69 #define STACK_THREAD_SIZE 8192 70 71 #if TRACE_LEVEL > 0 72 #define STACK_ABT_SIZE 3072 73 #else 74 #define STACK_ABT_SIZE 1024 75 #endif 76 #endif /*ARM64*/ 77 78 #define RPC_MAX_NUM_PARAMS 2 79 80 struct thread_ctx threads[CFG_NUM_THREADS]; 81 82 static struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE]; 83 84 #ifdef CFG_WITH_STACK_CANARIES 85 #ifdef ARM32 86 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 87 #endif 88 #ifdef ARM64 89 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 90 #endif 91 #define START_CANARY_VALUE 0xdededede 92 #define END_CANARY_VALUE 0xabababab 93 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 94 #define GET_END_CANARY(name, stack_num) \ 95 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 96 #else 97 #define STACK_CANARY_SIZE 0 98 #endif 99 100 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 101 linkage uint32_t name[num_stacks] \ 102 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 103 sizeof(uint32_t)] \ 104 __attribute__((section(".nozi.stack"), \ 105 aligned(STACK_ALIGNMENT))) 106 107 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 108 109 #define GET_STACK(stack) \ 110 ((vaddr_t)(stack) + STACK_SIZE(stack)) 111 112 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, /* global */); 113 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 114 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 115 DECLARE_STACK(stack_sm, CFG_TEE_CORE_NB_CORE, SM_STACK_SIZE, static); 116 #endif 117 #ifndef CFG_WITH_PAGER 118 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 119 #endif 120 121 const uint32_t stack_tmp_stride = STACK_SIZE(stack_tmp[0]); 122 123 KEEP_PAGER(stack_tmp); 124 KEEP_PAGER(stack_tmp_stride); 125 126 thread_smc_handler_t thread_std_smc_handler_ptr; 127 static thread_smc_handler_t thread_fast_smc_handler_ptr; 128 thread_fiq_handler_t thread_fiq_handler_ptr; 129 thread_pm_handler_t thread_cpu_on_handler_ptr; 130 thread_pm_handler_t thread_cpu_off_handler_ptr; 131 thread_pm_handler_t thread_cpu_suspend_handler_ptr; 132 thread_pm_handler_t thread_cpu_resume_handler_ptr; 133 thread_pm_handler_t thread_system_off_handler_ptr; 134 thread_pm_handler_t thread_system_reset_handler_ptr; 135 136 137 static unsigned int thread_global_lock = SPINLOCK_UNLOCK; 138 static bool thread_prealloc_rpc_cache; 139 140 static void init_canaries(void) 141 { 142 #ifdef CFG_WITH_STACK_CANARIES 143 size_t n; 144 #define INIT_CANARY(name) \ 145 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 146 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 147 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 148 \ 149 *start_canary = START_CANARY_VALUE; \ 150 *end_canary = END_CANARY_VALUE; \ 151 DMSG("#Stack canaries for %s[%zu] with top at %p\n", \ 152 #name, n, (void *)(end_canary - 1)); \ 153 DMSG("watch *%p\n", (void *)end_canary); \ 154 } 155 156 INIT_CANARY(stack_tmp); 157 INIT_CANARY(stack_abt); 158 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 159 INIT_CANARY(stack_sm); 160 #endif 161 #ifndef CFG_WITH_PAGER 162 INIT_CANARY(stack_thread); 163 #endif 164 #endif/*CFG_WITH_STACK_CANARIES*/ 165 } 166 167 #define CANARY_DIED(stack, loc, n) \ 168 do { \ 169 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 170 panic(); \ 171 } while (0) 172 173 void thread_check_canaries(void) 174 { 175 #ifdef CFG_WITH_STACK_CANARIES 176 size_t n; 177 178 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 179 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 180 CANARY_DIED(stack_tmp, start, n); 181 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 182 CANARY_DIED(stack_tmp, end, n); 183 } 184 185 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 186 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 187 CANARY_DIED(stack_abt, start, n); 188 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 189 CANARY_DIED(stack_abt, end, n); 190 191 } 192 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 193 for (n = 0; n < ARRAY_SIZE(stack_sm); n++) { 194 if (GET_START_CANARY(stack_sm, n) != START_CANARY_VALUE) 195 CANARY_DIED(stack_sm, start, n); 196 if (GET_END_CANARY(stack_sm, n) != END_CANARY_VALUE) 197 CANARY_DIED(stack_sm, end, n); 198 } 199 #endif 200 #ifndef CFG_WITH_PAGER 201 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 202 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 203 CANARY_DIED(stack_thread, start, n); 204 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 205 CANARY_DIED(stack_thread, end, n); 206 } 207 #endif 208 #endif/*CFG_WITH_STACK_CANARIES*/ 209 } 210 211 static void lock_global(void) 212 { 213 cpu_spin_lock(&thread_global_lock); 214 } 215 216 static void unlock_global(void) 217 { 218 cpu_spin_unlock(&thread_global_lock); 219 } 220 221 #ifdef ARM32 222 uint32_t thread_get_exceptions(void) 223 { 224 uint32_t cpsr = read_cpsr(); 225 226 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 227 } 228 229 void thread_set_exceptions(uint32_t exceptions) 230 { 231 uint32_t cpsr = read_cpsr(); 232 233 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 234 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 235 write_cpsr(cpsr); 236 } 237 #endif /*ARM32*/ 238 239 #ifdef ARM64 240 uint32_t thread_get_exceptions(void) 241 { 242 uint32_t daif = read_daif(); 243 244 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 245 } 246 247 void thread_set_exceptions(uint32_t exceptions) 248 { 249 uint32_t daif = read_daif(); 250 251 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 252 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 253 write_daif(daif); 254 } 255 #endif /*ARM64*/ 256 257 uint32_t thread_mask_exceptions(uint32_t exceptions) 258 { 259 uint32_t state = thread_get_exceptions(); 260 261 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 262 return state; 263 } 264 265 void thread_unmask_exceptions(uint32_t state) 266 { 267 thread_set_exceptions(state & THREAD_EXCP_ALL); 268 } 269 270 271 struct thread_core_local *thread_get_core_local(void) 272 { 273 uint32_t cpu_id = get_core_pos(); 274 275 /* 276 * IRQs must be disabled before playing with core_local since 277 * we otherwise may be rescheduled to a different core in the 278 * middle of this function. 279 */ 280 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 281 282 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 283 return &thread_core_local[cpu_id]; 284 } 285 286 static void thread_lazy_save_ns_vfp(void) 287 { 288 #ifdef CFG_WITH_VFP 289 struct thread_ctx *thr = threads + thread_get_id(); 290 291 thr->vfp_state.ns_saved = false; 292 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW) 293 /* 294 * ARM TF saves and restores CPACR_EL1, so we must assume NS world 295 * uses VFP and always preserve the register file when secure world 296 * is about to use it 297 */ 298 thr->vfp_state.ns.force_save = true; 299 #endif 300 vfp_lazy_save_state_init(&thr->vfp_state.ns); 301 #endif /*CFG_WITH_VFP*/ 302 } 303 304 static void thread_lazy_restore_ns_vfp(void) 305 { 306 #ifdef CFG_WITH_VFP 307 struct thread_ctx *thr = threads + thread_get_id(); 308 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 309 310 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 311 312 if (tuv && tuv->lazy_saved && !tuv->saved) { 313 vfp_lazy_save_state_final(&tuv->vfp); 314 tuv->saved = true; 315 } 316 317 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 318 thr->vfp_state.ns_saved = false; 319 #endif /*CFG_WITH_VFP*/ 320 } 321 322 #ifdef ARM32 323 static void init_regs(struct thread_ctx *thread, 324 struct thread_smc_args *args) 325 { 326 thread->regs.pc = (uint32_t)thread_std_smc_entry; 327 328 /* 329 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous 330 * abort and unmasked FIQ. 331 */ 332 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 333 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_I | CPSR_A; 334 /* Enable thumb mode if it's a thumb instruction */ 335 if (thread->regs.pc & 1) 336 thread->regs.cpsr |= CPSR_T; 337 /* Reinitialize stack pointer */ 338 thread->regs.svc_sp = thread->stack_va_end; 339 340 /* 341 * Copy arguments into context. This will make the 342 * arguments appear in r0-r7 when thread is started. 343 */ 344 thread->regs.r0 = args->a0; 345 thread->regs.r1 = args->a1; 346 thread->regs.r2 = args->a2; 347 thread->regs.r3 = args->a3; 348 thread->regs.r4 = args->a4; 349 thread->regs.r5 = args->a5; 350 thread->regs.r6 = args->a6; 351 thread->regs.r7 = args->a7; 352 } 353 #endif /*ARM32*/ 354 355 #ifdef ARM64 356 static void init_regs(struct thread_ctx *thread, 357 struct thread_smc_args *args) 358 { 359 thread->regs.pc = (uint64_t)thread_std_smc_entry; 360 361 /* 362 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous 363 * abort and unmasked FIQ. 364 */ 365 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 366 DAIFBIT_IRQ | DAIFBIT_ABT); 367 /* Reinitialize stack pointer */ 368 thread->regs.sp = thread->stack_va_end; 369 370 /* 371 * Copy arguments into context. This will make the 372 * arguments appear in x0-x7 when thread is started. 373 */ 374 thread->regs.x[0] = args->a0; 375 thread->regs.x[1] = args->a1; 376 thread->regs.x[2] = args->a2; 377 thread->regs.x[3] = args->a3; 378 thread->regs.x[4] = args->a4; 379 thread->regs.x[5] = args->a5; 380 thread->regs.x[6] = args->a6; 381 thread->regs.x[7] = args->a7; 382 383 /* Set up frame pointer as per the Aarch64 AAPCS */ 384 thread->regs.x[29] = 0; 385 } 386 #endif /*ARM64*/ 387 388 void thread_init_boot_thread(void) 389 { 390 struct thread_core_local *l = thread_get_core_local(); 391 size_t n; 392 393 for (n = 0; n < CFG_NUM_THREADS; n++) { 394 TAILQ_INIT(&threads[n].mutexes); 395 TAILQ_INIT(&threads[n].tsd.sess_stack); 396 #ifdef CFG_SMALL_PAGE_USER_TA 397 SLIST_INIT(&threads[n].tsd.pgt_cache); 398 #endif 399 } 400 401 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 402 thread_core_local[n].curr_thread = -1; 403 404 l->curr_thread = 0; 405 threads[0].state = THREAD_STATE_ACTIVE; 406 } 407 408 void thread_clr_boot_thread(void) 409 { 410 struct thread_core_local *l = thread_get_core_local(); 411 412 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 413 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 414 assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes)); 415 threads[l->curr_thread].state = THREAD_STATE_FREE; 416 l->curr_thread = -1; 417 } 418 419 static void thread_alloc_and_run(struct thread_smc_args *args) 420 { 421 size_t n; 422 struct thread_core_local *l = thread_get_core_local(); 423 bool found_thread = false; 424 425 assert(l->curr_thread == -1); 426 427 lock_global(); 428 429 for (n = 0; n < CFG_NUM_THREADS; n++) { 430 if (threads[n].state == THREAD_STATE_FREE) { 431 threads[n].state = THREAD_STATE_ACTIVE; 432 found_thread = true; 433 break; 434 } 435 } 436 437 unlock_global(); 438 439 if (!found_thread) { 440 args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT; 441 return; 442 } 443 444 l->curr_thread = n; 445 446 threads[n].flags = 0; 447 init_regs(threads + n, args); 448 449 /* Save Hypervisor Client ID */ 450 threads[n].hyp_clnt_id = args->a7; 451 452 thread_lazy_save_ns_vfp(); 453 thread_resume(&threads[n].regs); 454 } 455 456 #ifdef ARM32 457 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 458 struct thread_smc_args *args) 459 { 460 /* 461 * Update returned values from RPC, values will appear in 462 * r0-r3 when thread is resumed. 463 */ 464 regs->r0 = args->a0; 465 regs->r1 = args->a1; 466 regs->r2 = args->a2; 467 regs->r3 = args->a3; 468 regs->r4 = args->a4; 469 regs->r5 = args->a5; 470 } 471 #endif /*ARM32*/ 472 473 #ifdef ARM64 474 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 475 struct thread_smc_args *args) 476 { 477 /* 478 * Update returned values from RPC, values will appear in 479 * x0-x3 when thread is resumed. 480 */ 481 regs->x[0] = args->a0; 482 regs->x[1] = args->a1; 483 regs->x[2] = args->a2; 484 regs->x[3] = args->a3; 485 regs->x[4] = args->a4; 486 regs->x[5] = args->a5; 487 } 488 #endif /*ARM64*/ 489 490 static void thread_resume_from_rpc(struct thread_smc_args *args) 491 { 492 size_t n = args->a3; /* thread id */ 493 struct thread_core_local *l = thread_get_core_local(); 494 uint32_t rv = 0; 495 496 assert(l->curr_thread == -1); 497 498 lock_global(); 499 500 if (n < CFG_NUM_THREADS && 501 threads[n].state == THREAD_STATE_SUSPENDED && 502 args->a7 == threads[n].hyp_clnt_id) 503 threads[n].state = THREAD_STATE_ACTIVE; 504 else 505 rv = OPTEE_SMC_RETURN_ERESUME; 506 507 unlock_global(); 508 509 if (rv) { 510 args->a0 = rv; 511 return; 512 } 513 514 l->curr_thread = n; 515 516 if (threads[n].have_user_map) 517 core_mmu_set_user_map(&threads[n].user_map); 518 519 /* 520 * Return from RPC to request service of an IRQ must not 521 * get parameters from non-secure world. 522 */ 523 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 524 copy_a0_to_a5(&threads[n].regs, args); 525 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 526 } 527 528 thread_lazy_save_ns_vfp(); 529 thread_resume(&threads[n].regs); 530 } 531 532 void thread_handle_fast_smc(struct thread_smc_args *args) 533 { 534 thread_check_canaries(); 535 thread_fast_smc_handler_ptr(args); 536 /* Fast handlers must not unmask any exceptions */ 537 assert(thread_get_exceptions() == THREAD_EXCP_ALL); 538 } 539 540 void thread_handle_std_smc(struct thread_smc_args *args) 541 { 542 thread_check_canaries(); 543 544 if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC) 545 thread_resume_from_rpc(args); 546 else 547 thread_alloc_and_run(args); 548 } 549 550 /* Helper routine for the assembly function thread_std_smc_entry() */ 551 void __thread_std_smc_entry(struct thread_smc_args *args) 552 { 553 struct thread_ctx *thr = threads + thread_get_id(); 554 555 if (!thr->rpc_arg) { 556 paddr_t parg; 557 uint64_t carg; 558 void *arg; 559 560 thread_rpc_alloc_arg( 561 OPTEE_MSG_GET_ARG_SIZE(RPC_MAX_NUM_PARAMS), 562 &parg, &carg); 563 if (!parg || !ALIGNMENT_IS_OK(parg, struct optee_msg_arg) || 564 !(arg = phys_to_virt(parg, CORE_MEM_NSEC_SHM))) { 565 thread_rpc_free_arg(carg); 566 args->a0 = OPTEE_SMC_RETURN_ENOMEM; 567 return; 568 } 569 570 thr->rpc_arg = arg; 571 thr->rpc_carg = carg; 572 } 573 574 thread_std_smc_handler_ptr(args); 575 576 if (!thread_prealloc_rpc_cache) { 577 thread_rpc_free_arg(thr->rpc_carg); 578 thr->rpc_carg = 0; 579 thr->rpc_arg = 0; 580 } 581 } 582 583 void *thread_get_tmp_sp(void) 584 { 585 struct thread_core_local *l = thread_get_core_local(); 586 587 return (void *)l->tmp_stack_va_end; 588 } 589 590 #ifdef ARM64 591 vaddr_t thread_get_saved_thread_sp(void) 592 { 593 struct thread_core_local *l = thread_get_core_local(); 594 int ct = l->curr_thread; 595 596 assert(ct != -1); 597 return threads[ct].kern_sp; 598 } 599 #endif /*ARM64*/ 600 601 bool thread_addr_is_in_stack(vaddr_t va) 602 { 603 struct thread_ctx *thr = threads + thread_get_id(); 604 605 return va < thr->stack_va_end && 606 va >= (thr->stack_va_end - STACK_THREAD_SIZE); 607 } 608 609 void thread_state_free(void) 610 { 611 struct thread_core_local *l = thread_get_core_local(); 612 int ct = l->curr_thread; 613 614 assert(ct != -1); 615 assert(TAILQ_EMPTY(&threads[ct].mutexes)); 616 617 thread_lazy_restore_ns_vfp(); 618 tee_pager_release_phys( 619 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 620 STACK_THREAD_SIZE); 621 622 lock_global(); 623 624 assert(threads[ct].state == THREAD_STATE_ACTIVE); 625 threads[ct].state = THREAD_STATE_FREE; 626 threads[ct].flags = 0; 627 l->curr_thread = -1; 628 629 unlock_global(); 630 } 631 632 #ifdef ARM32 633 static bool is_from_user(uint32_t cpsr) 634 { 635 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 636 } 637 #endif 638 639 #ifdef ARM64 640 static bool is_from_user(uint32_t cpsr) 641 { 642 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 643 return true; 644 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 645 SPSR_64_MODE_EL0) 646 return true; 647 return false; 648 } 649 #endif 650 651 #ifdef CFG_WITH_PAGER 652 static void release_unused_kernel_stack(struct thread_ctx *thr) 653 { 654 vaddr_t sp = thr->regs.svc_sp; 655 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 656 size_t len = sp - base; 657 658 tee_pager_release_phys((void *)base, len); 659 } 660 #else 661 static void release_unused_kernel_stack(struct thread_ctx *thr __unused) 662 { 663 } 664 #endif 665 666 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 667 { 668 struct thread_core_local *l = thread_get_core_local(); 669 int ct = l->curr_thread; 670 671 assert(ct != -1); 672 673 thread_check_canaries(); 674 675 release_unused_kernel_stack(threads + ct); 676 677 if (is_from_user(cpsr)) 678 thread_user_save_vfp(); 679 thread_lazy_restore_ns_vfp(); 680 681 lock_global(); 682 683 assert(threads[ct].state == THREAD_STATE_ACTIVE); 684 threads[ct].flags |= flags; 685 threads[ct].regs.cpsr = cpsr; 686 threads[ct].regs.pc = pc; 687 threads[ct].state = THREAD_STATE_SUSPENDED; 688 689 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 690 if (threads[ct].have_user_map) { 691 core_mmu_get_user_map(&threads[ct].user_map); 692 core_mmu_set_user_map(NULL); 693 } 694 695 l->curr_thread = -1; 696 697 unlock_global(); 698 699 return ct; 700 } 701 702 #ifdef ARM32 703 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 704 { 705 l->tmp_stack_va_end = sp; 706 thread_set_irq_sp(sp); 707 thread_set_fiq_sp(sp); 708 } 709 710 static void set_abt_stack(struct thread_core_local *l __unused, vaddr_t sp) 711 { 712 thread_set_abt_sp(sp); 713 } 714 #endif /*ARM32*/ 715 716 #ifdef ARM64 717 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 718 { 719 /* 720 * We're already using the tmp stack when this function is called 721 * so there's no need to assign it to any stack pointer. However, 722 * we'll need to restore it at different times so store it here. 723 */ 724 l->tmp_stack_va_end = sp; 725 } 726 727 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 728 { 729 l->abt_stack_va_end = sp; 730 } 731 #endif /*ARM64*/ 732 733 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 734 { 735 if (thread_id >= CFG_NUM_THREADS) 736 return false; 737 threads[thread_id].stack_va_end = sp; 738 return true; 739 } 740 741 int thread_get_id_may_fail(void) 742 { 743 /* thread_get_core_local() requires IRQs to be disabled */ 744 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 745 struct thread_core_local *l = thread_get_core_local(); 746 int ct = l->curr_thread; 747 748 thread_unmask_exceptions(exceptions); 749 return ct; 750 } 751 752 int thread_get_id(void) 753 { 754 int ct = thread_get_id_may_fail(); 755 756 assert(ct >= 0 && ct < CFG_NUM_THREADS); 757 return ct; 758 } 759 760 static void init_handlers(const struct thread_handlers *handlers) 761 { 762 thread_std_smc_handler_ptr = handlers->std_smc; 763 thread_fast_smc_handler_ptr = handlers->fast_smc; 764 thread_fiq_handler_ptr = handlers->fiq; 765 thread_cpu_on_handler_ptr = handlers->cpu_on; 766 thread_cpu_off_handler_ptr = handlers->cpu_off; 767 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 768 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 769 thread_system_off_handler_ptr = handlers->system_off; 770 thread_system_reset_handler_ptr = handlers->system_reset; 771 } 772 773 #ifdef CFG_WITH_PAGER 774 static void init_thread_stacks(void) 775 { 776 size_t n; 777 778 /* 779 * Allocate virtual memory for thread stacks. 780 */ 781 for (n = 0; n < CFG_NUM_THREADS; n++) { 782 tee_mm_entry_t *mm; 783 vaddr_t sp; 784 785 /* Find vmem for thread stack and its protection gap */ 786 mm = tee_mm_alloc(&tee_mm_vcore, 787 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 788 assert(mm); 789 790 /* Claim eventual physical page */ 791 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 792 true); 793 794 /* Add the area to the pager */ 795 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 796 tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE, 797 TEE_MATTR_PRW | TEE_MATTR_LOCKED, 798 NULL, NULL); 799 800 /* init effective stack */ 801 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 802 if (!thread_init_stack(n, sp)) 803 panic("init stack failed"); 804 } 805 } 806 #else 807 static void init_thread_stacks(void) 808 { 809 size_t n; 810 811 /* Assign the thread stacks */ 812 for (n = 0; n < CFG_NUM_THREADS; n++) { 813 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 814 panic("thread_init_stack failed"); 815 } 816 } 817 #endif /*CFG_WITH_PAGER*/ 818 819 void thread_init_primary(const struct thread_handlers *handlers) 820 { 821 init_handlers(handlers); 822 823 /* Initialize canaries around the stacks */ 824 init_canaries(); 825 826 init_thread_stacks(); 827 pgt_init(); 828 } 829 830 static void init_sec_mon(size_t pos __maybe_unused) 831 { 832 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 833 /* Initialize secure monitor */ 834 sm_init(GET_STACK(stack_sm[pos])); 835 sm_set_entry_vector(thread_vector_table); 836 #endif 837 } 838 839 void thread_init_per_cpu(void) 840 { 841 size_t pos = get_core_pos(); 842 struct thread_core_local *l = thread_get_core_local(); 843 844 init_sec_mon(pos); 845 846 set_tmp_stack(l, GET_STACK(stack_tmp[pos])); 847 set_abt_stack(l, GET_STACK(stack_abt[pos])); 848 849 thread_init_vbar(); 850 } 851 852 struct thread_specific_data *thread_get_tsd(void) 853 { 854 return &threads[thread_get_id()].tsd; 855 } 856 857 struct thread_ctx_regs *thread_get_ctx_regs(void) 858 { 859 struct thread_core_local *l = thread_get_core_local(); 860 861 assert(l->curr_thread != -1); 862 return &threads[l->curr_thread].regs; 863 } 864 865 void thread_set_irq(bool enable) 866 { 867 /* thread_get_core_local() requires IRQs to be disabled */ 868 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 869 struct thread_core_local *l; 870 871 l = thread_get_core_local(); 872 873 assert(l->curr_thread != -1); 874 875 if (enable) { 876 threads[l->curr_thread].flags |= THREAD_FLAGS_IRQ_ENABLE; 877 thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ); 878 } else { 879 /* 880 * No need to disable IRQ here since it's already disabled 881 * above. 882 */ 883 threads[l->curr_thread].flags &= ~THREAD_FLAGS_IRQ_ENABLE; 884 } 885 } 886 887 void thread_restore_irq(void) 888 { 889 /* thread_get_core_local() requires IRQs to be disabled */ 890 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 891 struct thread_core_local *l; 892 893 l = thread_get_core_local(); 894 895 assert(l->curr_thread != -1); 896 897 if (threads[l->curr_thread].flags & THREAD_FLAGS_IRQ_ENABLE) 898 thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ); 899 } 900 901 #ifdef CFG_WITH_VFP 902 uint32_t thread_kernel_enable_vfp(void) 903 { 904 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 905 struct thread_ctx *thr = threads + thread_get_id(); 906 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 907 908 assert(!vfp_is_enabled()); 909 910 if (!thr->vfp_state.ns_saved) { 911 vfp_lazy_save_state_final(&thr->vfp_state.ns); 912 thr->vfp_state.ns_saved = true; 913 } else if (thr->vfp_state.sec_lazy_saved && 914 !thr->vfp_state.sec_saved) { 915 /* 916 * This happens when we're handling an abort while the 917 * thread was using the VFP state. 918 */ 919 vfp_lazy_save_state_final(&thr->vfp_state.sec); 920 thr->vfp_state.sec_saved = true; 921 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 922 /* 923 * This can happen either during syscall or abort 924 * processing (while processing a syscall). 925 */ 926 vfp_lazy_save_state_final(&tuv->vfp); 927 tuv->saved = true; 928 } 929 930 vfp_enable(); 931 return exceptions; 932 } 933 934 void thread_kernel_disable_vfp(uint32_t state) 935 { 936 uint32_t exceptions; 937 938 assert(vfp_is_enabled()); 939 940 vfp_disable(); 941 exceptions = thread_get_exceptions(); 942 assert(exceptions & THREAD_EXCP_IRQ); 943 exceptions &= ~THREAD_EXCP_IRQ; 944 exceptions |= state & THREAD_EXCP_IRQ; 945 thread_set_exceptions(exceptions); 946 } 947 948 void thread_kernel_save_vfp(void) 949 { 950 struct thread_ctx *thr = threads + thread_get_id(); 951 952 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 953 if (vfp_is_enabled()) { 954 vfp_lazy_save_state_init(&thr->vfp_state.sec); 955 thr->vfp_state.sec_lazy_saved = true; 956 } 957 } 958 959 void thread_kernel_restore_vfp(void) 960 { 961 struct thread_ctx *thr = threads + thread_get_id(); 962 963 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 964 assert(!vfp_is_enabled()); 965 if (thr->vfp_state.sec_lazy_saved) { 966 vfp_lazy_restore_state(&thr->vfp_state.sec, 967 thr->vfp_state.sec_saved); 968 thr->vfp_state.sec_saved = false; 969 thr->vfp_state.sec_lazy_saved = false; 970 } 971 } 972 973 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 974 { 975 struct thread_ctx *thr = threads + thread_get_id(); 976 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 977 978 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 979 assert(!vfp_is_enabled()); 980 981 if (!thr->vfp_state.ns_saved) { 982 vfp_lazy_save_state_final(&thr->vfp_state.ns); 983 thr->vfp_state.ns_saved = true; 984 } else if (tuv && uvfp != tuv) { 985 if (tuv->lazy_saved && !tuv->saved) { 986 vfp_lazy_save_state_final(&tuv->vfp); 987 tuv->saved = true; 988 } 989 } 990 991 if (uvfp->lazy_saved) 992 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 993 uvfp->lazy_saved = false; 994 uvfp->saved = false; 995 996 thr->vfp_state.uvfp = uvfp; 997 vfp_enable(); 998 } 999 1000 void thread_user_save_vfp(void) 1001 { 1002 struct thread_ctx *thr = threads + thread_get_id(); 1003 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1004 1005 assert(thread_get_exceptions() & THREAD_EXCP_IRQ); 1006 if (!vfp_is_enabled()) 1007 return; 1008 1009 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1010 vfp_lazy_save_state_init(&tuv->vfp); 1011 tuv->lazy_saved = true; 1012 } 1013 1014 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1015 { 1016 struct thread_ctx *thr = threads + thread_get_id(); 1017 1018 if (uvfp == thr->vfp_state.uvfp) 1019 thr->vfp_state.uvfp = NULL; 1020 uvfp->lazy_saved = false; 1021 uvfp->saved = false; 1022 } 1023 #endif /*CFG_WITH_VFP*/ 1024 1025 #ifdef ARM32 1026 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1027 { 1028 uint32_t s; 1029 1030 if (!is_32bit) 1031 return false; 1032 1033 s = read_spsr(); 1034 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1035 s |= CPSR_MODE_USR; 1036 if (entry_func & 1) 1037 s |= CPSR_T; 1038 *spsr = s; 1039 return true; 1040 } 1041 #endif 1042 1043 #ifdef ARM64 1044 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1045 { 1046 uint32_t s; 1047 1048 if (is_32bit) { 1049 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1050 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1051 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1052 } else { 1053 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1054 } 1055 1056 *spsr = s; 1057 return true; 1058 } 1059 #endif 1060 1061 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1062 unsigned long a2, unsigned long a3, unsigned long user_sp, 1063 unsigned long entry_func, bool is_32bit, 1064 uint32_t *exit_status0, uint32_t *exit_status1) 1065 { 1066 uint32_t spsr; 1067 1068 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1069 *exit_status0 = 1; /* panic */ 1070 *exit_status1 = 0xbadbadba; 1071 return 0; 1072 } 1073 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1074 spsr, exit_status0, exit_status1); 1075 } 1076 1077 void thread_add_mutex(struct mutex *m) 1078 { 1079 struct thread_core_local *l = thread_get_core_local(); 1080 int ct = l->curr_thread; 1081 1082 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1083 assert(m->owner_id == -1); 1084 m->owner_id = ct; 1085 TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link); 1086 } 1087 1088 void thread_rem_mutex(struct mutex *m) 1089 { 1090 struct thread_core_local *l = thread_get_core_local(); 1091 int ct = l->curr_thread; 1092 1093 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1094 assert(m->owner_id == ct); 1095 m->owner_id = -1; 1096 TAILQ_REMOVE(&threads[ct].mutexes, m, link); 1097 } 1098 1099 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie) 1100 { 1101 bool rv; 1102 size_t n; 1103 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 1104 1105 lock_global(); 1106 1107 for (n = 0; n < CFG_NUM_THREADS; n++) { 1108 if (threads[n].state != THREAD_STATE_FREE) { 1109 rv = false; 1110 goto out; 1111 } 1112 } 1113 1114 rv = true; 1115 for (n = 0; n < CFG_NUM_THREADS; n++) { 1116 if (threads[n].rpc_arg) { 1117 *cookie = threads[n].rpc_carg; 1118 threads[n].rpc_carg = 0; 1119 threads[n].rpc_arg = NULL; 1120 goto out; 1121 } 1122 } 1123 1124 *cookie = 0; 1125 thread_prealloc_rpc_cache = false; 1126 out: 1127 unlock_global(); 1128 thread_unmask_exceptions(exceptions); 1129 return rv; 1130 } 1131 1132 bool thread_enable_prealloc_rpc_cache(void) 1133 { 1134 bool rv; 1135 size_t n; 1136 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ); 1137 1138 lock_global(); 1139 1140 for (n = 0; n < CFG_NUM_THREADS; n++) { 1141 if (threads[n].state != THREAD_STATE_FREE) { 1142 rv = false; 1143 goto out; 1144 } 1145 } 1146 1147 rv = true; 1148 thread_prealloc_rpc_cache = true; 1149 out: 1150 unlock_global(); 1151 thread_unmask_exceptions(exceptions); 1152 return rv; 1153 } 1154 1155 static uint32_t rpc_cmd_nolock(uint32_t cmd, size_t num_params, 1156 struct optee_msg_param *params) 1157 { 1158 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1159 struct thread_ctx *thr = threads + thread_get_id(); 1160 struct optee_msg_arg *arg = thr->rpc_arg; 1161 uint64_t carg = thr->rpc_carg; 1162 const size_t params_size = sizeof(struct optee_msg_param) * num_params; 1163 size_t n; 1164 1165 assert(arg && carg && num_params <= RPC_MAX_NUM_PARAMS); 1166 1167 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(RPC_MAX_NUM_PARAMS)); 1168 arg->cmd = cmd; 1169 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1170 arg->num_params = num_params; 1171 memcpy(OPTEE_MSG_GET_PARAMS(arg), params, params_size); 1172 1173 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1174 thread_rpc(rpc_args); 1175 for (n = 0; n < num_params; n++) { 1176 switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) { 1177 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 1178 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 1179 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 1180 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 1181 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 1182 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 1183 memcpy(params + n, OPTEE_MSG_GET_PARAMS(arg) + n, 1184 sizeof(struct optee_msg_param)); 1185 break; 1186 default: 1187 break; 1188 } 1189 } 1190 return arg->ret; 1191 } 1192 1193 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1194 struct optee_msg_param *params) 1195 { 1196 uint32_t ret; 1197 1198 ret = rpc_cmd_nolock(cmd, num_params, params); 1199 1200 return ret; 1201 } 1202 1203 static bool check_alloced_shm(paddr_t pa, size_t len, size_t align) 1204 { 1205 if (pa & (align - 1)) 1206 return false; 1207 return core_pbuf_is(CORE_MEM_NSEC_SHM, pa, len); 1208 } 1209 1210 void thread_rpc_free_arg(uint64_t cookie) 1211 { 1212 if (cookie) { 1213 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1214 OPTEE_SMC_RETURN_RPC_FREE 1215 }; 1216 1217 reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2); 1218 thread_rpc(rpc_args); 1219 } 1220 } 1221 1222 void thread_rpc_alloc_arg(size_t size, paddr_t *arg, uint64_t *cookie) 1223 { 1224 paddr_t pa; 1225 uint64_t co; 1226 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1227 OPTEE_SMC_RETURN_RPC_ALLOC, size 1228 }; 1229 1230 thread_rpc(rpc_args); 1231 1232 pa = reg_pair_to_64(rpc_args[1], rpc_args[2]); 1233 co = reg_pair_to_64(rpc_args[4], rpc_args[5]); 1234 if (!check_alloced_shm(pa, size, sizeof(uint64_t))) { 1235 thread_rpc_free_arg(co); 1236 pa = 0; 1237 co = 0; 1238 } 1239 1240 *arg = pa; 1241 *cookie = co; 1242 } 1243 1244 /** 1245 * Free physical memory previously allocated with thread_rpc_alloc() 1246 * 1247 * @cookie: cookie received when allocating the buffer 1248 * @bt: must be the same as supplied when allocating 1249 */ 1250 static void thread_rpc_free(unsigned int bt, uint64_t cookie) 1251 { 1252 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1253 struct thread_ctx *thr = threads + thread_get_id(); 1254 struct optee_msg_arg *arg = thr->rpc_arg; 1255 uint64_t carg = thr->rpc_carg; 1256 struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg); 1257 1258 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); 1259 arg->cmd = OPTEE_MSG_RPC_CMD_SHM_FREE; 1260 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1261 arg->num_params = 1; 1262 1263 params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1264 params[0].u.value.a = bt; 1265 params[0].u.value.b = cookie; 1266 params[0].u.value.c = 0; 1267 1268 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1269 thread_rpc(rpc_args); 1270 } 1271 1272 /** 1273 * Allocates shared memory buffer via RPC 1274 * 1275 * @size: size in bytes of shared memory buffer 1276 * @align: required alignment of buffer 1277 * @bt: buffer type OPTEE_MSG_RPC_SHM_TYPE_* 1278 * @payload: returned physical pointer to buffer, 0 if allocation 1279 * failed. 1280 * @cookie: returned cookie used when freeing the buffer 1281 */ 1282 static void thread_rpc_alloc(size_t size, size_t align, unsigned int bt, 1283 paddr_t *payload, uint64_t *cookie) 1284 { 1285 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1286 struct thread_ctx *thr = threads + thread_get_id(); 1287 struct optee_msg_arg *arg = thr->rpc_arg; 1288 uint64_t carg = thr->rpc_carg; 1289 struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg); 1290 1291 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); 1292 arg->cmd = OPTEE_MSG_RPC_CMD_SHM_ALLOC; 1293 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1294 arg->num_params = 1; 1295 1296 params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1297 params[0].u.value.a = bt; 1298 params[0].u.value.b = size; 1299 params[0].u.value.c = align; 1300 1301 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1302 thread_rpc(rpc_args); 1303 if (arg->ret != TEE_SUCCESS) 1304 goto fail; 1305 1306 if (arg->num_params != 1) 1307 goto fail; 1308 1309 if (params[0].attr != OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT) 1310 goto fail; 1311 1312 if (!check_alloced_shm(params[0].u.tmem.buf_ptr, size, align)) { 1313 thread_rpc_free(bt, params[0].u.tmem.shm_ref); 1314 goto fail; 1315 } 1316 1317 *payload = params[0].u.tmem.buf_ptr; 1318 *cookie = params[0].u.tmem.shm_ref; 1319 return; 1320 fail: 1321 *payload = 0; 1322 *cookie = 0; 1323 } 1324 1325 void thread_rpc_alloc_payload(size_t size, paddr_t *payload, uint64_t *cookie) 1326 { 1327 thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, payload, cookie); 1328 } 1329 1330 void thread_rpc_free_payload(uint64_t cookie) 1331 { 1332 thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie); 1333 } 1334