xref: /optee_os/core/arch/arm/kernel/thread.c (revision 9403c583381528e7fb391e3769644cc9653cfbb6)
1 /*
2  * Copyright (c) 2014, STMicroelectronics International N.V.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  * this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
19  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 #include <platform_config.h>
28 #include <kernel/panic.h>
29 #include <kernel/thread.h>
30 #include <kernel/thread_defs.h>
31 #include "thread_private.h"
32 #include <sm/sm_defs.h>
33 #include <sm/sm.h>
34 #include <sm/teesmc.h>
35 #include <sm/teesmc_optee.h>
36 #include <arm.h>
37 #include <kernel/tz_proc_def.h>
38 #include <kernel/tz_proc.h>
39 #include <kernel/misc.h>
40 #include <mm/tee_mmu.h>
41 #include <mm/tee_mmu_defs.h>
42 #include <mm/tee_mm.h>
43 #include <mm/tee_pager.h>
44 #include <kernel/tee_ta_manager.h>
45 #include <util.h>
46 #include <trace.h>
47 #include <assert.h>
48 
49 #ifdef ARM32
50 #define STACK_TMP_SIZE		1024
51 #define STACK_THREAD_SIZE	8192
52 
53 #if TRACE_LEVEL > 0
54 #define STACK_ABT_SIZE		2048
55 #else
56 #define STACK_ABT_SIZE		1024
57 #endif
58 
59 #endif /*ARM32*/
60 
61 #ifdef ARM64
62 #define STACK_TMP_SIZE		2048
63 #define STACK_THREAD_SIZE	8192
64 
65 #if TRACE_LEVEL > 0
66 #define STACK_ABT_SIZE		3072
67 #else
68 #define STACK_ABT_SIZE		1024
69 #endif
70 #endif /*ARM64*/
71 
72 #define RPC_MAX_PARAMS		2
73 
74 struct thread_ctx threads[CFG_NUM_THREADS];
75 
76 static struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE];
77 
78 #ifdef CFG_WITH_STACK_CANARIES
79 #ifdef ARM32
80 #define STACK_CANARY_SIZE	(4 * sizeof(uint32_t))
81 #endif
82 #ifdef ARM64
83 #define STACK_CANARY_SIZE	(8 * sizeof(uint32_t))
84 #endif
85 #define START_CANARY_VALUE	0xdededede
86 #define END_CANARY_VALUE	0xabababab
87 #define GET_START_CANARY(name, stack_num) name[stack_num][0]
88 #define GET_END_CANARY(name, stack_num) \
89 	name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1]
90 #else
91 #define STACK_CANARY_SIZE	0
92 #endif
93 
94 #define DECLARE_STACK(name, num_stacks, stack_size) \
95 	static uint32_t name[num_stacks][ \
96 		ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \
97 		sizeof(uint32_t)] \
98 		__attribute__((section(".nozi.stack"), \
99 			       aligned(STACK_ALIGNMENT)))
100 
101 #define GET_STACK(stack) \
102 	((vaddr_t)(stack) + sizeof(stack) - STACK_CANARY_SIZE / 2)
103 
104 DECLARE_STACK(stack_tmp,	CFG_TEE_CORE_NB_CORE,	STACK_TMP_SIZE);
105 DECLARE_STACK(stack_abt,	CFG_TEE_CORE_NB_CORE,	STACK_ABT_SIZE);
106 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
107 DECLARE_STACK(stack_sm,		CFG_TEE_CORE_NB_CORE,	SM_STACK_SIZE);
108 #endif
109 #ifndef CFG_WITH_PAGER
110 DECLARE_STACK(stack_thread,	CFG_NUM_THREADS,	STACK_THREAD_SIZE);
111 #endif
112 
113 const vaddr_t stack_tmp_top[CFG_TEE_CORE_NB_CORE] = {
114 	GET_STACK(stack_tmp[0]),
115 #if CFG_TEE_CORE_NB_CORE > 1
116 	GET_STACK(stack_tmp[1]),
117 #endif
118 #if CFG_TEE_CORE_NB_CORE > 2
119 	GET_STACK(stack_tmp[2]),
120 #endif
121 #if CFG_TEE_CORE_NB_CORE > 3
122 	GET_STACK(stack_tmp[3]),
123 #endif
124 #if CFG_TEE_CORE_NB_CORE > 4
125 	GET_STACK(stack_tmp[4]),
126 #endif
127 #if CFG_TEE_CORE_NB_CORE > 5
128 	GET_STACK(stack_tmp[5]),
129 #endif
130 #if CFG_TEE_CORE_NB_CORE > 6
131 	GET_STACK(stack_tmp[6]),
132 #endif
133 #if CFG_TEE_CORE_NB_CORE > 7
134 	GET_STACK(stack_tmp[7]),
135 #endif
136 #if CFG_TEE_CORE_NB_CORE > 8
137 #error "Top of tmp stacks aren't defined for more than 8 CPUS"
138 #endif
139 };
140 
141 thread_smc_handler_t thread_std_smc_handler_ptr;
142 static thread_smc_handler_t thread_fast_smc_handler_ptr;
143 thread_fiq_handler_t thread_fiq_handler_ptr;
144 thread_svc_handler_t thread_svc_handler_ptr;
145 static thread_abort_handler_t thread_abort_handler_ptr;
146 thread_pm_handler_t thread_cpu_on_handler_ptr;
147 thread_pm_handler_t thread_cpu_off_handler_ptr;
148 thread_pm_handler_t thread_cpu_suspend_handler_ptr;
149 thread_pm_handler_t thread_cpu_resume_handler_ptr;
150 thread_pm_handler_t thread_system_off_handler_ptr;
151 thread_pm_handler_t thread_system_reset_handler_ptr;
152 
153 
154 static unsigned int thread_global_lock = SPINLOCK_UNLOCK;
155 
156 static void init_canaries(void)
157 {
158 #ifdef CFG_WITH_STACK_CANARIES
159 	size_t n;
160 #define INIT_CANARY(name)						\
161 	for (n = 0; n < ARRAY_SIZE(name); n++) {			\
162 		uint32_t *start_canary = &GET_START_CANARY(name, n);	\
163 		uint32_t *end_canary = &GET_END_CANARY(name, n);	\
164 									\
165 		*start_canary = START_CANARY_VALUE;			\
166 		*end_canary = END_CANARY_VALUE;				\
167 		DMSG("#Stack canaries for %s[%zu] with top at %p\n",	\
168 			#name, n, (void *)(end_canary - 1));		\
169 		DMSG("watch *%p\n", (void *)end_canary);		\
170 	}
171 
172 	INIT_CANARY(stack_tmp);
173 	INIT_CANARY(stack_abt);
174 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
175 	INIT_CANARY(stack_sm);
176 #endif
177 #ifndef CFG_WITH_PAGER
178 	INIT_CANARY(stack_thread);
179 #endif
180 #endif/*CFG_WITH_STACK_CANARIES*/
181 }
182 
183 void thread_check_canaries(void)
184 {
185 #ifdef CFG_WITH_STACK_CANARIES
186 	size_t n;
187 
188 	for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) {
189 		assert(GET_START_CANARY(stack_tmp, n) == START_CANARY_VALUE);
190 		assert(GET_END_CANARY(stack_tmp, n) == END_CANARY_VALUE);
191 	}
192 
193 	for (n = 0; n < ARRAY_SIZE(stack_abt); n++) {
194 		assert(GET_START_CANARY(stack_abt, n) == START_CANARY_VALUE);
195 		assert(GET_END_CANARY(stack_abt, n) == END_CANARY_VALUE);
196 	}
197 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
198 	for (n = 0; n < ARRAY_SIZE(stack_sm); n++) {
199 		assert(GET_START_CANARY(stack_sm, n) == START_CANARY_VALUE);
200 		assert(GET_END_CANARY(stack_sm, n) == END_CANARY_VALUE);
201 	}
202 #endif
203 #ifndef CFG_WITH_PAGER
204 	for (n = 0; n < ARRAY_SIZE(stack_thread); n++) {
205 		assert(GET_START_CANARY(stack_thread, n) == START_CANARY_VALUE);
206 		assert(GET_END_CANARY(stack_thread, n) == END_CANARY_VALUE);
207 	}
208 #endif
209 #endif/*CFG_WITH_STACK_CANARIES*/
210 }
211 
212 static void lock_global(void)
213 {
214 	cpu_spin_lock(&thread_global_lock);
215 }
216 
217 static void unlock_global(void)
218 {
219 	cpu_spin_unlock(&thread_global_lock);
220 }
221 
222 #ifdef ARM32
223 uint32_t thread_get_exceptions(void)
224 {
225 	uint32_t cpsr = read_cpsr();
226 
227 	return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
228 }
229 
230 void thread_set_exceptions(uint32_t exceptions)
231 {
232 	uint32_t cpsr = read_cpsr();
233 
234 	cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
235 	cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
236 	write_cpsr(cpsr);
237 }
238 #endif /*ARM32*/
239 
240 #ifdef ARM64
241 uint32_t thread_get_exceptions(void)
242 {
243 	uint32_t daif = read_daif();
244 
245 	return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
246 }
247 
248 void thread_set_exceptions(uint32_t exceptions)
249 {
250 	uint32_t daif = read_daif();
251 
252 	daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
253 	daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
254 	write_daif(daif);
255 }
256 #endif /*ARM64*/
257 
258 uint32_t thread_mask_exceptions(uint32_t exceptions)
259 {
260 	uint32_t state = thread_get_exceptions();
261 
262 	thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
263 	return state;
264 }
265 
266 void thread_unmask_exceptions(uint32_t state)
267 {
268 	thread_set_exceptions(state & THREAD_EXCP_ALL);
269 }
270 
271 
272 struct thread_core_local *thread_get_core_local(void)
273 {
274 	uint32_t cpu_id = get_core_pos();
275 
276 	/*
277 	 * IRQs must be disabled before playing with core_local since
278 	 * we otherwise may be rescheduled to a different core in the
279 	 * middle of this function.
280 	 */
281 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
282 
283 	assert(cpu_id < CFG_TEE_CORE_NB_CORE);
284 	return &thread_core_local[cpu_id];
285 }
286 
287 static void thread_lazy_save_ns_vfp(void)
288 {
289 #ifdef CFG_WITH_VFP
290 	struct thread_ctx *thr = threads + thread_get_id();
291 
292 	thr->vfp_state.ns_saved = false;
293 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW)
294 	/*
295 	 * ARM TF saves and restores CPACR_EL1, so we must assume NS world
296 	 * uses VFP and always preserve the register file when secure world
297 	 * is about to use it
298 	 */
299 	thr->vfp_state.ns.force_save = true;
300 #endif
301 	vfp_lazy_save_state_init(&thr->vfp_state.ns);
302 #endif /*CFG_WITH_VFP*/
303 }
304 
305 static void thread_lazy_restore_ns_vfp(void)
306 {
307 #ifdef CFG_WITH_VFP
308 	struct thread_ctx *thr = threads + thread_get_id();
309 
310 	assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
311 	vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
312 	thr->vfp_state.ns_saved = false;
313 #endif /*CFG_WITH_VFP*/
314 }
315 
316 #ifdef ARM32
317 static void init_regs(struct thread_ctx *thread,
318 		struct thread_smc_args *args)
319 {
320 	thread->regs.pc = (uint32_t)thread_std_smc_entry;
321 
322 	/*
323 	 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous
324 	 * abort and unmasked FIQ.
325 	  */
326 	thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
327 	thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_I | CPSR_A;
328 	/* Enable thumb mode if it's a thumb instruction */
329 	if (thread->regs.pc & 1)
330 		thread->regs.cpsr |= CPSR_T;
331 	/* Reinitialize stack pointer */
332 	thread->regs.svc_sp = thread->stack_va_end;
333 
334 	/*
335 	 * Copy arguments into context. This will make the
336 	 * arguments appear in r0-r7 when thread is started.
337 	 */
338 	thread->regs.r0 = args->a0;
339 	thread->regs.r1 = args->a1;
340 	thread->regs.r2 = args->a2;
341 	thread->regs.r3 = args->a3;
342 	thread->regs.r4 = args->a4;
343 	thread->regs.r5 = args->a5;
344 	thread->regs.r6 = args->a6;
345 	thread->regs.r7 = args->a7;
346 }
347 #endif /*ARM32*/
348 
349 #ifdef ARM64
350 static void init_regs(struct thread_ctx *thread,
351 		struct thread_smc_args *args)
352 {
353 	thread->regs.pc = (uint64_t)thread_std_smc_entry;
354 
355 	/*
356 	 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous
357 	 * abort and unmasked FIQ.
358 	  */
359 	thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
360 				    DAIFBIT_IRQ | DAIFBIT_ABT);
361 	/* Reinitialize stack pointer */
362 	thread->regs.sp = thread->stack_va_end;
363 
364 	/*
365 	 * Copy arguments into context. This will make the
366 	 * arguments appear in x0-x7 when thread is started.
367 	 */
368 	thread->regs.x[0] = args->a0;
369 	thread->regs.x[1] = args->a1;
370 	thread->regs.x[2] = args->a2;
371 	thread->regs.x[3] = args->a3;
372 	thread->regs.x[4] = args->a4;
373 	thread->regs.x[5] = args->a5;
374 	thread->regs.x[6] = args->a6;
375 	thread->regs.x[7] = args->a7;
376 }
377 #endif /*ARM64*/
378 
379 void thread_init_boot_thread(void)
380 {
381 	struct thread_core_local *l = thread_get_core_local();
382 	size_t n;
383 
384 	for (n = 0; n < CFG_NUM_THREADS; n++)
385 		TAILQ_INIT(&threads[n].mutexes);
386 
387 	for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++)
388 		thread_core_local[n].curr_thread = -1;
389 
390 	l->curr_thread = 0;
391 	threads[0].state = THREAD_STATE_ACTIVE;
392 }
393 
394 void thread_clr_boot_thread(void)
395 {
396 	struct thread_core_local *l = thread_get_core_local();
397 
398 	assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS);
399 	assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE);
400 	assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes));
401 	threads[l->curr_thread].state = THREAD_STATE_FREE;
402 	l->curr_thread = -1;
403 }
404 
405 static void thread_alloc_and_run(struct thread_smc_args *args)
406 {
407 	size_t n;
408 	struct thread_core_local *l = thread_get_core_local();
409 	bool found_thread = false;
410 
411 	assert(l->curr_thread == -1);
412 
413 	lock_global();
414 
415 	for (n = 0; n < CFG_NUM_THREADS; n++) {
416 		if (threads[n].state == THREAD_STATE_FREE) {
417 			threads[n].state = THREAD_STATE_ACTIVE;
418 			found_thread = true;
419 			break;
420 		}
421 	}
422 
423 	unlock_global();
424 
425 	if (!found_thread) {
426 		args->a0 = TEESMC_RETURN_ETHREAD_LIMIT;
427 		return;
428 	}
429 
430 	l->curr_thread = n;
431 
432 	threads[n].flags = 0;
433 	init_regs(threads + n, args);
434 
435 	/* Save Hypervisor Client ID */
436 	threads[n].hyp_clnt_id = args->a7;
437 
438 	thread_lazy_save_ns_vfp();
439 	thread_resume(&threads[n].regs);
440 }
441 
442 #ifdef ARM32
443 static void copy_a0_to_a3(struct thread_ctx_regs *regs,
444 		struct thread_smc_args *args)
445 {
446 	/*
447 	 * Update returned values from RPC, values will appear in
448 	 * r0-r3 when thread is resumed.
449 	 */
450 	regs->r0 = args->a0;
451 	regs->r1 = args->a1;
452 	regs->r2 = args->a2;
453 	regs->r3 = args->a3;
454 }
455 #endif /*ARM32*/
456 
457 #ifdef ARM64
458 static void copy_a0_to_a3(struct thread_ctx_regs *regs,
459 		struct thread_smc_args *args)
460 {
461 	/*
462 	 * Update returned values from RPC, values will appear in
463 	 * x0-x3 when thread is resumed.
464 	 */
465 	regs->x[0] = args->a0;
466 	regs->x[1] = args->a1;
467 	regs->x[2] = args->a2;
468 	regs->x[3] = args->a3;
469 }
470 #endif /*ARM64*/
471 
472 static void thread_resume_from_rpc(struct thread_smc_args *args)
473 {
474 	size_t n = args->a3; /* thread id */
475 	struct thread_core_local *l = thread_get_core_local();
476 	uint32_t rv = 0;
477 
478 	assert(l->curr_thread == -1);
479 
480 	lock_global();
481 
482 	if (n < CFG_NUM_THREADS &&
483 	    threads[n].state == THREAD_STATE_SUSPENDED &&
484 	    args->a7 == threads[n].hyp_clnt_id)
485 		threads[n].state = THREAD_STATE_ACTIVE;
486 	else
487 		rv = TEESMC_RETURN_ERESUME;
488 
489 	unlock_global();
490 
491 	if (rv) {
492 		args->a0 = rv;
493 		return;
494 	}
495 
496 	l->curr_thread = n;
497 
498 	if (threads[n].have_user_map)
499 		core_mmu_set_user_map(&threads[n].user_map);
500 
501 	/*
502 	 * Return from RPC to request service of an IRQ must not
503 	 * get parameters from non-secure world.
504 	 */
505 	if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
506 		copy_a0_to_a3(&threads[n].regs, args);
507 		threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
508 	}
509 
510 	thread_lazy_save_ns_vfp();
511 	thread_resume(&threads[n].regs);
512 }
513 
514 void thread_handle_fast_smc(struct thread_smc_args *args)
515 {
516 	thread_check_canaries();
517 	thread_fast_smc_handler_ptr(args);
518 	/* Fast handlers must not unmask any exceptions */
519 	assert(thread_get_exceptions() == THREAD_EXCP_ALL);
520 }
521 
522 void thread_handle_std_smc(struct thread_smc_args *args)
523 {
524 	thread_check_canaries();
525 
526 	if (args->a0 == TEESMC32_CALL_RETURN_FROM_RPC)
527 		thread_resume_from_rpc(args);
528 	else
529 		thread_alloc_and_run(args);
530 }
531 
532 /* Helper routine for the assembly function thread_std_smc_entry() */
533 void __thread_std_smc_entry(struct thread_smc_args *args)
534 {
535 	struct thread_ctx *thr = threads + thread_get_id();
536 
537 	if (!thr->rpc_arg) {
538 		paddr_t parg;
539 		void *arg;
540 
541 		parg = thread_rpc_alloc_arg(
542 				TEESMC32_GET_ARG_SIZE(RPC_MAX_PARAMS));
543 		if (!parg || !ALIGNMENT_IS_OK(parg, struct teesmc32_arg) ||
544 		     core_pa2va(parg, &arg)) {
545 			thread_rpc_free_arg(parg);
546 			args->a0 = TEESMC_RETURN_ENOMEM;
547 			return;
548 		}
549 
550 		thr->rpc_arg = arg;
551 		thr->rpc_parg = parg;
552 	}
553 
554 	thread_std_smc_handler_ptr(args);
555 }
556 
557 void thread_handle_abort(uint32_t abort_type, struct thread_abort_regs *regs)
558 {
559 #ifdef CFG_WITH_VFP
560 	struct thread_ctx *thr = threads + thread_get_id();
561 
562 	if (vfp_is_enabled()) {
563 		vfp_lazy_save_state_init(&thr->vfp_state.sec);
564 		thr->vfp_state.sec_lazy_saved = true;
565 	}
566 #endif
567 
568 	thread_abort_handler_ptr(abort_type, regs);
569 
570 #ifdef CFG_WITH_VFP
571 	assert(!vfp_is_enabled());
572 	if (thr->vfp_state.sec_lazy_saved) {
573 		vfp_lazy_restore_state(&thr->vfp_state.sec,
574 				       thr->vfp_state.sec_saved);
575 		thr->vfp_state.sec_saved = false;
576 		thr->vfp_state.sec_lazy_saved = false;
577 	}
578 #endif
579 }
580 
581 void *thread_get_tmp_sp(void)
582 {
583 	struct thread_core_local *l = thread_get_core_local();
584 
585 	return (void *)l->tmp_stack_va_end;
586 }
587 
588 #ifdef ARM64
589 vaddr_t thread_get_saved_thread_sp(void)
590 {
591 	struct thread_core_local *l = thread_get_core_local();
592 	int ct = l->curr_thread;
593 
594 	assert(ct != -1);
595 	return threads[ct].kern_sp;
596 }
597 #endif /*ARM64*/
598 
599 void thread_state_free(void)
600 {
601 	struct thread_core_local *l = thread_get_core_local();
602 	int ct = l->curr_thread;
603 
604 	assert(ct != -1);
605 	assert(TAILQ_EMPTY(&threads[ct].mutexes));
606 
607 	thread_lazy_restore_ns_vfp();
608 
609 	lock_global();
610 
611 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
612 	threads[ct].state = THREAD_STATE_FREE;
613 	threads[ct].flags = 0;
614 	l->curr_thread = -1;
615 
616 	unlock_global();
617 }
618 
619 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
620 {
621 	struct thread_core_local *l = thread_get_core_local();
622 	int ct = l->curr_thread;
623 
624 	assert(ct != -1);
625 
626 	thread_check_canaries();
627 
628 	thread_lazy_restore_ns_vfp();
629 
630 	lock_global();
631 
632 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
633 	threads[ct].flags |= flags;
634 	threads[ct].regs.cpsr = cpsr;
635 	threads[ct].regs.pc = pc;
636 	threads[ct].state = THREAD_STATE_SUSPENDED;
637 
638 	threads[ct].have_user_map = core_mmu_user_mapping_is_active();
639 	if (threads[ct].have_user_map) {
640 		core_mmu_get_user_map(&threads[ct].user_map);
641 		core_mmu_set_user_map(NULL);
642 	}
643 
644 
645 	l->curr_thread = -1;
646 
647 	unlock_global();
648 
649 	return ct;
650 }
651 
652 #ifdef ARM32
653 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
654 {
655 	l->tmp_stack_va_end = sp;
656 	thread_set_irq_sp(sp);
657 	thread_set_fiq_sp(sp);
658 }
659 
660 static void set_abt_stack(struct thread_core_local *l __unused, vaddr_t sp)
661 {
662 	thread_set_abt_sp(sp);
663 }
664 #endif /*ARM32*/
665 
666 #ifdef ARM64
667 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
668 {
669 	/*
670 	 * We're already using the tmp stack when this function is called
671 	 * so there's no need to assign it to any stack pointer. However,
672 	 * we'll need to restore it at different times so store it here.
673 	 */
674 	l->tmp_stack_va_end = sp;
675 }
676 
677 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp)
678 {
679 	l->abt_stack_va_end = sp;
680 }
681 #endif /*ARM64*/
682 
683 bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
684 {
685 	if (thread_id >= CFG_NUM_THREADS)
686 		return false;
687 	threads[thread_id].stack_va_end = sp;
688 	return true;
689 }
690 
691 int thread_get_id(void)
692 {
693 	/* thread_get_core_local() requires IRQs to be disabled */
694 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
695 	struct thread_core_local *l;
696 	int ct;
697 
698 	l = thread_get_core_local();
699 	ct = l->curr_thread;
700 	assert((ct >= 0) && (ct < CFG_NUM_THREADS));
701 
702 	thread_unmask_exceptions(exceptions);
703 	return ct;
704 }
705 
706 static void init_handlers(const struct thread_handlers *handlers)
707 {
708 	thread_std_smc_handler_ptr = handlers->std_smc;
709 	thread_fast_smc_handler_ptr = handlers->fast_smc;
710 	thread_fiq_handler_ptr = handlers->fiq;
711 	thread_svc_handler_ptr = handlers->svc;
712 	thread_abort_handler_ptr = handlers->abort;
713 	thread_cpu_on_handler_ptr = handlers->cpu_on;
714 	thread_cpu_off_handler_ptr = handlers->cpu_off;
715 	thread_cpu_suspend_handler_ptr = handlers->cpu_suspend;
716 	thread_cpu_resume_handler_ptr = handlers->cpu_resume;
717 	thread_system_off_handler_ptr = handlers->system_off;
718 	thread_system_reset_handler_ptr = handlers->system_reset;
719 }
720 
721 
722 #ifdef CFG_WITH_PAGER
723 static void init_thread_stacks(void)
724 {
725 	size_t n;
726 
727 	/*
728 	 * Allocate virtual memory for thread stacks.
729 	 */
730 	for (n = 0; n < CFG_NUM_THREADS; n++) {
731 		tee_mm_entry_t *mm;
732 		vaddr_t sp;
733 
734 		/* Find vmem for thread stack and its protection gap */
735 		mm = tee_mm_alloc(&tee_mm_vcore,
736 				  SMALL_PAGE_SIZE + STACK_THREAD_SIZE);
737 		TEE_ASSERT(mm);
738 
739 		/* Claim eventual physical page */
740 		tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm),
741 				    true);
742 
743 		/* Realloc both protection vmem and stack vmem separately */
744 		sp = tee_mm_get_smem(mm);
745 		tee_mm_free(mm);
746 		mm = tee_mm_alloc2(&tee_mm_vcore, sp, SMALL_PAGE_SIZE);
747 		TEE_ASSERT(mm);
748 		mm = tee_mm_alloc2(&tee_mm_vcore, sp + SMALL_PAGE_SIZE,
749 						  STACK_THREAD_SIZE);
750 		TEE_ASSERT(mm);
751 
752 		/* init effective stack */
753 		sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm);
754 		if (!thread_init_stack(n, sp))
755 			panic();
756 
757 		/* Add the area to the pager */
758 		tee_pager_add_area(mm, TEE_PAGER_AREA_RW, NULL, NULL);
759 	}
760 }
761 #else
762 static void init_thread_stacks(void)
763 {
764 	size_t n;
765 
766 	/* Assign the thread stacks */
767 	for (n = 0; n < CFG_NUM_THREADS; n++) {
768 		if (!thread_init_stack(n, GET_STACK(stack_thread[n])))
769 			panic();
770 	}
771 }
772 #endif /*CFG_WITH_PAGER*/
773 
774 void thread_init_primary(const struct thread_handlers *handlers)
775 {
776 	/*
777 	 * The COMPILE_TIME_ASSERT only works in function context. These
778 	 * checks verifies that the offsets used in assembly code matches
779 	 * what's used in C code.
780 	 */
781 #ifdef ARM32
782 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r0) ==
783 				THREAD_SVC_REG_R0_OFFS);
784 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r1) ==
785 				THREAD_SVC_REG_R1_OFFS);
786 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r2) ==
787 				THREAD_SVC_REG_R2_OFFS);
788 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r3) ==
789 				THREAD_SVC_REG_R3_OFFS);
790 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r4) ==
791 				THREAD_SVC_REG_R4_OFFS);
792 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r5) ==
793 				THREAD_SVC_REG_R5_OFFS);
794 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r6) ==
795 				THREAD_SVC_REG_R6_OFFS);
796 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r7) ==
797 				THREAD_SVC_REG_R7_OFFS);
798 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, lr) ==
799 				THREAD_SVC_REG_LR_OFFS);
800 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, spsr) ==
801 				THREAD_SVC_REG_SPSR_OFFS);
802 #endif /*ARM32*/
803 #ifdef ARM64
804 	/* struct thread_abort_regs */
805 	COMPILE_TIME_ASSERT(offsetof(struct thread_abort_regs, x22) ==
806 			    THREAD_ABT_REG_X_OFFS(22));
807 	COMPILE_TIME_ASSERT(offsetof(struct thread_abort_regs, elr) ==
808 			    THREAD_ABT_REG_ELR_OFFS);
809 	COMPILE_TIME_ASSERT(offsetof(struct thread_abort_regs, spsr) ==
810 			    THREAD_ABT_REG_SPSR_OFFS);
811 	COMPILE_TIME_ASSERT(offsetof(struct thread_abort_regs, sp_el0) ==
812 			    THREAD_ABT_REG_SP_EL0_OFFS);
813 	COMPILE_TIME_ASSERT(sizeof(struct thread_abort_regs) ==
814 			    THREAD_ABT_REGS_SIZE);
815 
816 	/* struct thread_ctx */
817 	COMPILE_TIME_ASSERT(offsetof(struct thread_ctx, kern_sp) ==
818 			    THREAD_CTX_KERN_SP_OFFSET);
819 	COMPILE_TIME_ASSERT(sizeof(struct thread_ctx) == THREAD_CTX_SIZE);
820 
821 	/* struct thread_ctx_regs */
822 	COMPILE_TIME_ASSERT(offsetof(struct thread_ctx_regs, sp) ==
823 			    THREAD_CTX_REGS_SP_OFFSET);
824 	COMPILE_TIME_ASSERT(offsetof(struct thread_ctx_regs, pc) ==
825 			    THREAD_CTX_REGS_PC_OFFSET);
826 	COMPILE_TIME_ASSERT(offsetof(struct thread_ctx_regs, cpsr) ==
827 			    THREAD_CTX_REGS_SPSR_OFFSET);
828 	COMPILE_TIME_ASSERT(offsetof(struct thread_ctx_regs, x[23]) ==
829 			    THREAD_CTX_REGS_X_OFFSET(23));
830 	COMPILE_TIME_ASSERT(sizeof(struct thread_ctx_regs) ==
831 			    THREAD_CTX_REGS_SIZE);
832 
833 	/* struct thread_user_mode_rec */
834 	COMPILE_TIME_ASSERT(
835 		offsetof(struct thread_user_mode_rec, exit_status0_ptr) ==
836 		THREAD_USER_MODE_REC_EXIT_STATUS0_PTR_OFFSET);
837 	COMPILE_TIME_ASSERT(
838 		offsetof(struct thread_user_mode_rec, exit_status1_ptr) ==
839 		THREAD_USER_MODE_REC_EXIT_STATUS1_PTR_OFFSET);
840 	COMPILE_TIME_ASSERT(
841 		offsetof(struct thread_user_mode_rec, x[1]) ==
842 		THREAD_USER_MODE_REC_X_OFFSET(20));
843 	COMPILE_TIME_ASSERT(sizeof(struct thread_user_mode_rec) ==
844 			    THREAD_USER_MODE_REC_SIZE);
845 
846 	/* struct thread_core_local */
847 	COMPILE_TIME_ASSERT(
848 		offsetof(struct thread_core_local, tmp_stack_va_end) ==
849 		THREAD_CORE_LOCAL_TMP_STACK_VA_END_OFFSET);
850 	COMPILE_TIME_ASSERT(
851 		offsetof(struct thread_core_local, curr_thread) ==
852 		THREAD_CORE_LOCAL_CURR_THREAD_OFFSET);
853 	COMPILE_TIME_ASSERT(
854 		offsetof(struct thread_core_local, flags) ==
855 		THREAD_CORE_LOCAL_FLAGS_OFFSET);
856 	COMPILE_TIME_ASSERT(
857 		offsetof(struct thread_core_local, abt_stack_va_end) ==
858 		THREAD_CORE_LOCAL_ABT_STACK_VA_END_OFFSET);
859 	COMPILE_TIME_ASSERT(
860 		offsetof(struct thread_core_local, x[3]) ==
861 		THREAD_CORE_LOCAL_X_OFFSET(3));
862 	COMPILE_TIME_ASSERT(sizeof(struct thread_core_local) ==
863 		THREAD_CORE_LOCAL_SIZE);
864 
865 #endif /*ARM64*/
866 
867 	init_handlers(handlers);
868 
869 	/* Initialize canaries around the stacks */
870 	init_canaries();
871 
872 	init_thread_stacks();
873 }
874 
875 static void init_sec_mon(size_t __unused pos)
876 {
877 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
878 	/* Initialize secure monitor */
879 	sm_init(GET_STACK(stack_sm[pos]));
880 	sm_set_entry_vector(thread_vector_table);
881 #endif
882 }
883 
884 void thread_init_per_cpu(void)
885 {
886 	size_t pos = get_core_pos();
887 	struct thread_core_local *l = thread_get_core_local();
888 
889 	init_sec_mon(pos);
890 
891 	set_tmp_stack(l, GET_STACK(stack_tmp[pos]));
892 	set_abt_stack(l, GET_STACK(stack_abt[pos]));
893 
894 	thread_init_vbar();
895 }
896 
897 void thread_set_tsd(void *tsd)
898 {
899 	/* thread_get_core_local() requires IRQs to be disabled */
900 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
901 	struct thread_core_local *l;
902 	int ct;
903 
904 	l = thread_get_core_local();
905 	ct = l->curr_thread;
906 
907 	assert(ct != -1);
908 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
909 	threads[ct].tsd = tsd;
910 
911 	thread_unmask_exceptions(exceptions);
912 }
913 
914 void *thread_get_tsd(void)
915 {
916 	/* thread_get_core_local() requires IRQs to be disabled */
917 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
918 	struct thread_core_local *l;
919 	int ct;
920 	void *tsd;
921 
922 	l = thread_get_core_local();
923 	ct = l->curr_thread;
924 
925 	if (ct == -1 || threads[ct].state != THREAD_STATE_ACTIVE)
926 		tsd = NULL;
927 	else
928 		tsd = threads[ct].tsd;
929 
930 	thread_unmask_exceptions(exceptions);
931 	return tsd;
932 }
933 
934 struct thread_ctx_regs *thread_get_ctx_regs(void)
935 {
936 	struct thread_core_local *l = thread_get_core_local();
937 
938 	assert(l->curr_thread != -1);
939 	return &threads[l->curr_thread].regs;
940 }
941 
942 void thread_set_irq(bool enable)
943 {
944 	/* thread_get_core_local() requires IRQs to be disabled */
945 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
946 	struct thread_core_local *l;
947 
948 	l = thread_get_core_local();
949 
950 	assert(l->curr_thread != -1);
951 
952 	if (enable) {
953 		threads[l->curr_thread].flags |= THREAD_FLAGS_IRQ_ENABLE;
954 		thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ);
955 	} else {
956 		/*
957 		 * No need to disable IRQ here since it's already disabled
958 		 * above.
959 		 */
960 		threads[l->curr_thread].flags &= ~THREAD_FLAGS_IRQ_ENABLE;
961 	}
962 }
963 
964 void thread_restore_irq(void)
965 {
966 	/* thread_get_core_local() requires IRQs to be disabled */
967 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
968 	struct thread_core_local *l;
969 
970 	l = thread_get_core_local();
971 
972 	assert(l->curr_thread != -1);
973 
974 	if (threads[l->curr_thread].flags & THREAD_FLAGS_IRQ_ENABLE)
975 		thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ);
976 }
977 
978 #ifdef CFG_WITH_VFP
979 uint32_t thread_kernel_enable_vfp(void)
980 {
981 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
982 	struct thread_ctx *thr = threads + thread_get_id();
983 
984 	assert(!vfp_is_enabled());
985 
986 	if (!thr->vfp_state.ns_saved) {
987 		vfp_lazy_save_state_final(&thr->vfp_state.ns);
988 		thr->vfp_state.ns_saved = true;
989 	} else if (thr->vfp_state.sec_lazy_saved &&
990 		   !thr->vfp_state.sec_saved) {
991 		/*
992 		 * This happens when we're handling an abort while the
993 		 * thread was using the VFP state.
994 		 */
995 		vfp_lazy_save_state_final(&thr->vfp_state.sec);
996 		thr->vfp_state.sec_saved = true;
997 	}
998 
999 	vfp_enable();
1000 	return exceptions;
1001 }
1002 
1003 void thread_kernel_disable_vfp(uint32_t state)
1004 {
1005 	uint32_t exceptions;
1006 
1007 	assert(vfp_is_enabled());
1008 
1009 	vfp_disable();
1010 	exceptions = thread_get_exceptions();
1011 	assert(exceptions & THREAD_EXCP_IRQ);
1012 	exceptions &= ~THREAD_EXCP_IRQ;
1013 	exceptions |= state & THREAD_EXCP_IRQ;
1014 	thread_set_exceptions(exceptions);
1015 }
1016 #endif /*CFG_WITH_VFP*/
1017 
1018 #ifdef ARM32
1019 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1020 {
1021 	uint32_t s;
1022 
1023 	if (!is_32bit)
1024 		return false;
1025 
1026 	s = read_spsr();
1027 	s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
1028 	s |= CPSR_MODE_USR;
1029 	if (entry_func & 1)
1030 		s |= CPSR_T;
1031 	*spsr = s;
1032 	return true;
1033 }
1034 #endif
1035 
1036 #ifdef ARM64
1037 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1038 {
1039 	uint32_t s;
1040 
1041 	if (is_32bit) {
1042 		s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
1043 		s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
1044 		s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
1045 	} else {
1046 		s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
1047 	}
1048 
1049 	*spsr = s;
1050 	return true;
1051 }
1052 #endif
1053 
1054 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
1055 		unsigned long a2, unsigned long a3, unsigned long user_sp,
1056 		unsigned long entry_func, bool is_32bit,
1057 		uint32_t *exit_status0, uint32_t *exit_status1)
1058 {
1059 	uint32_t spsr;
1060 
1061 	if (!get_spsr(is_32bit, entry_func, &spsr)) {
1062 		*exit_status0 = 1; /* panic */
1063 		*exit_status1 = 0xbadbadba;
1064 		return 0;
1065 	}
1066 	return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func,
1067 					spsr, exit_status0, exit_status1);
1068 }
1069 
1070 void thread_add_mutex(struct mutex *m)
1071 {
1072 	struct thread_core_local *l = thread_get_core_local();
1073 	int ct = l->curr_thread;
1074 
1075 	assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE);
1076 	assert(m->owner_id == -1);
1077 	m->owner_id = ct;
1078 	TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link);
1079 }
1080 
1081 void thread_rem_mutex(struct mutex *m)
1082 {
1083 	struct thread_core_local *l = thread_get_core_local();
1084 	int ct = l->curr_thread;
1085 
1086 	assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE);
1087 	assert(m->owner_id == ct);
1088 	m->owner_id = -1;
1089 	TAILQ_REMOVE(&threads[ct].mutexes, m, link);
1090 }
1091 
1092 paddr_t thread_rpc_alloc_arg(size_t size)
1093 {
1094 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1095 		TEESMC_RETURN_RPC_ALLOC_ARG, size};
1096 
1097 	thread_rpc(rpc_args);
1098 	return rpc_args[1];
1099 }
1100 
1101 paddr_t thread_rpc_alloc_payload(size_t size)
1102 {
1103 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1104 		TEESMC_RETURN_RPC_ALLOC_PAYLOAD, size};
1105 
1106 	thread_rpc(rpc_args);
1107 	return rpc_args[1];
1108 }
1109 
1110 void thread_rpc_free_arg(paddr_t arg)
1111 {
1112 	if (arg) {
1113 		uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1114 			TEESMC_RETURN_RPC_FREE_ARG, arg};
1115 
1116 		thread_rpc(rpc_args);
1117 	}
1118 }
1119 void thread_rpc_free_payload(paddr_t payload)
1120 {
1121 	if (payload) {
1122 		uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1123 			TEESMC_RETURN_RPC_FREE_PAYLOAD, payload};
1124 
1125 		thread_rpc(rpc_args);
1126 	}
1127 }
1128 
1129 static uint32_t rpc_cmd_nolock(uint32_t cmd, size_t num_params,
1130 		struct teesmc32_param *params)
1131 {
1132 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 0 };
1133 	struct thread_ctx *thr = threads + thread_get_id();
1134 	struct teesmc32_arg *arg = thr->rpc_arg;
1135 	paddr_t parg = thr->rpc_parg;
1136 	const size_t params_size = sizeof(struct teesmc32_param) * num_params;
1137 	size_t n;
1138 
1139 	TEE_ASSERT(arg && parg && num_params <= RPC_MAX_PARAMS);
1140 
1141 	memset(arg, 0, TEESMC32_GET_ARG_SIZE(RPC_MAX_PARAMS));
1142 	arg->cmd = cmd;
1143 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1144 	arg->num_params = num_params;
1145 	memcpy(TEESMC32_GET_PARAMS(arg), params, params_size);
1146 
1147 	rpc_args[0] = TEESMC_RETURN_RPC_CMD;
1148 	rpc_args[1] = parg;
1149 	thread_rpc(rpc_args);
1150 
1151 	for (n = 0; n < num_params; n++) {
1152 		switch (params[n].attr & TEESMC_ATTR_TYPE_MASK) {
1153 		case TEESMC_ATTR_TYPE_VALUE_OUTPUT:
1154 		case TEESMC_ATTR_TYPE_VALUE_INOUT:
1155 		case TEESMC_ATTR_TYPE_MEMREF_OUTPUT:
1156 		case TEESMC_ATTR_TYPE_MEMREF_INOUT:
1157 			memcpy(params + n, TEESMC32_GET_PARAMS(arg) + n,
1158 			       sizeof(struct teesmc32_param));
1159 			break;
1160 		default:
1161 			break;
1162 		}
1163 	}
1164 
1165 	return arg->ret;
1166 }
1167 
1168 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params,
1169 		struct teesmc32_param *params)
1170 {
1171 	uint32_t ret;
1172 
1173 	ret = rpc_cmd_nolock(cmd, num_params, params);
1174 
1175 	return ret;
1176 }
1177 
1178 void thread_optee_rpc_alloc_payload(size_t size, paddr_t *payload,
1179 		paddr_t *cookie)
1180 {
1181 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1182 		TEESMC_RETURN_OPTEE_RPC_ALLOC_PAYLOAD, size};
1183 
1184 	thread_rpc(rpc_args);
1185 	if (payload)
1186 		*payload = rpc_args[1];
1187 	if (cookie)
1188 		*cookie = rpc_args[2];
1189 }
1190 
1191 void thread_optee_rpc_free_payload(paddr_t cookie)
1192 {
1193 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] ={
1194 		TEESMC_RETURN_OPTEE_RPC_FREE_PAYLOAD, cookie};
1195 
1196 	thread_rpc(rpc_args);
1197 }
1198