xref: /optee_os/core/arch/arm/kernel/thread.c (revision 7e399f9b0781980d448c91923008855d3d302799)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016-2021, Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2020-2021, Arm Limited
6  */
7 
8 #include <platform_config.h>
9 
10 #include <arm.h>
11 #include <assert.h>
12 #include <config.h>
13 #include <io.h>
14 #include <keep.h>
15 #include <kernel/asan.h>
16 #include <kernel/boot.h>
17 #include <kernel/linker.h>
18 #include <kernel/lockdep.h>
19 #include <kernel/misc.h>
20 #include <kernel/panic.h>
21 #include <kernel/spinlock.h>
22 #include <kernel/spmc_sp_handler.h>
23 #include <kernel/tee_ta_manager.h>
24 #include <kernel/thread_defs.h>
25 #include <kernel/thread.h>
26 #include <kernel/thread_private.h>
27 #include <kernel/user_mode_ctx_struct.h>
28 #include <kernel/virtualization.h>
29 #include <mm/core_memprot.h>
30 #include <mm/mobj.h>
31 #include <mm/tee_mm.h>
32 #include <mm/tee_pager.h>
33 #include <mm/vm.h>
34 #include <smccc.h>
35 #include <sm/sm.h>
36 #include <trace.h>
37 #include <util.h>
38 
39 struct thread_ctx threads[CFG_NUM_THREADS];
40 
41 struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE] __nex_bss;
42 
43 /*
44  * Stacks
45  *
46  * [Lower addresses on the left]
47  *
48  * [ STACK_CANARY_SIZE/2 | STACK_CHECK_EXTRA | STACK_XXX_SIZE | STACK_CANARY_SIZE/2 ]
49  * ^                     ^                   ^                ^
50  * stack_xxx[n]          "hard" top          "soft" top       bottom
51  */
52 
53 #ifdef CFG_WITH_ARM_TRUSTED_FW
54 #define STACK_TMP_OFFS		0
55 #else
56 #define STACK_TMP_OFFS		SM_STACK_TMP_RESERVE_SIZE
57 #endif
58 
59 #ifdef ARM32
60 #ifdef CFG_CORE_SANITIZE_KADDRESS
61 #define STACK_TMP_SIZE		(3072 + STACK_TMP_OFFS)
62 #else
63 #define STACK_TMP_SIZE		(2048 + STACK_TMP_OFFS)
64 #endif
65 #define STACK_THREAD_SIZE	8192
66 
67 #if defined(CFG_CORE_SANITIZE_KADDRESS) || defined(__clang__) || \
68 	!defined(CFG_CRYPTO_WITH_CE)
69 #define STACK_ABT_SIZE		3072
70 #else
71 #define STACK_ABT_SIZE		2048
72 #endif
73 
74 #endif /*ARM32*/
75 
76 #ifdef ARM64
77 #if defined(__clang__) && !defined(__OPTIMIZE_SIZE__)
78 #define STACK_TMP_SIZE		(4096 + STACK_TMP_OFFS)
79 #else
80 #define STACK_TMP_SIZE		(2048 + STACK_TMP_OFFS)
81 #endif
82 #define STACK_THREAD_SIZE	8192
83 
84 #if TRACE_LEVEL > 0
85 #define STACK_ABT_SIZE		3072
86 #else
87 #define STACK_ABT_SIZE		1024
88 #endif
89 #endif /*ARM64*/
90 
91 #ifdef CFG_WITH_STACK_CANARIES
92 #ifdef ARM32
93 #define STACK_CANARY_SIZE	(4 * sizeof(uint32_t))
94 #endif
95 #ifdef ARM64
96 #define STACK_CANARY_SIZE	(8 * sizeof(uint32_t))
97 #endif
98 #define START_CANARY_VALUE	0xdededede
99 #define END_CANARY_VALUE	0xabababab
100 #define GET_START_CANARY(name, stack_num) name[stack_num][0]
101 #define GET_END_CANARY(name, stack_num) \
102 	name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1]
103 #else
104 #define STACK_CANARY_SIZE	0
105 #endif
106 
107 #ifdef CFG_CORE_DEBUG_CHECK_STACKS
108 /*
109  * Extra space added to each stack in order to reliably detect and dump stack
110  * overflows. Should cover the maximum expected overflow size caused by any C
111  * function (say, 512 bytes; no function should have that much local variables),
112  * plus the maximum stack space needed by __cyg_profile_func_exit(): about 1 KB,
113  * a large part of which is used to print the call stack. Total: 1.5 KB.
114  */
115 #define STACK_CHECK_EXTRA	1536
116 #else
117 #define STACK_CHECK_EXTRA	0
118 #endif
119 
120 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \
121 linkage uint32_t name[num_stacks] \
122 		[ROUNDUP(stack_size + STACK_CANARY_SIZE + STACK_CHECK_EXTRA, \
123 			 STACK_ALIGNMENT) / sizeof(uint32_t)] \
124 		__attribute__((section(".nozi_stack." # name), \
125 			       aligned(STACK_ALIGNMENT)))
126 
127 #define GET_STACK(stack) ((vaddr_t)(stack) + STACK_SIZE(stack))
128 
129 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE,
130 	      STACK_TMP_SIZE + CFG_STACK_TMP_EXTRA, static);
131 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static);
132 #ifndef CFG_WITH_PAGER
133 DECLARE_STACK(stack_thread, CFG_NUM_THREADS,
134 	      STACK_THREAD_SIZE + CFG_STACK_THREAD_EXTRA, static);
135 #endif
136 
137 #define GET_STACK_TOP_HARD(stack, n) \
138 	((vaddr_t)&(stack)[n] + STACK_CANARY_SIZE / 2)
139 #define GET_STACK_TOP_SOFT(stack, n) \
140 	(GET_STACK_TOP_HARD(stack, n) + STACK_CHECK_EXTRA)
141 #define GET_STACK_BOTTOM(stack, n) ((vaddr_t)&(stack)[n] + sizeof(stack[n]) - \
142 				    STACK_CANARY_SIZE / 2)
143 
144 const void *stack_tmp_export __section(".identity_map.stack_tmp_export") =
145 	(void *)(GET_STACK_BOTTOM(stack_tmp, 0) - STACK_TMP_OFFS);
146 const uint32_t stack_tmp_stride __section(".identity_map.stack_tmp_stride") =
147 	sizeof(stack_tmp[0]);
148 
149 /*
150  * These stack setup info are required by secondary boot cores before they
151  * each locally enable the pager (the mmu). Hence kept in pager sections.
152  */
153 DECLARE_KEEP_PAGER(stack_tmp_export);
154 DECLARE_KEEP_PAGER(stack_tmp_stride);
155 
156 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
157 static vaddr_t thread_user_kcode_va __nex_bss;
158 long thread_user_kcode_offset __nex_bss;
159 static size_t thread_user_kcode_size __nex_bss;
160 #endif
161 
162 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
163 	defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
164 long thread_user_kdata_sp_offset __nex_bss;
165 static uint8_t thread_user_kdata_page[
166 	ROUNDUP(sizeof(thread_core_local), SMALL_PAGE_SIZE)]
167 	__aligned(SMALL_PAGE_SIZE)
168 #ifndef CFG_VIRTUALIZATION
169 	__section(".nozi.kdata_page");
170 #else
171 	__section(".nex_nozi.kdata_page");
172 #endif
173 #endif
174 
175 static unsigned int thread_global_lock __nex_bss = SPINLOCK_UNLOCK;
176 
177 static void init_canaries(void)
178 {
179 #ifdef CFG_WITH_STACK_CANARIES
180 	size_t n;
181 #define INIT_CANARY(name)						\
182 	for (n = 0; n < ARRAY_SIZE(name); n++) {			\
183 		uint32_t *start_canary = &GET_START_CANARY(name, n);	\
184 		uint32_t *end_canary = &GET_END_CANARY(name, n);	\
185 									\
186 		*start_canary = START_CANARY_VALUE;			\
187 		*end_canary = END_CANARY_VALUE;				\
188 	}
189 
190 	INIT_CANARY(stack_tmp);
191 	INIT_CANARY(stack_abt);
192 #if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION)
193 	INIT_CANARY(stack_thread);
194 #endif
195 #endif/*CFG_WITH_STACK_CANARIES*/
196 }
197 
198 #define CANARY_DIED(stack, loc, n, addr) \
199 	do { \
200 		EMSG_RAW("Dead canary at %s of '%s[%zu]' (%p)", #loc, #stack, \
201 			 n, (void *)addr); \
202 		panic(); \
203 	} while (0)
204 
205 void thread_check_canaries(void)
206 {
207 #ifdef CFG_WITH_STACK_CANARIES
208 	uint32_t *canary = NULL;
209 	size_t n = 0;
210 
211 	for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) {
212 		canary = &GET_START_CANARY(stack_tmp, n);
213 		if (*canary != START_CANARY_VALUE)
214 			CANARY_DIED(stack_tmp, start, n, canary);
215 		canary = &GET_END_CANARY(stack_tmp, n);
216 		if (*canary != END_CANARY_VALUE)
217 			CANARY_DIED(stack_tmp, end, n, canary);
218 	}
219 
220 	for (n = 0; n < ARRAY_SIZE(stack_abt); n++) {
221 		canary = &GET_START_CANARY(stack_abt, n);
222 		if (*canary != START_CANARY_VALUE)
223 			CANARY_DIED(stack_abt, start, n, canary);
224 		canary = &GET_END_CANARY(stack_abt, n);
225 		if (*canary != END_CANARY_VALUE)
226 			CANARY_DIED(stack_abt, end, n, canary);
227 
228 	}
229 #if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION)
230 	for (n = 0; n < ARRAY_SIZE(stack_thread); n++) {
231 		canary = &GET_START_CANARY(stack_thread, n);
232 		if (*canary != START_CANARY_VALUE)
233 			CANARY_DIED(stack_thread, start, n, canary);
234 		canary = &GET_END_CANARY(stack_thread, n);
235 		if (*canary != END_CANARY_VALUE)
236 			CANARY_DIED(stack_thread, end, n, canary);
237 	}
238 #endif
239 #endif/*CFG_WITH_STACK_CANARIES*/
240 }
241 
242 void thread_lock_global(void)
243 {
244 	cpu_spin_lock(&thread_global_lock);
245 }
246 
247 void thread_unlock_global(void)
248 {
249 	cpu_spin_unlock(&thread_global_lock);
250 }
251 
252 #ifdef ARM32
253 uint32_t __nostackcheck thread_get_exceptions(void)
254 {
255 	uint32_t cpsr = read_cpsr();
256 
257 	return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
258 }
259 
260 void __nostackcheck thread_set_exceptions(uint32_t exceptions)
261 {
262 	uint32_t cpsr = read_cpsr();
263 
264 	/* Foreign interrupts must not be unmasked while holding a spinlock */
265 	if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
266 		assert_have_no_spinlock();
267 
268 	cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
269 	cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
270 
271 	barrier();
272 	write_cpsr(cpsr);
273 	barrier();
274 }
275 #endif /*ARM32*/
276 
277 #ifdef ARM64
278 uint32_t __nostackcheck thread_get_exceptions(void)
279 {
280 	uint32_t daif = read_daif();
281 
282 	return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
283 }
284 
285 void __nostackcheck thread_set_exceptions(uint32_t exceptions)
286 {
287 	uint32_t daif = read_daif();
288 
289 	/* Foreign interrupts must not be unmasked while holding a spinlock */
290 	if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
291 		assert_have_no_spinlock();
292 
293 	daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
294 	daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
295 
296 	barrier();
297 	write_daif(daif);
298 	barrier();
299 }
300 #endif /*ARM64*/
301 
302 uint32_t __nostackcheck thread_mask_exceptions(uint32_t exceptions)
303 {
304 	uint32_t state = thread_get_exceptions();
305 
306 	thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
307 	return state;
308 }
309 
310 void __nostackcheck thread_unmask_exceptions(uint32_t state)
311 {
312 	thread_set_exceptions(state & THREAD_EXCP_ALL);
313 }
314 
315 
316 static struct thread_core_local * __nostackcheck
317 get_core_local(unsigned int pos)
318 {
319 	/*
320 	 * Foreign interrupts must be disabled before playing with core_local
321 	 * since we otherwise may be rescheduled to a different core in the
322 	 * middle of this function.
323 	 */
324 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
325 
326 	assert(pos < CFG_TEE_CORE_NB_CORE);
327 	return &thread_core_local[pos];
328 }
329 
330 struct thread_core_local * __nostackcheck thread_get_core_local(void)
331 {
332 	unsigned int pos = get_core_pos();
333 
334 	return get_core_local(pos);
335 }
336 
337 #ifdef CFG_CORE_DEBUG_CHECK_STACKS
338 static void print_stack_limits(void)
339 {
340 	size_t n = 0;
341 	vaddr_t __maybe_unused start = 0;
342 	vaddr_t __maybe_unused end = 0;
343 
344 	for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) {
345 		start = GET_STACK_TOP_SOFT(stack_tmp, n);
346 		end = GET_STACK_BOTTOM(stack_tmp, n);
347 		DMSG("tmp [%zu] 0x%" PRIxVA "..0x%" PRIxVA, n, start, end);
348 	}
349 	for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) {
350 		start = GET_STACK_TOP_SOFT(stack_abt, n);
351 		end = GET_STACK_BOTTOM(stack_abt, n);
352 		DMSG("abt [%zu] 0x%" PRIxVA "..0x%" PRIxVA, n, start, end);
353 	}
354 	for (n = 0; n < CFG_NUM_THREADS; n++) {
355 		end = threads[n].stack_va_end;
356 		start = end - STACK_THREAD_SIZE;
357 		DMSG("thr [%zu] 0x%" PRIxVA "..0x%" PRIxVA, n, start, end);
358 	}
359 }
360 
361 static void check_stack_limits(void)
362 {
363 	vaddr_t stack_start = 0;
364 	vaddr_t stack_end = 0;
365 	/* Any value in the current stack frame will do */
366 	vaddr_t current_sp = (vaddr_t)&stack_start;
367 
368 	if (!get_stack_soft_limits(&stack_start, &stack_end))
369 		panic("Unknown stack limits");
370 	if (current_sp < stack_start || current_sp > stack_end) {
371 		DMSG("Stack pointer out of range (0x%" PRIxVA ")", current_sp);
372 		print_stack_limits();
373 		panic();
374 	}
375 }
376 
377 static bool * __nostackcheck get_stackcheck_recursion_flag(void)
378 {
379 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
380 	unsigned int pos = get_core_pos();
381 	struct thread_core_local *l = get_core_local(pos);
382 	int ct = l->curr_thread;
383 	bool *p = NULL;
384 
385 	if (l->flags & (THREAD_CLF_ABORT | THREAD_CLF_TMP))
386 		p = &l->stackcheck_recursion;
387 	else if (!l->flags)
388 		p = &threads[ct].tsd.stackcheck_recursion;
389 
390 	thread_unmask_exceptions(exceptions);
391 	return p;
392 }
393 
394 void __cyg_profile_func_enter(void *this_fn, void *call_site);
395 void __nostackcheck __cyg_profile_func_enter(void *this_fn __unused,
396 					     void *call_site __unused)
397 {
398 	bool *p = get_stackcheck_recursion_flag();
399 
400 	assert(p);
401 	if (*p)
402 		return;
403 	*p = true;
404 	check_stack_limits();
405 	*p = false;
406 }
407 
408 void __cyg_profile_func_exit(void *this_fn, void *call_site);
409 void __nostackcheck __cyg_profile_func_exit(void *this_fn __unused,
410 					    void *call_site __unused)
411 {
412 }
413 #else
414 static void print_stack_limits(void)
415 {
416 }
417 #endif
418 
419 static void thread_lazy_save_ns_vfp(void)
420 {
421 #ifdef CFG_WITH_VFP
422 	struct thread_ctx *thr = threads + thread_get_id();
423 
424 	thr->vfp_state.ns_saved = false;
425 	vfp_lazy_save_state_init(&thr->vfp_state.ns);
426 #endif /*CFG_WITH_VFP*/
427 }
428 
429 static void thread_lazy_restore_ns_vfp(void)
430 {
431 #ifdef CFG_WITH_VFP
432 	struct thread_ctx *thr = threads + thread_get_id();
433 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
434 
435 	assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
436 
437 	if (tuv && tuv->lazy_saved && !tuv->saved) {
438 		vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
439 		tuv->saved = true;
440 	}
441 
442 	vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
443 	thr->vfp_state.ns_saved = false;
444 #endif /*CFG_WITH_VFP*/
445 }
446 
447 #ifdef ARM32
448 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
449 		      uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
450 		      uint32_t a6, uint32_t a7, void *pc)
451 {
452 	thread->regs.pc = (uint32_t)pc;
453 
454 	/*
455 	 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
456 	 * Asynchronous abort and unmasked native interrupts.
457 	 */
458 	thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
459 	thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A |
460 			(THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT);
461 	/* Enable thumb mode if it's a thumb instruction */
462 	if (thread->regs.pc & 1)
463 		thread->regs.cpsr |= CPSR_T;
464 	/* Reinitialize stack pointer */
465 	thread->regs.svc_sp = thread->stack_va_end;
466 
467 	/*
468 	 * Copy arguments into context. This will make the
469 	 * arguments appear in r0-r7 when thread is started.
470 	 */
471 	thread->regs.r0 = a0;
472 	thread->regs.r1 = a1;
473 	thread->regs.r2 = a2;
474 	thread->regs.r3 = a3;
475 	thread->regs.r4 = a4;
476 	thread->regs.r5 = a5;
477 	thread->regs.r6 = a6;
478 	thread->regs.r7 = a7;
479 }
480 #endif /*ARM32*/
481 
482 #ifdef ARM64
483 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
484 		      uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
485 		      uint32_t a6, uint32_t a7, void *pc)
486 {
487 	thread->regs.pc = (uint64_t)pc;
488 
489 	/*
490 	 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
491 	 * Asynchronous abort and unmasked native interrupts.
492 	 */
493 	thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
494 				THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT);
495 	/* Reinitialize stack pointer */
496 	thread->regs.sp = thread->stack_va_end;
497 
498 	/*
499 	 * Copy arguments into context. This will make the
500 	 * arguments appear in x0-x7 when thread is started.
501 	 */
502 	thread->regs.x[0] = a0;
503 	thread->regs.x[1] = a1;
504 	thread->regs.x[2] = a2;
505 	thread->regs.x[3] = a3;
506 	thread->regs.x[4] = a4;
507 	thread->regs.x[5] = a5;
508 	thread->regs.x[6] = a6;
509 	thread->regs.x[7] = a7;
510 
511 	/* Set up frame pointer as per the Aarch64 AAPCS */
512 	thread->regs.x[29] = 0;
513 }
514 #endif /*ARM64*/
515 
516 void thread_init_boot_thread(void)
517 {
518 	struct thread_core_local *l = thread_get_core_local();
519 
520 	thread_init_threads();
521 
522 	l->curr_thread = 0;
523 	threads[0].state = THREAD_STATE_ACTIVE;
524 }
525 
526 void __nostackcheck thread_clr_boot_thread(void)
527 {
528 	struct thread_core_local *l = thread_get_core_local();
529 
530 	assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS);
531 	assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE);
532 	threads[l->curr_thread].state = THREAD_STATE_FREE;
533 	l->curr_thread = THREAD_ID_INVALID;
534 }
535 
536 static void __thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2,
537 				   uint32_t a3, uint32_t a4, uint32_t a5,
538 				   uint32_t a6, uint32_t a7,
539 				   void *pc)
540 {
541 	size_t n;
542 	struct thread_core_local *l = thread_get_core_local();
543 	bool found_thread = false;
544 
545 	assert(l->curr_thread == THREAD_ID_INVALID);
546 
547 	thread_lock_global();
548 
549 	for (n = 0; n < CFG_NUM_THREADS; n++) {
550 		if (threads[n].state == THREAD_STATE_FREE) {
551 			threads[n].state = THREAD_STATE_ACTIVE;
552 			found_thread = true;
553 			break;
554 		}
555 	}
556 
557 	thread_unlock_global();
558 
559 	if (!found_thread)
560 		return;
561 
562 	l->curr_thread = n;
563 
564 	threads[n].flags = 0;
565 	init_regs(threads + n, a0, a1, a2, a3, a4, a5, a6, a7, pc);
566 
567 	thread_lazy_save_ns_vfp();
568 
569 	l->flags &= ~THREAD_CLF_TMP;
570 	thread_resume(&threads[n].regs);
571 	/*NOTREACHED*/
572 	panic();
573 }
574 
575 void thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
576 			  uint32_t a4, uint32_t a5)
577 {
578 	__thread_alloc_and_run(a0, a1, a2, a3, a4, a5, 0, 0,
579 			       thread_std_smc_entry);
580 }
581 
582 #ifdef CFG_SECURE_PARTITION
583 void thread_sp_alloc_and_run(struct thread_smc_args *args __maybe_unused)
584 {
585 	__thread_alloc_and_run(args->a0, args->a1, args->a2, args->a3, args->a4,
586 			       args->a5, args->a6, args->a7,
587 			       spmc_sp_thread_entry);
588 }
589 #endif
590 
591 #ifdef ARM32
592 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
593 			  uint32_t a1, uint32_t a2, uint32_t a3)
594 {
595 	/*
596 	 * Update returned values from RPC, values will appear in
597 	 * r0-r3 when thread is resumed.
598 	 */
599 	regs->r0 = a0;
600 	regs->r1 = a1;
601 	regs->r2 = a2;
602 	regs->r3 = a3;
603 }
604 #endif /*ARM32*/
605 
606 #ifdef ARM64
607 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
608 			  uint32_t a1, uint32_t a2, uint32_t a3)
609 {
610 	/*
611 	 * Update returned values from RPC, values will appear in
612 	 * x0-x3 when thread is resumed.
613 	 */
614 	regs->x[0] = a0;
615 	regs->x[1] = a1;
616 	regs->x[2] = a2;
617 	regs->x[3] = a3;
618 }
619 #endif /*ARM64*/
620 
621 #ifdef ARM32
622 static bool is_from_user(uint32_t cpsr)
623 {
624 	return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
625 }
626 #endif
627 
628 #ifdef ARM64
629 static bool is_from_user(uint32_t cpsr)
630 {
631 	if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
632 		return true;
633 	if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
634 	     SPSR_64_MODE_EL0)
635 		return true;
636 	return false;
637 }
638 #endif
639 
640 #ifdef CFG_SYSCALL_FTRACE
641 static void __noprof ftrace_suspend(void)
642 {
643 	struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
644 
645 	if (s && s->fbuf)
646 		s->fbuf->syscall_trace_suspended = true;
647 }
648 
649 static void __noprof ftrace_resume(void)
650 {
651 	struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
652 
653 	if (s && s->fbuf)
654 		s->fbuf->syscall_trace_suspended = false;
655 }
656 #else
657 static void __noprof ftrace_suspend(void)
658 {
659 }
660 
661 static void __noprof ftrace_resume(void)
662 {
663 }
664 #endif
665 
666 static bool is_user_mode(struct thread_ctx_regs *regs)
667 {
668 	return is_from_user((uint32_t)regs->cpsr);
669 }
670 
671 void thread_resume_from_rpc(uint32_t thread_id, uint32_t a0, uint32_t a1,
672 			    uint32_t a2, uint32_t a3)
673 {
674 	size_t n = thread_id;
675 	struct thread_core_local *l = thread_get_core_local();
676 	bool found_thread = false;
677 
678 	assert(l->curr_thread == THREAD_ID_INVALID);
679 
680 	thread_lock_global();
681 
682 	if (n < CFG_NUM_THREADS && threads[n].state == THREAD_STATE_SUSPENDED) {
683 		threads[n].state = THREAD_STATE_ACTIVE;
684 		found_thread = true;
685 	}
686 
687 	thread_unlock_global();
688 
689 	if (!found_thread)
690 		return;
691 
692 	l->curr_thread = n;
693 
694 	if (threads[n].have_user_map) {
695 		core_mmu_set_user_map(&threads[n].user_map);
696 		if (threads[n].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
697 			tee_ta_ftrace_update_times_resume();
698 	}
699 
700 	if (is_user_mode(&threads[n].regs))
701 		tee_ta_update_session_utime_resume();
702 
703 	/*
704 	 * Return from RPC to request service of a foreign interrupt must not
705 	 * get parameters from non-secure world.
706 	 */
707 	if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
708 		copy_a0_to_a3(&threads[n].regs, a0, a1, a2, a3);
709 		threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
710 	}
711 
712 	thread_lazy_save_ns_vfp();
713 
714 	if (threads[n].have_user_map)
715 		ftrace_resume();
716 
717 	l->flags &= ~THREAD_CLF_TMP;
718 	thread_resume(&threads[n].regs);
719 	/*NOTREACHED*/
720 	panic();
721 }
722 
723 void __nostackcheck *thread_get_tmp_sp(void)
724 {
725 	struct thread_core_local *l = thread_get_core_local();
726 
727 	/*
728 	 * Called from assembly when switching to the temporary stack, so flags
729 	 * need updating
730 	 */
731 	l->flags |= THREAD_CLF_TMP;
732 
733 	return (void *)l->tmp_stack_va_end;
734 }
735 
736 #ifdef ARM64
737 vaddr_t thread_get_saved_thread_sp(void)
738 {
739 	struct thread_core_local *l = thread_get_core_local();
740 	int ct = l->curr_thread;
741 
742 	assert(ct != THREAD_ID_INVALID);
743 	return threads[ct].kern_sp;
744 }
745 #endif /*ARM64*/
746 
747 vaddr_t thread_stack_start(void)
748 {
749 	struct thread_ctx *thr;
750 	int ct = thread_get_id_may_fail();
751 
752 	if (ct == THREAD_ID_INVALID)
753 		return 0;
754 
755 	thr = threads + ct;
756 	return thr->stack_va_end - STACK_THREAD_SIZE;
757 }
758 
759 size_t thread_stack_size(void)
760 {
761 	return STACK_THREAD_SIZE;
762 }
763 
764 bool get_stack_limits(vaddr_t *start, vaddr_t *end, bool hard)
765 {
766 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
767 	unsigned int pos = get_core_pos();
768 	struct thread_core_local *l = get_core_local(pos);
769 	int ct = l->curr_thread;
770 	bool ret = false;
771 
772 	if (l->flags & THREAD_CLF_TMP) {
773 		if (hard)
774 			*start = GET_STACK_TOP_HARD(stack_tmp, pos);
775 		else
776 			*start = GET_STACK_TOP_SOFT(stack_tmp, pos);
777 		*end = GET_STACK_BOTTOM(stack_tmp, pos);
778 		ret = true;
779 	} else if (l->flags & THREAD_CLF_ABORT) {
780 		if (hard)
781 			*start = GET_STACK_TOP_HARD(stack_abt, pos);
782 		else
783 			*start = GET_STACK_TOP_SOFT(stack_abt, pos);
784 		*end = GET_STACK_BOTTOM(stack_abt, pos);
785 		ret = true;
786 	} else if (!l->flags) {
787 		if (ct < 0 || ct >= CFG_NUM_THREADS)
788 			goto out;
789 
790 		*end = threads[ct].stack_va_end;
791 		*start = *end - STACK_THREAD_SIZE;
792 		if (!hard)
793 			*start += STACK_CHECK_EXTRA;
794 		ret = true;
795 	}
796 out:
797 	thread_unmask_exceptions(exceptions);
798 	return ret;
799 }
800 
801 bool thread_is_from_abort_mode(void)
802 {
803 	struct thread_core_local *l = thread_get_core_local();
804 
805 	return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT;
806 }
807 
808 #ifdef ARM32
809 bool thread_is_in_normal_mode(void)
810 {
811 	return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC;
812 }
813 #endif
814 
815 #ifdef ARM64
816 bool thread_is_in_normal_mode(void)
817 {
818 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
819 	struct thread_core_local *l = thread_get_core_local();
820 	bool ret;
821 
822 	/*
823 	 * If any bit in l->flags is set aside from THREAD_CLF_TMP we're
824 	 * handling some exception.
825 	 */
826 	ret = (l->curr_thread != THREAD_ID_INVALID) &&
827 	      !(l->flags & ~THREAD_CLF_TMP);
828 	thread_unmask_exceptions(exceptions);
829 
830 	return ret;
831 }
832 #endif
833 
834 void thread_state_free(void)
835 {
836 	struct thread_core_local *l = thread_get_core_local();
837 	int ct = l->curr_thread;
838 
839 	assert(ct != THREAD_ID_INVALID);
840 
841 	thread_lazy_restore_ns_vfp();
842 	tee_pager_release_phys(
843 		(void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE),
844 		STACK_THREAD_SIZE);
845 
846 	thread_lock_global();
847 
848 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
849 	threads[ct].state = THREAD_STATE_FREE;
850 	threads[ct].flags = 0;
851 	l->curr_thread = THREAD_ID_INVALID;
852 
853 	if (IS_ENABLED(CFG_VIRTUALIZATION))
854 		virt_unset_guest();
855 	thread_unlock_global();
856 }
857 
858 #ifdef CFG_WITH_PAGER
859 static void release_unused_kernel_stack(struct thread_ctx *thr,
860 					uint32_t cpsr __maybe_unused)
861 {
862 #ifdef ARM64
863 	/*
864 	 * If we're from user mode then thr->regs.sp is the saved user
865 	 * stack pointer and thr->kern_sp holds the last kernel stack
866 	 * pointer. But if we're from kernel mode then thr->kern_sp isn't
867 	 * up to date so we need to read from thr->regs.sp instead.
868 	 */
869 	vaddr_t sp = is_from_user(cpsr) ?  thr->kern_sp : thr->regs.sp;
870 #else
871 	vaddr_t sp = thr->regs.svc_sp;
872 #endif
873 	vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE;
874 	size_t len = sp - base;
875 
876 	tee_pager_release_phys((void *)base, len);
877 }
878 #else
879 static void release_unused_kernel_stack(struct thread_ctx *thr __unused,
880 					uint32_t cpsr __unused)
881 {
882 }
883 #endif
884 
885 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
886 {
887 	struct thread_core_local *l = thread_get_core_local();
888 	int ct = l->curr_thread;
889 
890 	assert(ct != THREAD_ID_INVALID);
891 
892 	if (core_mmu_user_mapping_is_active())
893 		ftrace_suspend();
894 
895 	thread_check_canaries();
896 
897 	release_unused_kernel_stack(threads + ct, cpsr);
898 
899 	if (is_from_user(cpsr)) {
900 		thread_user_save_vfp();
901 		tee_ta_update_session_utime_suspend();
902 		tee_ta_gprof_sample_pc(pc);
903 	}
904 	thread_lazy_restore_ns_vfp();
905 
906 	thread_lock_global();
907 
908 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
909 	threads[ct].flags |= flags;
910 	threads[ct].regs.cpsr = cpsr;
911 	threads[ct].regs.pc = pc;
912 	threads[ct].state = THREAD_STATE_SUSPENDED;
913 
914 	threads[ct].have_user_map = core_mmu_user_mapping_is_active();
915 	if (threads[ct].have_user_map) {
916 		if (threads[ct].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
917 			tee_ta_ftrace_update_times_suspend();
918 		core_mmu_get_user_map(&threads[ct].user_map);
919 		core_mmu_set_user_map(NULL);
920 	}
921 
922 	l->curr_thread = THREAD_ID_INVALID;
923 
924 	if (IS_ENABLED(CFG_VIRTUALIZATION))
925 		virt_unset_guest();
926 
927 	thread_unlock_global();
928 
929 	return ct;
930 }
931 
932 #ifdef ARM32
933 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
934 {
935 	l->tmp_stack_va_end = sp;
936 	thread_set_irq_sp(sp);
937 	thread_set_fiq_sp(sp);
938 }
939 
940 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp)
941 {
942 	l->abt_stack_va_end = sp;
943 	thread_set_abt_sp((vaddr_t)l);
944 	thread_set_und_sp((vaddr_t)l);
945 }
946 #endif /*ARM32*/
947 
948 #ifdef ARM64
949 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
950 {
951 	/*
952 	 * We're already using the tmp stack when this function is called
953 	 * so there's no need to assign it to any stack pointer. However,
954 	 * we'll need to restore it at different times so store it here.
955 	 */
956 	l->tmp_stack_va_end = sp;
957 }
958 
959 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp)
960 {
961 	l->abt_stack_va_end = sp;
962 }
963 #endif /*ARM64*/
964 
965 bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
966 {
967 	if (thread_id >= CFG_NUM_THREADS)
968 		return false;
969 	threads[thread_id].stack_va_end = sp;
970 	return true;
971 }
972 
973 short int thread_get_id_may_fail(void)
974 {
975 	/*
976 	 * thread_get_core_local() requires foreign interrupts to be disabled
977 	 */
978 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
979 	struct thread_core_local *l = thread_get_core_local();
980 	short int ct = l->curr_thread;
981 
982 	thread_unmask_exceptions(exceptions);
983 	return ct;
984 }
985 
986 short int thread_get_id(void)
987 {
988 	short int ct = thread_get_id_may_fail();
989 
990 	/* Thread ID has to fit in a short int */
991 	COMPILE_TIME_ASSERT(CFG_NUM_THREADS <= SHRT_MAX);
992 	assert(ct >= 0 && ct < CFG_NUM_THREADS);
993 	return ct;
994 }
995 
996 #ifdef CFG_WITH_PAGER
997 static void init_thread_stacks(void)
998 {
999 	size_t n = 0;
1000 
1001 	/*
1002 	 * Allocate virtual memory for thread stacks.
1003 	 */
1004 	for (n = 0; n < CFG_NUM_THREADS; n++) {
1005 		tee_mm_entry_t *mm = NULL;
1006 		vaddr_t sp = 0;
1007 		size_t num_pages = 0;
1008 		struct fobj *fobj = NULL;
1009 
1010 		/* Find vmem for thread stack and its protection gap */
1011 		mm = tee_mm_alloc(&tee_mm_vcore,
1012 				  SMALL_PAGE_SIZE + STACK_THREAD_SIZE);
1013 		assert(mm);
1014 
1015 		/* Claim eventual physical page */
1016 		tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm),
1017 				    true);
1018 
1019 		num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE - 1;
1020 		fobj = fobj_locked_paged_alloc(num_pages);
1021 
1022 		/* Add the region to the pager */
1023 		tee_pager_add_core_region(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE,
1024 					  PAGED_REGION_TYPE_LOCK, fobj);
1025 		fobj_put(fobj);
1026 
1027 		/* init effective stack */
1028 		sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm);
1029 		asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp);
1030 		if (!thread_init_stack(n, sp))
1031 			panic("init stack failed");
1032 	}
1033 }
1034 #else
1035 static void init_thread_stacks(void)
1036 {
1037 	size_t n;
1038 
1039 	/* Assign the thread stacks */
1040 	for (n = 0; n < CFG_NUM_THREADS; n++) {
1041 		if (!thread_init_stack(n, GET_STACK_BOTTOM(stack_thread, n)))
1042 			panic("thread_init_stack failed");
1043 	}
1044 }
1045 #endif /*CFG_WITH_PAGER*/
1046 
1047 static void init_user_kcode(void)
1048 {
1049 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
1050 	vaddr_t v = (vaddr_t)thread_excp_vect;
1051 	vaddr_t ve = (vaddr_t)thread_excp_vect_end;
1052 
1053 	thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE);
1054 	ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE);
1055 	thread_user_kcode_size = ve - thread_user_kcode_va;
1056 
1057 	core_mmu_get_user_va_range(&v, NULL);
1058 	thread_user_kcode_offset = thread_user_kcode_va - v;
1059 
1060 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
1061 	/*
1062 	 * When transitioning to EL0 subtract SP with this much to point to
1063 	 * this special kdata page instead. SP is restored by add this much
1064 	 * while transitioning back to EL1.
1065 	 */
1066 	v += thread_user_kcode_size;
1067 	thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v;
1068 #endif
1069 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/
1070 }
1071 
1072 void thread_init_threads(void)
1073 {
1074 	size_t n = 0;
1075 
1076 	init_thread_stacks();
1077 	print_stack_limits();
1078 	pgt_init();
1079 
1080 	mutex_lockdep_init();
1081 
1082 	for (n = 0; n < CFG_NUM_THREADS; n++) {
1083 		TAILQ_INIT(&threads[n].tsd.sess_stack);
1084 		SLIST_INIT(&threads[n].tsd.pgt_cache);
1085 	}
1086 }
1087 
1088 void __nostackcheck thread_init_thread_core_local(void)
1089 {
1090 	size_t n = 0;
1091 	struct thread_core_local *tcl = thread_core_local;
1092 
1093 	for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) {
1094 		tcl[n].curr_thread = THREAD_ID_INVALID;
1095 		tcl[n].flags = THREAD_CLF_TMP;
1096 	}
1097 
1098 	tcl[0].tmp_stack_va_end = GET_STACK_BOTTOM(stack_tmp, 0);
1099 }
1100 
1101 void thread_init_primary(void)
1102 {
1103 	/* Initialize canaries around the stacks */
1104 	init_canaries();
1105 
1106 	init_user_kcode();
1107 }
1108 
1109 static void init_sec_mon_stack(size_t pos __maybe_unused)
1110 {
1111 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
1112 	/* Initialize secure monitor */
1113 	sm_init(GET_STACK_BOTTOM(stack_tmp, pos));
1114 #endif
1115 }
1116 
1117 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr)
1118 {
1119 	return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK;
1120 }
1121 
1122 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr)
1123 {
1124 	return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) &
1125 	       MIDR_PRIMARY_PART_NUM_MASK;
1126 }
1127 
1128 #ifdef ARM64
1129 static bool probe_workaround_available(void)
1130 {
1131 	int32_t r;
1132 
1133 	r = thread_smc(SMCCC_VERSION, 0, 0, 0);
1134 	if (r < 0)
1135 		return false;
1136 	if (r < 0x10001)	/* compare with version 1.1 */
1137 		return false;
1138 
1139 	/* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */
1140 	r = thread_smc(SMCCC_ARCH_FEATURES, SMCCC_ARCH_WORKAROUND_1, 0, 0);
1141 	return r >= 0;
1142 }
1143 
1144 static vaddr_t __maybe_unused select_vector(vaddr_t a)
1145 {
1146 	if (probe_workaround_available()) {
1147 		DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available",
1148 		     SMCCC_ARCH_WORKAROUND_1);
1149 		DMSG("SMC Workaround for CVE-2017-5715 used");
1150 		return a;
1151 	}
1152 
1153 	DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable",
1154 	     SMCCC_ARCH_WORKAROUND_1);
1155 	DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)");
1156 	return (vaddr_t)thread_excp_vect;
1157 }
1158 #else
1159 static vaddr_t __maybe_unused select_vector(vaddr_t a)
1160 {
1161 	return a;
1162 }
1163 #endif
1164 
1165 static vaddr_t get_excp_vect(void)
1166 {
1167 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
1168 	uint32_t midr = read_midr();
1169 
1170 	if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM)
1171 		return (vaddr_t)thread_excp_vect;
1172 
1173 	switch (get_midr_primary_part(midr)) {
1174 #ifdef ARM32
1175 	case CORTEX_A8_PART_NUM:
1176 	case CORTEX_A9_PART_NUM:
1177 	case CORTEX_A17_PART_NUM:
1178 #endif
1179 	case CORTEX_A57_PART_NUM:
1180 	case CORTEX_A72_PART_NUM:
1181 	case CORTEX_A73_PART_NUM:
1182 	case CORTEX_A75_PART_NUM:
1183 		return select_vector((vaddr_t)thread_excp_vect_workaround);
1184 #ifdef ARM32
1185 	case CORTEX_A15_PART_NUM:
1186 		return select_vector((vaddr_t)thread_excp_vect_workaround_a15);
1187 #endif
1188 	default:
1189 		return (vaddr_t)thread_excp_vect;
1190 	}
1191 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/
1192 
1193 	return (vaddr_t)thread_excp_vect;
1194 }
1195 
1196 void thread_init_per_cpu(void)
1197 {
1198 	size_t pos = get_core_pos();
1199 	struct thread_core_local *l = thread_get_core_local();
1200 
1201 	init_sec_mon_stack(pos);
1202 
1203 	set_tmp_stack(l, GET_STACK_BOTTOM(stack_tmp, pos) - STACK_TMP_OFFS);
1204 	set_abt_stack(l, GET_STACK_BOTTOM(stack_abt, pos));
1205 
1206 	thread_init_vbar(get_excp_vect());
1207 
1208 #ifdef CFG_FTRACE_SUPPORT
1209 	/*
1210 	 * Enable accesses to frequency register and physical counter
1211 	 * register in EL0/PL0 required for timestamping during
1212 	 * function tracing.
1213 	 */
1214 	write_cntkctl(read_cntkctl() | CNTKCTL_PL0PCTEN);
1215 #endif
1216 }
1217 
1218 struct thread_specific_data *thread_get_tsd(void)
1219 {
1220 	return &threads[thread_get_id()].tsd;
1221 }
1222 
1223 struct thread_ctx_regs * __nostackcheck thread_get_ctx_regs(void)
1224 {
1225 	struct thread_core_local *l = thread_get_core_local();
1226 
1227 	assert(l->curr_thread != THREAD_ID_INVALID);
1228 	return &threads[l->curr_thread].regs;
1229 }
1230 
1231 void thread_set_foreign_intr(bool enable)
1232 {
1233 	/* thread_get_core_local() requires foreign interrupts to be disabled */
1234 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
1235 	struct thread_core_local *l;
1236 
1237 	l = thread_get_core_local();
1238 
1239 	assert(l->curr_thread != THREAD_ID_INVALID);
1240 
1241 	if (enable) {
1242 		threads[l->curr_thread].flags |=
1243 					THREAD_FLAGS_FOREIGN_INTR_ENABLE;
1244 		thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR);
1245 	} else {
1246 		/*
1247 		 * No need to disable foreign interrupts here since they're
1248 		 * already disabled above.
1249 		 */
1250 		threads[l->curr_thread].flags &=
1251 					~THREAD_FLAGS_FOREIGN_INTR_ENABLE;
1252 	}
1253 }
1254 
1255 void thread_restore_foreign_intr(void)
1256 {
1257 	/* thread_get_core_local() requires foreign interrupts to be disabled */
1258 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
1259 	struct thread_core_local *l;
1260 
1261 	l = thread_get_core_local();
1262 
1263 	assert(l->curr_thread != THREAD_ID_INVALID);
1264 
1265 	if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE)
1266 		thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR);
1267 }
1268 
1269 #ifdef CFG_WITH_VFP
1270 uint32_t thread_kernel_enable_vfp(void)
1271 {
1272 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
1273 	struct thread_ctx *thr = threads + thread_get_id();
1274 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
1275 
1276 	assert(!vfp_is_enabled());
1277 
1278 	if (!thr->vfp_state.ns_saved) {
1279 		vfp_lazy_save_state_final(&thr->vfp_state.ns,
1280 					  true /*force_save*/);
1281 		thr->vfp_state.ns_saved = true;
1282 	} else if (thr->vfp_state.sec_lazy_saved &&
1283 		   !thr->vfp_state.sec_saved) {
1284 		/*
1285 		 * This happens when we're handling an abort while the
1286 		 * thread was using the VFP state.
1287 		 */
1288 		vfp_lazy_save_state_final(&thr->vfp_state.sec,
1289 					  false /*!force_save*/);
1290 		thr->vfp_state.sec_saved = true;
1291 	} else if (tuv && tuv->lazy_saved && !tuv->saved) {
1292 		/*
1293 		 * This can happen either during syscall or abort
1294 		 * processing (while processing a syscall).
1295 		 */
1296 		vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
1297 		tuv->saved = true;
1298 	}
1299 
1300 	vfp_enable();
1301 	return exceptions;
1302 }
1303 
1304 void thread_kernel_disable_vfp(uint32_t state)
1305 {
1306 	uint32_t exceptions;
1307 
1308 	assert(vfp_is_enabled());
1309 
1310 	vfp_disable();
1311 	exceptions = thread_get_exceptions();
1312 	assert(exceptions & THREAD_EXCP_FOREIGN_INTR);
1313 	exceptions &= ~THREAD_EXCP_FOREIGN_INTR;
1314 	exceptions |= state & THREAD_EXCP_FOREIGN_INTR;
1315 	thread_set_exceptions(exceptions);
1316 }
1317 
1318 void thread_kernel_save_vfp(void)
1319 {
1320 	struct thread_ctx *thr = threads + thread_get_id();
1321 
1322 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
1323 	if (vfp_is_enabled()) {
1324 		vfp_lazy_save_state_init(&thr->vfp_state.sec);
1325 		thr->vfp_state.sec_lazy_saved = true;
1326 	}
1327 }
1328 
1329 void thread_kernel_restore_vfp(void)
1330 {
1331 	struct thread_ctx *thr = threads + thread_get_id();
1332 
1333 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
1334 	assert(!vfp_is_enabled());
1335 	if (thr->vfp_state.sec_lazy_saved) {
1336 		vfp_lazy_restore_state(&thr->vfp_state.sec,
1337 				       thr->vfp_state.sec_saved);
1338 		thr->vfp_state.sec_saved = false;
1339 		thr->vfp_state.sec_lazy_saved = false;
1340 	}
1341 }
1342 
1343 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
1344 {
1345 	struct thread_ctx *thr = threads + thread_get_id();
1346 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
1347 
1348 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
1349 	assert(!vfp_is_enabled());
1350 
1351 	if (!thr->vfp_state.ns_saved) {
1352 		vfp_lazy_save_state_final(&thr->vfp_state.ns,
1353 					  true /*force_save*/);
1354 		thr->vfp_state.ns_saved = true;
1355 	} else if (tuv && uvfp != tuv) {
1356 		if (tuv->lazy_saved && !tuv->saved) {
1357 			vfp_lazy_save_state_final(&tuv->vfp,
1358 						  false /*!force_save*/);
1359 			tuv->saved = true;
1360 		}
1361 	}
1362 
1363 	if (uvfp->lazy_saved)
1364 		vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
1365 	uvfp->lazy_saved = false;
1366 	uvfp->saved = false;
1367 
1368 	thr->vfp_state.uvfp = uvfp;
1369 	vfp_enable();
1370 }
1371 
1372 void thread_user_save_vfp(void)
1373 {
1374 	struct thread_ctx *thr = threads + thread_get_id();
1375 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
1376 
1377 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
1378 	if (!vfp_is_enabled())
1379 		return;
1380 
1381 	assert(tuv && !tuv->lazy_saved && !tuv->saved);
1382 	vfp_lazy_save_state_init(&tuv->vfp);
1383 	tuv->lazy_saved = true;
1384 }
1385 
1386 void thread_user_clear_vfp(struct user_mode_ctx *uctx)
1387 {
1388 	struct thread_user_vfp_state *uvfp = &uctx->vfp;
1389 	struct thread_ctx *thr = threads + thread_get_id();
1390 
1391 	if (uvfp == thr->vfp_state.uvfp)
1392 		thr->vfp_state.uvfp = NULL;
1393 	uvfp->lazy_saved = false;
1394 	uvfp->saved = false;
1395 }
1396 #endif /*CFG_WITH_VFP*/
1397 
1398 #ifdef ARM32
1399 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1400 {
1401 	uint32_t s;
1402 
1403 	if (!is_32bit)
1404 		return false;
1405 
1406 	s = read_cpsr();
1407 	s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
1408 	s |= CPSR_MODE_USR;
1409 	if (entry_func & 1)
1410 		s |= CPSR_T;
1411 	*spsr = s;
1412 	return true;
1413 }
1414 #endif
1415 
1416 #ifdef ARM64
1417 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1418 {
1419 	uint32_t s;
1420 
1421 	if (is_32bit) {
1422 		s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
1423 		s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
1424 		s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
1425 	} else {
1426 		s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
1427 	}
1428 
1429 	*spsr = s;
1430 	return true;
1431 }
1432 #endif
1433 
1434 static void set_ctx_regs(struct thread_ctx_regs *regs, unsigned long a0,
1435 			 unsigned long a1, unsigned long a2, unsigned long a3,
1436 			 unsigned long user_sp, unsigned long entry_func,
1437 			 uint32_t spsr,
1438 			 struct thread_pauth_keys *keys __maybe_unused)
1439 {
1440 	/*
1441 	 * First clear all registers to avoid leaking information from
1442 	 * other TAs or even the Core itself.
1443 	 */
1444 	*regs = (struct thread_ctx_regs){ };
1445 #ifdef ARM32
1446 	regs->r0 = a0;
1447 	regs->r1 = a1;
1448 	regs->r2 = a2;
1449 	regs->r3 = a3;
1450 	regs->usr_sp = user_sp;
1451 	regs->pc = entry_func;
1452 	regs->cpsr = spsr;
1453 #endif
1454 #ifdef ARM64
1455 	regs->x[0] = a0;
1456 	regs->x[1] = a1;
1457 	regs->x[2] = a2;
1458 	regs->x[3] = a3;
1459 	regs->sp = user_sp;
1460 	regs->pc = entry_func;
1461 	regs->cpsr = spsr;
1462 	regs->x[13] = user_sp;	/* Used when running TA in Aarch32 */
1463 	regs->sp = user_sp;	/* Used when running TA in Aarch64 */
1464 #ifdef CFG_TA_PAUTH
1465 	assert(keys);
1466 	regs->apiakey_hi = keys->hi;
1467 	regs->apiakey_lo = keys->lo;
1468 #endif
1469 	/* Set frame pointer (user stack can't be unwound past this point) */
1470 	regs->x[29] = 0;
1471 #endif
1472 }
1473 
1474 static struct thread_pauth_keys *thread_get_pauth_keys(void)
1475 {
1476 #if defined(CFG_TA_PAUTH)
1477 	struct ts_session *s = ts_get_current_session();
1478 	/* Only user TA's support the PAUTH keys */
1479 	struct user_ta_ctx *utc = to_user_ta_ctx(s->ctx);
1480 
1481 	return &utc->uctx.keys;
1482 #else
1483 	return NULL;
1484 #endif
1485 }
1486 
1487 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
1488 		unsigned long a2, unsigned long a3, unsigned long user_sp,
1489 		unsigned long entry_func, bool is_32bit,
1490 		uint32_t *exit_status0, uint32_t *exit_status1)
1491 {
1492 	uint32_t spsr = 0;
1493 	uint32_t exceptions = 0;
1494 	uint32_t rc = 0;
1495 	struct thread_ctx_regs *regs = NULL;
1496 	struct thread_pauth_keys *keys = NULL;
1497 
1498 	tee_ta_update_session_utime_resume();
1499 
1500 	keys = thread_get_pauth_keys();
1501 
1502 	/* Derive SPSR from current CPSR/PSTATE readout. */
1503 	if (!get_spsr(is_32bit, entry_func, &spsr)) {
1504 		*exit_status0 = 1; /* panic */
1505 		*exit_status1 = 0xbadbadba;
1506 		return 0;
1507 	}
1508 
1509 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1510 	/*
1511 	 * We're using the per thread location of saved context registers
1512 	 * for temporary storage. Now that exceptions are masked they will
1513 	 * not be used for any thing else until they are eventually
1514 	 * unmasked when user mode has been entered.
1515 	 */
1516 	regs = thread_get_ctx_regs();
1517 	set_ctx_regs(regs, a0, a1, a2, a3, user_sp, entry_func, spsr, keys);
1518 	rc = __thread_enter_user_mode(regs, exit_status0, exit_status1);
1519 	thread_unmask_exceptions(exceptions);
1520 	return rc;
1521 }
1522 
1523 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
1524 void thread_get_user_kcode(struct mobj **mobj, size_t *offset,
1525 			   vaddr_t *va, size_t *sz)
1526 {
1527 	core_mmu_get_user_va_range(va, NULL);
1528 	*mobj = mobj_tee_ram_rx;
1529 	*sz = thread_user_kcode_size;
1530 	*offset = thread_user_kcode_va - (vaddr_t)mobj_get_va(*mobj, 0, *sz);
1531 }
1532 #endif
1533 
1534 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
1535 	defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
1536 void thread_get_user_kdata(struct mobj **mobj, size_t *offset,
1537 			   vaddr_t *va, size_t *sz)
1538 {
1539 	vaddr_t v;
1540 
1541 	core_mmu_get_user_va_range(&v, NULL);
1542 	*va = v + thread_user_kcode_size;
1543 	*mobj = mobj_tee_ram_rw;
1544 	*sz = sizeof(thread_user_kdata_page);
1545 	*offset = (vaddr_t)thread_user_kdata_page -
1546 		  (vaddr_t)mobj_get_va(*mobj, 0, *sz);
1547 }
1548 #endif
1549 
1550 static void setup_unwind_user_mode(struct thread_svc_regs *regs)
1551 {
1552 #ifdef ARM32
1553 	regs->lr = (uintptr_t)thread_unwind_user_mode;
1554 	regs->spsr = read_cpsr();
1555 #endif
1556 #ifdef ARM64
1557 	regs->elr = (uintptr_t)thread_unwind_user_mode;
1558 	regs->spsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 0);
1559 	regs->spsr |= read_daif();
1560 	/*
1561 	 * Regs is the value of stack pointer before calling the SVC
1562 	 * handler.  By the addition matches for the reserved space at the
1563 	 * beginning of el0_sync_svc(). This prepares the stack when
1564 	 * returning to thread_unwind_user_mode instead of a normal
1565 	 * exception return.
1566 	 */
1567 	regs->sp_el0 = (uint64_t)(regs + 1);
1568 #endif
1569 }
1570 
1571 static void gprof_set_status(struct ts_session *s __maybe_unused,
1572 			     enum ts_gprof_status status __maybe_unused)
1573 {
1574 #ifdef CFG_TA_GPROF_SUPPORT
1575 	if (s->ctx->ops->gprof_set_status)
1576 		s->ctx->ops->gprof_set_status(status);
1577 #endif
1578 }
1579 
1580 /*
1581  * Note: this function is weak just to make it possible to exclude it from
1582  * the unpaged area.
1583  */
1584 void __weak thread_svc_handler(struct thread_svc_regs *regs)
1585 {
1586 	struct ts_session *sess = NULL;
1587 	uint32_t state = 0;
1588 
1589 	/* Enable native interrupts */
1590 	state = thread_get_exceptions();
1591 	thread_unmask_exceptions(state & ~THREAD_EXCP_NATIVE_INTR);
1592 
1593 	thread_user_save_vfp();
1594 
1595 	sess = ts_get_current_session();
1596 	/*
1597 	 * User mode service has just entered kernel mode, suspend gprof
1598 	 * collection until we're about to switch back again.
1599 	 */
1600 	gprof_set_status(sess, TS_GPROF_SUSPEND);
1601 
1602 	/* Restore foreign interrupts which are disabled on exception entry */
1603 	thread_restore_foreign_intr();
1604 
1605 	assert(sess && sess->handle_svc);
1606 	if (sess->handle_svc(regs)) {
1607 		/* We're about to switch back to user mode */
1608 		gprof_set_status(sess, TS_GPROF_RESUME);
1609 	} else {
1610 		/* We're returning from __thread_enter_user_mode() */
1611 		setup_unwind_user_mode(regs);
1612 	}
1613 }
1614 
1615 static struct mobj *alloc_shm(enum thread_shm_type shm_type, size_t size)
1616 {
1617 	switch (shm_type) {
1618 	case THREAD_SHM_TYPE_APPLICATION:
1619 		return thread_rpc_alloc_payload(size);
1620 	case THREAD_SHM_TYPE_KERNEL_PRIVATE:
1621 		return thread_rpc_alloc_kernel_payload(size);
1622 	case THREAD_SHM_TYPE_GLOBAL:
1623 		return thread_rpc_alloc_global_payload(size);
1624 	default:
1625 		return NULL;
1626 	}
1627 }
1628 
1629 static void clear_shm_cache_entry(struct thread_shm_cache_entry *ce)
1630 {
1631 	if (ce->mobj) {
1632 		switch (ce->type) {
1633 		case THREAD_SHM_TYPE_APPLICATION:
1634 			thread_rpc_free_payload(ce->mobj);
1635 			break;
1636 		case THREAD_SHM_TYPE_KERNEL_PRIVATE:
1637 			thread_rpc_free_kernel_payload(ce->mobj);
1638 			break;
1639 		case THREAD_SHM_TYPE_GLOBAL:
1640 			thread_rpc_free_global_payload(ce->mobj);
1641 			break;
1642 		default:
1643 			assert(0); /* "can't happen" */
1644 			break;
1645 		}
1646 	}
1647 	ce->mobj = NULL;
1648 	ce->size = 0;
1649 }
1650 
1651 static struct thread_shm_cache_entry *
1652 get_shm_cache_entry(enum thread_shm_cache_user user)
1653 {
1654 	struct thread_shm_cache *cache = &threads[thread_get_id()].shm_cache;
1655 	struct thread_shm_cache_entry *ce = NULL;
1656 
1657 	SLIST_FOREACH(ce, cache, link)
1658 		if (ce->user == user)
1659 			return ce;
1660 
1661 	ce = calloc(1, sizeof(*ce));
1662 	if (ce) {
1663 		ce->user = user;
1664 		SLIST_INSERT_HEAD(cache, ce, link);
1665 	}
1666 
1667 	return ce;
1668 }
1669 
1670 void *thread_rpc_shm_cache_alloc(enum thread_shm_cache_user user,
1671 				 enum thread_shm_type shm_type,
1672 				 size_t size, struct mobj **mobj)
1673 {
1674 	struct thread_shm_cache_entry *ce = NULL;
1675 	size_t sz = size;
1676 	paddr_t p = 0;
1677 	void *va = NULL;
1678 
1679 	if (!size)
1680 		return NULL;
1681 
1682 	ce = get_shm_cache_entry(user);
1683 	if (!ce)
1684 		return NULL;
1685 
1686 	/*
1687 	 * Always allocate in page chunks as normal world allocates payload
1688 	 * memory as complete pages.
1689 	 */
1690 	sz = ROUNDUP(size, SMALL_PAGE_SIZE);
1691 
1692 	if (ce->type != shm_type || sz > ce->size) {
1693 		clear_shm_cache_entry(ce);
1694 
1695 		ce->mobj = alloc_shm(shm_type, sz);
1696 		if (!ce->mobj)
1697 			return NULL;
1698 
1699 		if (mobj_get_pa(ce->mobj, 0, 0, &p))
1700 			goto err;
1701 
1702 		if (!IS_ALIGNED_WITH_TYPE(p, uint64_t))
1703 			goto err;
1704 
1705 		va = mobj_get_va(ce->mobj, 0, sz);
1706 		if (!va)
1707 			goto err;
1708 
1709 		ce->size = sz;
1710 		ce->type = shm_type;
1711 	} else {
1712 		va = mobj_get_va(ce->mobj, 0, sz);
1713 		if (!va)
1714 			goto err;
1715 	}
1716 	*mobj = ce->mobj;
1717 
1718 	return va;
1719 err:
1720 	clear_shm_cache_entry(ce);
1721 	return NULL;
1722 }
1723 
1724 void thread_rpc_shm_cache_clear(struct thread_shm_cache *cache)
1725 {
1726 	while (true) {
1727 		struct thread_shm_cache_entry *ce = SLIST_FIRST(cache);
1728 
1729 		if (!ce)
1730 			break;
1731 		SLIST_REMOVE_HEAD(cache, link);
1732 		clear_shm_cache_entry(ce);
1733 		free(ce);
1734 	}
1735 }
1736 
1737 #ifdef CFG_WITH_ARM_TRUSTED_FW
1738 /*
1739  * These five functions are __weak to allow platforms to override them if
1740  * needed.
1741  */
1742 unsigned long __weak thread_cpu_off_handler(unsigned long a0 __unused,
1743 					    unsigned long a1 __unused)
1744 {
1745 	return 0;
1746 }
1747 DECLARE_KEEP_PAGER(thread_cpu_off_handler);
1748 
1749 unsigned long __weak thread_cpu_suspend_handler(unsigned long a0 __unused,
1750 						unsigned long a1 __unused)
1751 {
1752 	return 0;
1753 }
1754 DECLARE_KEEP_PAGER(thread_cpu_suspend_handler);
1755 
1756 unsigned long __weak thread_cpu_resume_handler(unsigned long a0 __unused,
1757 					       unsigned long a1 __unused)
1758 {
1759 	return 0;
1760 }
1761 DECLARE_KEEP_PAGER(thread_cpu_resume_handler);
1762 
1763 unsigned long __weak thread_system_off_handler(unsigned long a0 __unused,
1764 					       unsigned long a1 __unused)
1765 {
1766 	return 0;
1767 }
1768 DECLARE_KEEP_PAGER(thread_system_off_handler);
1769 
1770 unsigned long __weak thread_system_reset_handler(unsigned long a0 __unused,
1771 						 unsigned long a1 __unused)
1772 {
1773 	return 0;
1774 }
1775 DECLARE_KEEP_PAGER(thread_system_reset_handler);
1776 #endif /*CFG_WITH_ARM_TRUSTED_FW*/
1777