1 /* 2 * Copyright (c) 2016, Linaro Limited 3 * Copyright (c) 2014, STMicroelectronics International N.V. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * 2. Redistributions in binary form must reproduce the above copyright notice, 13 * this list of conditions and the following disclaimer in the documentation 14 * and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <platform_config.h> 30 31 #include <arm.h> 32 #include <assert.h> 33 #include <keep.h> 34 #include <kernel/misc.h> 35 #include <kernel/panic.h> 36 #include <kernel/spinlock.h> 37 #include <kernel/tee_ta_manager.h> 38 #include <kernel/thread_defs.h> 39 #include <kernel/thread.h> 40 #include <mm/core_memprot.h> 41 #include <mm/tee_mm.h> 42 #include <mm/tee_mmu.h> 43 #include <mm/tee_pager.h> 44 #include <optee_msg.h> 45 #include <sm/optee_smc.h> 46 #include <sm/sm.h> 47 #include <tee/tee_fs_rpc.h> 48 #include <tee/tee_cryp_utl.h> 49 #include <trace.h> 50 #include <util.h> 51 52 #include "thread_private.h" 53 54 #ifdef CFG_WITH_ARM_TRUSTED_FW 55 #define STACK_TMP_OFFS 0 56 #else 57 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE 58 #endif 59 60 61 #ifdef ARM32 62 #ifdef CFG_CORE_SANITIZE_KADDRESS 63 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) 64 #else 65 #define STACK_TMP_SIZE (1024 + STACK_TMP_OFFS) 66 #endif 67 #define STACK_THREAD_SIZE 8192 68 69 #if TRACE_LEVEL > 0 70 #ifdef CFG_CORE_SANITIZE_KADDRESS 71 #define STACK_ABT_SIZE 3072 72 #else 73 #define STACK_ABT_SIZE 2048 74 #endif 75 #else 76 #define STACK_ABT_SIZE 1024 77 #endif 78 79 #endif /*ARM32*/ 80 81 #ifdef ARM64 82 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 83 #define STACK_THREAD_SIZE 8192 84 85 #if TRACE_LEVEL > 0 86 #define STACK_ABT_SIZE 3072 87 #else 88 #define STACK_ABT_SIZE 1024 89 #endif 90 #endif /*ARM64*/ 91 92 struct thread_ctx threads[CFG_NUM_THREADS]; 93 94 static struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE]; 95 96 #ifdef CFG_WITH_STACK_CANARIES 97 #ifdef ARM32 98 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 99 #endif 100 #ifdef ARM64 101 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 102 #endif 103 #define START_CANARY_VALUE 0xdededede 104 #define END_CANARY_VALUE 0xabababab 105 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 106 #define GET_END_CANARY(name, stack_num) \ 107 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 108 #else 109 #define STACK_CANARY_SIZE 0 110 #endif 111 112 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 113 linkage uint32_t name[num_stacks] \ 114 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 115 sizeof(uint32_t)] \ 116 __attribute__((section(".nozi_stack"), \ 117 aligned(STACK_ALIGNMENT))) 118 119 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 120 121 #define GET_STACK(stack) \ 122 ((vaddr_t)(stack) + STACK_SIZE(stack)) 123 124 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, /* global */); 125 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 126 #ifndef CFG_WITH_PAGER 127 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 128 #endif 129 130 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]); 131 const uint32_t stack_tmp_offset = STACK_TMP_OFFS + STACK_CANARY_SIZE / 2; 132 133 /* 134 * These stack setup info are required by secondary boot cores before they 135 * each locally enable the pager (the mmu). Hence kept in pager sections. 136 */ 137 KEEP_PAGER(stack_tmp); 138 KEEP_PAGER(stack_tmp_stride); 139 KEEP_PAGER(stack_tmp_offset); 140 141 thread_smc_handler_t thread_std_smc_handler_ptr; 142 static thread_smc_handler_t thread_fast_smc_handler_ptr; 143 thread_nintr_handler_t thread_nintr_handler_ptr; 144 thread_pm_handler_t thread_cpu_on_handler_ptr; 145 thread_pm_handler_t thread_cpu_off_handler_ptr; 146 thread_pm_handler_t thread_cpu_suspend_handler_ptr; 147 thread_pm_handler_t thread_cpu_resume_handler_ptr; 148 thread_pm_handler_t thread_system_off_handler_ptr; 149 thread_pm_handler_t thread_system_reset_handler_ptr; 150 151 152 static unsigned int thread_global_lock = SPINLOCK_UNLOCK; 153 static bool thread_prealloc_rpc_cache; 154 155 static void init_canaries(void) 156 { 157 #ifdef CFG_WITH_STACK_CANARIES 158 size_t n; 159 #define INIT_CANARY(name) \ 160 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 161 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 162 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 163 \ 164 *start_canary = START_CANARY_VALUE; \ 165 *end_canary = END_CANARY_VALUE; \ 166 DMSG("#Stack canaries for %s[%zu] with top at %p\n", \ 167 #name, n, (void *)(end_canary - 1)); \ 168 DMSG("watch *%p\n", (void *)end_canary); \ 169 } 170 171 INIT_CANARY(stack_tmp); 172 INIT_CANARY(stack_abt); 173 #ifndef CFG_WITH_PAGER 174 INIT_CANARY(stack_thread); 175 #endif 176 #endif/*CFG_WITH_STACK_CANARIES*/ 177 } 178 179 #define CANARY_DIED(stack, loc, n) \ 180 do { \ 181 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 182 panic(); \ 183 } while (0) 184 185 void thread_check_canaries(void) 186 { 187 #ifdef CFG_WITH_STACK_CANARIES 188 size_t n; 189 190 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 191 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 192 CANARY_DIED(stack_tmp, start, n); 193 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 194 CANARY_DIED(stack_tmp, end, n); 195 } 196 197 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 198 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 199 CANARY_DIED(stack_abt, start, n); 200 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 201 CANARY_DIED(stack_abt, end, n); 202 203 } 204 #ifndef CFG_WITH_PAGER 205 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 206 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 207 CANARY_DIED(stack_thread, start, n); 208 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 209 CANARY_DIED(stack_thread, end, n); 210 } 211 #endif 212 #endif/*CFG_WITH_STACK_CANARIES*/ 213 } 214 215 static void lock_global(void) 216 { 217 cpu_spin_lock(&thread_global_lock); 218 } 219 220 static void unlock_global(void) 221 { 222 cpu_spin_unlock(&thread_global_lock); 223 } 224 225 #ifdef ARM32 226 uint32_t thread_get_exceptions(void) 227 { 228 uint32_t cpsr = read_cpsr(); 229 230 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 231 } 232 233 void thread_set_exceptions(uint32_t exceptions) 234 { 235 uint32_t cpsr = read_cpsr(); 236 237 /* Foreign interrupts must not be unmasked while holding a spinlock */ 238 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 239 assert_have_no_spinlock(); 240 241 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 242 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 243 write_cpsr(cpsr); 244 } 245 #endif /*ARM32*/ 246 247 #ifdef ARM64 248 uint32_t thread_get_exceptions(void) 249 { 250 uint32_t daif = read_daif(); 251 252 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 253 } 254 255 void thread_set_exceptions(uint32_t exceptions) 256 { 257 uint32_t daif = read_daif(); 258 259 /* Foreign interrupts must not be unmasked while holding a spinlock */ 260 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 261 assert_have_no_spinlock(); 262 263 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 264 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 265 write_daif(daif); 266 } 267 #endif /*ARM64*/ 268 269 uint32_t thread_mask_exceptions(uint32_t exceptions) 270 { 271 uint32_t state = thread_get_exceptions(); 272 273 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 274 return state; 275 } 276 277 void thread_unmask_exceptions(uint32_t state) 278 { 279 thread_set_exceptions(state & THREAD_EXCP_ALL); 280 } 281 282 283 struct thread_core_local *thread_get_core_local(void) 284 { 285 uint32_t cpu_id = get_core_pos(); 286 287 /* 288 * Foreign interrupts must be disabled before playing with core_local 289 * since we otherwise may be rescheduled to a different core in the 290 * middle of this function. 291 */ 292 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 293 294 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 295 return &thread_core_local[cpu_id]; 296 } 297 298 static void thread_lazy_save_ns_vfp(void) 299 { 300 #ifdef CFG_WITH_VFP 301 struct thread_ctx *thr = threads + thread_get_id(); 302 303 thr->vfp_state.ns_saved = false; 304 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW) 305 /* 306 * ARM TF saves and restores CPACR_EL1, so we must assume NS world 307 * uses VFP and always preserve the register file when secure world 308 * is about to use it 309 */ 310 thr->vfp_state.ns.force_save = true; 311 #endif 312 vfp_lazy_save_state_init(&thr->vfp_state.ns); 313 #endif /*CFG_WITH_VFP*/ 314 } 315 316 static void thread_lazy_restore_ns_vfp(void) 317 { 318 #ifdef CFG_WITH_VFP 319 struct thread_ctx *thr = threads + thread_get_id(); 320 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 321 322 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 323 324 if (tuv && tuv->lazy_saved && !tuv->saved) { 325 vfp_lazy_save_state_final(&tuv->vfp); 326 tuv->saved = true; 327 } 328 329 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 330 thr->vfp_state.ns_saved = false; 331 #endif /*CFG_WITH_VFP*/ 332 } 333 334 #ifdef ARM32 335 static void init_regs(struct thread_ctx *thread, 336 struct thread_smc_args *args) 337 { 338 thread->regs.pc = (uint32_t)thread_std_smc_entry; 339 340 /* 341 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 342 * Asynchronous abort and unmasked native interrupts. 343 */ 344 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 345 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A | 346 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT); 347 /* Enable thumb mode if it's a thumb instruction */ 348 if (thread->regs.pc & 1) 349 thread->regs.cpsr |= CPSR_T; 350 /* Reinitialize stack pointer */ 351 thread->regs.svc_sp = thread->stack_va_end; 352 353 /* 354 * Copy arguments into context. This will make the 355 * arguments appear in r0-r7 when thread is started. 356 */ 357 thread->regs.r0 = args->a0; 358 thread->regs.r1 = args->a1; 359 thread->regs.r2 = args->a2; 360 thread->regs.r3 = args->a3; 361 thread->regs.r4 = args->a4; 362 thread->regs.r5 = args->a5; 363 thread->regs.r6 = args->a6; 364 thread->regs.r7 = args->a7; 365 } 366 #endif /*ARM32*/ 367 368 #ifdef ARM64 369 static void init_regs(struct thread_ctx *thread, 370 struct thread_smc_args *args) 371 { 372 thread->regs.pc = (uint64_t)thread_std_smc_entry; 373 374 /* 375 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 376 * Asynchronous abort and unmasked native interrupts. 377 */ 378 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 379 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT); 380 /* Reinitialize stack pointer */ 381 thread->regs.sp = thread->stack_va_end; 382 383 /* 384 * Copy arguments into context. This will make the 385 * arguments appear in x0-x7 when thread is started. 386 */ 387 thread->regs.x[0] = args->a0; 388 thread->regs.x[1] = args->a1; 389 thread->regs.x[2] = args->a2; 390 thread->regs.x[3] = args->a3; 391 thread->regs.x[4] = args->a4; 392 thread->regs.x[5] = args->a5; 393 thread->regs.x[6] = args->a6; 394 thread->regs.x[7] = args->a7; 395 396 /* Set up frame pointer as per the Aarch64 AAPCS */ 397 thread->regs.x[29] = 0; 398 } 399 #endif /*ARM64*/ 400 401 void thread_init_boot_thread(void) 402 { 403 struct thread_core_local *l = thread_get_core_local(); 404 size_t n; 405 406 for (n = 0; n < CFG_NUM_THREADS; n++) { 407 TAILQ_INIT(&threads[n].mutexes); 408 TAILQ_INIT(&threads[n].tsd.sess_stack); 409 #ifdef CFG_SMALL_PAGE_USER_TA 410 SLIST_INIT(&threads[n].tsd.pgt_cache); 411 #endif 412 } 413 414 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 415 thread_core_local[n].curr_thread = -1; 416 417 l->curr_thread = 0; 418 threads[0].state = THREAD_STATE_ACTIVE; 419 } 420 421 void thread_clr_boot_thread(void) 422 { 423 struct thread_core_local *l = thread_get_core_local(); 424 425 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 426 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 427 assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes)); 428 threads[l->curr_thread].state = THREAD_STATE_FREE; 429 l->curr_thread = -1; 430 } 431 432 static void thread_alloc_and_run(struct thread_smc_args *args) 433 { 434 size_t n; 435 struct thread_core_local *l = thread_get_core_local(); 436 bool found_thread = false; 437 438 assert(l->curr_thread == -1); 439 440 lock_global(); 441 442 for (n = 0; n < CFG_NUM_THREADS; n++) { 443 if (threads[n].state == THREAD_STATE_FREE) { 444 threads[n].state = THREAD_STATE_ACTIVE; 445 found_thread = true; 446 break; 447 } 448 } 449 450 unlock_global(); 451 452 if (!found_thread) { 453 args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT; 454 return; 455 } 456 457 l->curr_thread = n; 458 459 threads[n].flags = 0; 460 init_regs(threads + n, args); 461 462 /* Save Hypervisor Client ID */ 463 threads[n].hyp_clnt_id = args->a7; 464 465 thread_lazy_save_ns_vfp(); 466 thread_resume(&threads[n].regs); 467 } 468 469 #ifdef ARM32 470 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 471 struct thread_smc_args *args) 472 { 473 /* 474 * Update returned values from RPC, values will appear in 475 * r0-r3 when thread is resumed. 476 */ 477 regs->r0 = args->a0; 478 regs->r1 = args->a1; 479 regs->r2 = args->a2; 480 regs->r3 = args->a3; 481 regs->r4 = args->a4; 482 regs->r5 = args->a5; 483 } 484 #endif /*ARM32*/ 485 486 #ifdef ARM64 487 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 488 struct thread_smc_args *args) 489 { 490 /* 491 * Update returned values from RPC, values will appear in 492 * x0-x3 when thread is resumed. 493 */ 494 regs->x[0] = args->a0; 495 regs->x[1] = args->a1; 496 regs->x[2] = args->a2; 497 regs->x[3] = args->a3; 498 regs->x[4] = args->a4; 499 regs->x[5] = args->a5; 500 } 501 #endif /*ARM64*/ 502 503 #ifdef ARM32 504 static bool is_from_user(uint32_t cpsr) 505 { 506 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 507 } 508 #endif 509 510 #ifdef ARM64 511 static bool is_from_user(uint32_t cpsr) 512 { 513 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 514 return true; 515 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 516 SPSR_64_MODE_EL0) 517 return true; 518 return false; 519 } 520 #endif 521 522 static bool is_user_mode(struct thread_ctx_regs *regs) 523 { 524 return is_from_user((uint32_t)regs->cpsr); 525 } 526 527 static void thread_resume_from_rpc(struct thread_smc_args *args) 528 { 529 size_t n = args->a3; /* thread id */ 530 struct thread_core_local *l = thread_get_core_local(); 531 uint32_t rv = 0; 532 533 assert(l->curr_thread == -1); 534 535 lock_global(); 536 537 if (n < CFG_NUM_THREADS && 538 threads[n].state == THREAD_STATE_SUSPENDED && 539 args->a7 == threads[n].hyp_clnt_id) 540 threads[n].state = THREAD_STATE_ACTIVE; 541 else 542 rv = OPTEE_SMC_RETURN_ERESUME; 543 544 unlock_global(); 545 546 if (rv) { 547 args->a0 = rv; 548 return; 549 } 550 551 l->curr_thread = n; 552 553 if (is_user_mode(&threads[n].regs)) 554 tee_ta_update_session_utime_resume(); 555 556 if (threads[n].have_user_map) 557 core_mmu_set_user_map(&threads[n].user_map); 558 559 /* 560 * Return from RPC to request service of a foreign interrupt must not 561 * get parameters from non-secure world. 562 */ 563 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 564 copy_a0_to_a5(&threads[n].regs, args); 565 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 566 } 567 568 thread_lazy_save_ns_vfp(); 569 thread_resume(&threads[n].regs); 570 } 571 572 void thread_handle_fast_smc(struct thread_smc_args *args) 573 { 574 thread_check_canaries(); 575 thread_fast_smc_handler_ptr(args); 576 /* Fast handlers must not unmask any exceptions */ 577 assert(thread_get_exceptions() == THREAD_EXCP_ALL); 578 } 579 580 void thread_handle_std_smc(struct thread_smc_args *args) 581 { 582 thread_check_canaries(); 583 584 if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC) 585 thread_resume_from_rpc(args); 586 else 587 thread_alloc_and_run(args); 588 } 589 590 /* Helper routine for the assembly function thread_std_smc_entry() */ 591 void __thread_std_smc_entry(struct thread_smc_args *args) 592 { 593 struct thread_ctx *thr = threads + thread_get_id(); 594 595 if (!thr->rpc_arg) { 596 paddr_t parg; 597 uint64_t carg; 598 void *arg; 599 600 thread_rpc_alloc_arg( 601 OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS), 602 &parg, &carg); 603 if (!parg || !ALIGNMENT_IS_OK(parg, struct optee_msg_arg) || 604 !(arg = phys_to_virt(parg, MEM_AREA_NSEC_SHM))) { 605 thread_rpc_free_arg(carg); 606 args->a0 = OPTEE_SMC_RETURN_ENOMEM; 607 return; 608 } 609 610 thr->rpc_arg = arg; 611 thr->rpc_carg = carg; 612 } 613 614 thread_std_smc_handler_ptr(args); 615 616 tee_fs_rpc_cache_clear(&thr->tsd); 617 if (!thread_prealloc_rpc_cache) { 618 thread_rpc_free_arg(thr->rpc_carg); 619 thr->rpc_carg = 0; 620 thr->rpc_arg = 0; 621 } 622 } 623 624 void *thread_get_tmp_sp(void) 625 { 626 struct thread_core_local *l = thread_get_core_local(); 627 628 return (void *)l->tmp_stack_va_end; 629 } 630 631 #ifdef ARM64 632 vaddr_t thread_get_saved_thread_sp(void) 633 { 634 struct thread_core_local *l = thread_get_core_local(); 635 int ct = l->curr_thread; 636 637 assert(ct != -1); 638 return threads[ct].kern_sp; 639 } 640 #endif /*ARM64*/ 641 642 bool thread_addr_is_in_stack(vaddr_t va) 643 { 644 struct thread_ctx *thr; 645 int ct = thread_get_id_may_fail(); 646 647 if (ct == -1) 648 return false; 649 650 thr = threads + ct; 651 return va < thr->stack_va_end && 652 va >= (thr->stack_va_end - STACK_THREAD_SIZE); 653 } 654 655 void thread_state_free(void) 656 { 657 struct thread_core_local *l = thread_get_core_local(); 658 int ct = l->curr_thread; 659 660 assert(ct != -1); 661 assert(TAILQ_EMPTY(&threads[ct].mutexes)); 662 663 thread_lazy_restore_ns_vfp(); 664 tee_pager_release_phys( 665 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 666 STACK_THREAD_SIZE); 667 668 lock_global(); 669 670 assert(threads[ct].state == THREAD_STATE_ACTIVE); 671 threads[ct].state = THREAD_STATE_FREE; 672 threads[ct].flags = 0; 673 l->curr_thread = -1; 674 675 unlock_global(); 676 } 677 678 #ifdef CFG_WITH_PAGER 679 static void release_unused_kernel_stack(struct thread_ctx *thr) 680 { 681 vaddr_t sp = thr->regs.svc_sp; 682 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 683 size_t len = sp - base; 684 685 tee_pager_release_phys((void *)base, len); 686 } 687 #else 688 static void release_unused_kernel_stack(struct thread_ctx *thr __unused) 689 { 690 } 691 #endif 692 693 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 694 { 695 struct thread_core_local *l = thread_get_core_local(); 696 int ct = l->curr_thread; 697 698 assert(ct != -1); 699 700 thread_check_canaries(); 701 702 release_unused_kernel_stack(threads + ct); 703 704 if (is_from_user(cpsr)) { 705 thread_user_save_vfp(); 706 tee_ta_update_session_utime_suspend(); 707 tee_ta_gprof_sample_pc(pc); 708 } 709 thread_lazy_restore_ns_vfp(); 710 711 lock_global(); 712 713 assert(threads[ct].state == THREAD_STATE_ACTIVE); 714 threads[ct].flags |= flags; 715 threads[ct].regs.cpsr = cpsr; 716 threads[ct].regs.pc = pc; 717 threads[ct].state = THREAD_STATE_SUSPENDED; 718 719 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 720 if (threads[ct].have_user_map) { 721 core_mmu_get_user_map(&threads[ct].user_map); 722 core_mmu_set_user_map(NULL); 723 } 724 725 l->curr_thread = -1; 726 727 unlock_global(); 728 729 return ct; 730 } 731 732 #ifdef ARM32 733 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 734 { 735 l->tmp_stack_va_end = sp; 736 thread_set_irq_sp(sp); 737 thread_set_fiq_sp(sp); 738 } 739 740 static void set_abt_stack(struct thread_core_local *l __unused, vaddr_t sp) 741 { 742 thread_set_abt_sp(sp); 743 } 744 #endif /*ARM32*/ 745 746 #ifdef ARM64 747 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 748 { 749 /* 750 * We're already using the tmp stack when this function is called 751 * so there's no need to assign it to any stack pointer. However, 752 * we'll need to restore it at different times so store it here. 753 */ 754 l->tmp_stack_va_end = sp; 755 } 756 757 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 758 { 759 l->abt_stack_va_end = sp; 760 } 761 #endif /*ARM64*/ 762 763 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 764 { 765 if (thread_id >= CFG_NUM_THREADS) 766 return false; 767 threads[thread_id].stack_va_end = sp; 768 return true; 769 } 770 771 int thread_get_id_may_fail(void) 772 { 773 /* 774 * thread_get_core_local() requires foreign interrupts to be disabled 775 */ 776 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 777 struct thread_core_local *l = thread_get_core_local(); 778 int ct = l->curr_thread; 779 780 thread_unmask_exceptions(exceptions); 781 return ct; 782 } 783 784 int thread_get_id(void) 785 { 786 int ct = thread_get_id_may_fail(); 787 788 assert(ct >= 0 && ct < CFG_NUM_THREADS); 789 return ct; 790 } 791 792 static void init_handlers(const struct thread_handlers *handlers) 793 { 794 thread_std_smc_handler_ptr = handlers->std_smc; 795 thread_fast_smc_handler_ptr = handlers->fast_smc; 796 thread_nintr_handler_ptr = handlers->nintr; 797 thread_cpu_on_handler_ptr = handlers->cpu_on; 798 thread_cpu_off_handler_ptr = handlers->cpu_off; 799 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 800 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 801 thread_system_off_handler_ptr = handlers->system_off; 802 thread_system_reset_handler_ptr = handlers->system_reset; 803 } 804 805 #ifdef CFG_WITH_PAGER 806 static void init_thread_stacks(void) 807 { 808 size_t n; 809 810 /* 811 * Allocate virtual memory for thread stacks. 812 */ 813 for (n = 0; n < CFG_NUM_THREADS; n++) { 814 tee_mm_entry_t *mm; 815 vaddr_t sp; 816 817 /* Find vmem for thread stack and its protection gap */ 818 mm = tee_mm_alloc(&tee_mm_vcore, 819 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 820 assert(mm); 821 822 /* Claim eventual physical page */ 823 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 824 true); 825 826 /* Add the area to the pager */ 827 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 828 tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE, 829 TEE_MATTR_PRW | TEE_MATTR_LOCKED, 830 NULL, NULL); 831 832 /* init effective stack */ 833 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 834 if (!thread_init_stack(n, sp)) 835 panic("init stack failed"); 836 } 837 } 838 #else 839 static void init_thread_stacks(void) 840 { 841 size_t n; 842 843 /* Assign the thread stacks */ 844 for (n = 0; n < CFG_NUM_THREADS; n++) { 845 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 846 panic("thread_init_stack failed"); 847 } 848 } 849 #endif /*CFG_WITH_PAGER*/ 850 851 void thread_init_primary(const struct thread_handlers *handlers) 852 { 853 init_handlers(handlers); 854 855 /* Initialize canaries around the stacks */ 856 init_canaries(); 857 858 init_thread_stacks(); 859 pgt_init(); 860 } 861 862 static void init_sec_mon(size_t pos __maybe_unused) 863 { 864 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 865 /* Initialize secure monitor */ 866 sm_init(GET_STACK(stack_tmp[pos])); 867 #endif 868 } 869 870 void thread_init_per_cpu(void) 871 { 872 size_t pos = get_core_pos(); 873 struct thread_core_local *l = thread_get_core_local(); 874 875 init_sec_mon(pos); 876 877 set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); 878 set_abt_stack(l, GET_STACK(stack_abt[pos])); 879 880 thread_init_vbar(); 881 } 882 883 struct thread_specific_data *thread_get_tsd(void) 884 { 885 return &threads[thread_get_id()].tsd; 886 } 887 888 struct thread_ctx_regs *thread_get_ctx_regs(void) 889 { 890 struct thread_core_local *l = thread_get_core_local(); 891 892 assert(l->curr_thread != -1); 893 return &threads[l->curr_thread].regs; 894 } 895 896 void thread_set_foreign_intr(bool enable) 897 { 898 /* thread_get_core_local() requires foreign interrupts to be disabled */ 899 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 900 struct thread_core_local *l; 901 902 l = thread_get_core_local(); 903 904 assert(l->curr_thread != -1); 905 906 if (enable) { 907 threads[l->curr_thread].flags |= 908 THREAD_FLAGS_FOREIGN_INTR_ENABLE; 909 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 910 } else { 911 /* 912 * No need to disable foreign interrupts here since they're 913 * already disabled above. 914 */ 915 threads[l->curr_thread].flags &= 916 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; 917 } 918 } 919 920 void thread_restore_foreign_intr(void) 921 { 922 /* thread_get_core_local() requires foreign interrupts to be disabled */ 923 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 924 struct thread_core_local *l; 925 926 l = thread_get_core_local(); 927 928 assert(l->curr_thread != -1); 929 930 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) 931 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 932 } 933 934 #ifdef CFG_WITH_VFP 935 uint32_t thread_kernel_enable_vfp(void) 936 { 937 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 938 struct thread_ctx *thr = threads + thread_get_id(); 939 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 940 941 assert(!vfp_is_enabled()); 942 943 if (!thr->vfp_state.ns_saved) { 944 vfp_lazy_save_state_final(&thr->vfp_state.ns); 945 thr->vfp_state.ns_saved = true; 946 } else if (thr->vfp_state.sec_lazy_saved && 947 !thr->vfp_state.sec_saved) { 948 /* 949 * This happens when we're handling an abort while the 950 * thread was using the VFP state. 951 */ 952 vfp_lazy_save_state_final(&thr->vfp_state.sec); 953 thr->vfp_state.sec_saved = true; 954 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 955 /* 956 * This can happen either during syscall or abort 957 * processing (while processing a syscall). 958 */ 959 vfp_lazy_save_state_final(&tuv->vfp); 960 tuv->saved = true; 961 } 962 963 vfp_enable(); 964 return exceptions; 965 } 966 967 void thread_kernel_disable_vfp(uint32_t state) 968 { 969 uint32_t exceptions; 970 971 assert(vfp_is_enabled()); 972 973 vfp_disable(); 974 exceptions = thread_get_exceptions(); 975 assert(exceptions & THREAD_EXCP_FOREIGN_INTR); 976 exceptions &= ~THREAD_EXCP_FOREIGN_INTR; 977 exceptions |= state & THREAD_EXCP_FOREIGN_INTR; 978 thread_set_exceptions(exceptions); 979 } 980 981 void thread_kernel_save_vfp(void) 982 { 983 struct thread_ctx *thr = threads + thread_get_id(); 984 985 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 986 if (vfp_is_enabled()) { 987 vfp_lazy_save_state_init(&thr->vfp_state.sec); 988 thr->vfp_state.sec_lazy_saved = true; 989 } 990 } 991 992 void thread_kernel_restore_vfp(void) 993 { 994 struct thread_ctx *thr = threads + thread_get_id(); 995 996 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 997 assert(!vfp_is_enabled()); 998 if (thr->vfp_state.sec_lazy_saved) { 999 vfp_lazy_restore_state(&thr->vfp_state.sec, 1000 thr->vfp_state.sec_saved); 1001 thr->vfp_state.sec_saved = false; 1002 thr->vfp_state.sec_lazy_saved = false; 1003 } 1004 } 1005 1006 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 1007 { 1008 struct thread_ctx *thr = threads + thread_get_id(); 1009 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1010 1011 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1012 assert(!vfp_is_enabled()); 1013 1014 if (!thr->vfp_state.ns_saved) { 1015 vfp_lazy_save_state_final(&thr->vfp_state.ns); 1016 thr->vfp_state.ns_saved = true; 1017 } else if (tuv && uvfp != tuv) { 1018 if (tuv->lazy_saved && !tuv->saved) { 1019 vfp_lazy_save_state_final(&tuv->vfp); 1020 tuv->saved = true; 1021 } 1022 } 1023 1024 if (uvfp->lazy_saved) 1025 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 1026 uvfp->lazy_saved = false; 1027 uvfp->saved = false; 1028 1029 thr->vfp_state.uvfp = uvfp; 1030 vfp_enable(); 1031 } 1032 1033 void thread_user_save_vfp(void) 1034 { 1035 struct thread_ctx *thr = threads + thread_get_id(); 1036 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1037 1038 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1039 if (!vfp_is_enabled()) 1040 return; 1041 1042 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1043 vfp_lazy_save_state_init(&tuv->vfp); 1044 tuv->lazy_saved = true; 1045 } 1046 1047 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1048 { 1049 struct thread_ctx *thr = threads + thread_get_id(); 1050 1051 if (uvfp == thr->vfp_state.uvfp) 1052 thr->vfp_state.uvfp = NULL; 1053 uvfp->lazy_saved = false; 1054 uvfp->saved = false; 1055 } 1056 #endif /*CFG_WITH_VFP*/ 1057 1058 #ifdef ARM32 1059 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1060 { 1061 uint32_t s; 1062 1063 if (!is_32bit) 1064 return false; 1065 1066 s = read_spsr(); 1067 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1068 s |= CPSR_MODE_USR; 1069 if (entry_func & 1) 1070 s |= CPSR_T; 1071 *spsr = s; 1072 return true; 1073 } 1074 #endif 1075 1076 #ifdef ARM64 1077 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1078 { 1079 uint32_t s; 1080 1081 if (is_32bit) { 1082 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1083 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1084 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1085 } else { 1086 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1087 } 1088 1089 *spsr = s; 1090 return true; 1091 } 1092 #endif 1093 1094 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1095 unsigned long a2, unsigned long a3, unsigned long user_sp, 1096 unsigned long entry_func, bool is_32bit, 1097 uint32_t *exit_status0, uint32_t *exit_status1) 1098 { 1099 uint32_t spsr; 1100 1101 tee_ta_update_session_utime_resume(); 1102 1103 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1104 *exit_status0 = 1; /* panic */ 1105 *exit_status1 = 0xbadbadba; 1106 return 0; 1107 } 1108 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1109 spsr, exit_status0, exit_status1); 1110 } 1111 1112 void thread_add_mutex(struct mutex *m) 1113 { 1114 struct thread_core_local *l = thread_get_core_local(); 1115 int ct = l->curr_thread; 1116 1117 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1118 assert(m->owner_id == -1); 1119 m->owner_id = ct; 1120 TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link); 1121 } 1122 1123 void thread_rem_mutex(struct mutex *m) 1124 { 1125 struct thread_core_local *l = thread_get_core_local(); 1126 int ct = l->curr_thread; 1127 1128 assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE); 1129 assert(m->owner_id == ct); 1130 m->owner_id = -1; 1131 TAILQ_REMOVE(&threads[ct].mutexes, m, link); 1132 } 1133 1134 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie) 1135 { 1136 bool rv; 1137 size_t n; 1138 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1139 1140 lock_global(); 1141 1142 for (n = 0; n < CFG_NUM_THREADS; n++) { 1143 if (threads[n].state != THREAD_STATE_FREE) { 1144 rv = false; 1145 goto out; 1146 } 1147 } 1148 1149 rv = true; 1150 for (n = 0; n < CFG_NUM_THREADS; n++) { 1151 if (threads[n].rpc_arg) { 1152 *cookie = threads[n].rpc_carg; 1153 threads[n].rpc_carg = 0; 1154 threads[n].rpc_arg = NULL; 1155 goto out; 1156 } 1157 } 1158 1159 *cookie = 0; 1160 thread_prealloc_rpc_cache = false; 1161 out: 1162 unlock_global(); 1163 thread_unmask_exceptions(exceptions); 1164 return rv; 1165 } 1166 1167 bool thread_enable_prealloc_rpc_cache(void) 1168 { 1169 bool rv; 1170 size_t n; 1171 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1172 1173 lock_global(); 1174 1175 for (n = 0; n < CFG_NUM_THREADS; n++) { 1176 if (threads[n].state != THREAD_STATE_FREE) { 1177 rv = false; 1178 goto out; 1179 } 1180 } 1181 1182 rv = true; 1183 thread_prealloc_rpc_cache = true; 1184 out: 1185 unlock_global(); 1186 thread_unmask_exceptions(exceptions); 1187 return rv; 1188 } 1189 1190 static uint32_t rpc_cmd_nolock(uint32_t cmd, size_t num_params, 1191 struct optee_msg_param *params) 1192 { 1193 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1194 struct thread_ctx *thr = threads + thread_get_id(); 1195 struct optee_msg_arg *arg = thr->rpc_arg; 1196 uint64_t carg = thr->rpc_carg; 1197 const size_t params_size = sizeof(struct optee_msg_param) * num_params; 1198 size_t n; 1199 1200 assert(arg && carg && num_params <= THREAD_RPC_MAX_NUM_PARAMS); 1201 1202 plat_prng_add_jitter_entropy(); 1203 1204 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS)); 1205 arg->cmd = cmd; 1206 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1207 arg->num_params = num_params; 1208 memcpy(OPTEE_MSG_GET_PARAMS(arg), params, params_size); 1209 1210 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1211 thread_rpc(rpc_args); 1212 for (n = 0; n < num_params; n++) { 1213 switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) { 1214 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 1215 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 1216 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 1217 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 1218 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 1219 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 1220 memcpy(params + n, OPTEE_MSG_GET_PARAMS(arg) + n, 1221 sizeof(struct optee_msg_param)); 1222 break; 1223 default: 1224 break; 1225 } 1226 } 1227 return arg->ret; 1228 } 1229 1230 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1231 struct optee_msg_param *params) 1232 { 1233 uint32_t ret; 1234 1235 ret = rpc_cmd_nolock(cmd, num_params, params); 1236 1237 return ret; 1238 } 1239 1240 static bool check_alloced_shm(paddr_t pa, size_t len, size_t align) 1241 { 1242 if (pa & (align - 1)) 1243 return false; 1244 return core_pbuf_is(CORE_MEM_NSEC_SHM, pa, len); 1245 } 1246 1247 void thread_rpc_free_arg(uint64_t cookie) 1248 { 1249 if (cookie) { 1250 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1251 OPTEE_SMC_RETURN_RPC_FREE 1252 }; 1253 1254 reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2); 1255 thread_rpc(rpc_args); 1256 } 1257 } 1258 1259 void thread_rpc_alloc_arg(size_t size, paddr_t *arg, uint64_t *cookie) 1260 { 1261 paddr_t pa; 1262 uint64_t co; 1263 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1264 OPTEE_SMC_RETURN_RPC_ALLOC, size 1265 }; 1266 1267 thread_rpc(rpc_args); 1268 1269 pa = reg_pair_to_64(rpc_args[1], rpc_args[2]); 1270 co = reg_pair_to_64(rpc_args[4], rpc_args[5]); 1271 if (!check_alloced_shm(pa, size, sizeof(uint64_t))) { 1272 thread_rpc_free_arg(co); 1273 pa = 0; 1274 co = 0; 1275 } 1276 1277 *arg = pa; 1278 *cookie = co; 1279 } 1280 1281 /** 1282 * Free physical memory previously allocated with thread_rpc_alloc() 1283 * 1284 * @cookie: cookie received when allocating the buffer 1285 * @bt: must be the same as supplied when allocating 1286 */ 1287 static void thread_rpc_free(unsigned int bt, uint64_t cookie) 1288 { 1289 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1290 struct thread_ctx *thr = threads + thread_get_id(); 1291 struct optee_msg_arg *arg = thr->rpc_arg; 1292 uint64_t carg = thr->rpc_carg; 1293 struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg); 1294 1295 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); 1296 arg->cmd = OPTEE_MSG_RPC_CMD_SHM_FREE; 1297 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1298 arg->num_params = 1; 1299 1300 params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1301 params[0].u.value.a = bt; 1302 params[0].u.value.b = cookie; 1303 params[0].u.value.c = 0; 1304 1305 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1306 thread_rpc(rpc_args); 1307 } 1308 1309 /** 1310 * Allocates shared memory buffer via RPC 1311 * 1312 * @size: size in bytes of shared memory buffer 1313 * @align: required alignment of buffer 1314 * @bt: buffer type OPTEE_MSG_RPC_SHM_TYPE_* 1315 * @payload: returned physical pointer to buffer, 0 if allocation 1316 * failed. 1317 * @cookie: returned cookie used when freeing the buffer 1318 */ 1319 static void thread_rpc_alloc(size_t size, size_t align, unsigned int bt, 1320 paddr_t *payload, uint64_t *cookie) 1321 { 1322 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1323 struct thread_ctx *thr = threads + thread_get_id(); 1324 struct optee_msg_arg *arg = thr->rpc_arg; 1325 uint64_t carg = thr->rpc_carg; 1326 struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg); 1327 1328 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); 1329 arg->cmd = OPTEE_MSG_RPC_CMD_SHM_ALLOC; 1330 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1331 arg->num_params = 1; 1332 1333 params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1334 params[0].u.value.a = bt; 1335 params[0].u.value.b = size; 1336 params[0].u.value.c = align; 1337 1338 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1339 thread_rpc(rpc_args); 1340 if (arg->ret != TEE_SUCCESS) 1341 goto fail; 1342 1343 if (arg->num_params != 1) 1344 goto fail; 1345 1346 if (params[0].attr != OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT) 1347 goto fail; 1348 1349 if (!check_alloced_shm(params[0].u.tmem.buf_ptr, size, align)) { 1350 thread_rpc_free(bt, params[0].u.tmem.shm_ref); 1351 goto fail; 1352 } 1353 1354 *payload = params[0].u.tmem.buf_ptr; 1355 *cookie = params[0].u.tmem.shm_ref; 1356 return; 1357 fail: 1358 *payload = 0; 1359 *cookie = 0; 1360 } 1361 1362 void thread_rpc_alloc_payload(size_t size, paddr_t *payload, uint64_t *cookie) 1363 { 1364 thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, payload, cookie); 1365 } 1366 1367 void thread_rpc_free_payload(uint64_t cookie) 1368 { 1369 thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie); 1370 } 1371