1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 */ 6 7 #include <platform_config.h> 8 9 #include <arm.h> 10 #include <assert.h> 11 #include <io.h> 12 #include <keep.h> 13 #include <kernel/asan.h> 14 #include <kernel/lockdep.h> 15 #include <kernel/misc.h> 16 #include <kernel/panic.h> 17 #include <kernel/spinlock.h> 18 #include <kernel/tee_ta_manager.h> 19 #include <kernel/thread_defs.h> 20 #include <kernel/thread.h> 21 #include <kernel/virtualization.h> 22 #include <mm/core_memprot.h> 23 #include <mm/mobj.h> 24 #include <mm/tee_mm.h> 25 #include <mm/tee_mmu.h> 26 #include <mm/tee_pager.h> 27 #include <smccc.h> 28 #include <sm/sm.h> 29 #include <trace.h> 30 #include <util.h> 31 32 #include "thread_private.h" 33 34 #ifdef CFG_WITH_ARM_TRUSTED_FW 35 #define STACK_TMP_OFFS 0 36 #else 37 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE 38 #endif 39 40 41 #ifdef ARM32 42 #ifdef CFG_CORE_SANITIZE_KADDRESS 43 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) 44 #else 45 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 46 #endif 47 #define STACK_THREAD_SIZE 8192 48 49 #ifdef CFG_CORE_SANITIZE_KADDRESS 50 #define STACK_ABT_SIZE 3072 51 #else 52 #define STACK_ABT_SIZE 2048 53 #endif 54 55 #endif /*ARM32*/ 56 57 #ifdef ARM64 58 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 59 #define STACK_THREAD_SIZE 8192 60 61 #if TRACE_LEVEL > 0 62 #define STACK_ABT_SIZE 3072 63 #else 64 #define STACK_ABT_SIZE 1024 65 #endif 66 #endif /*ARM64*/ 67 68 struct thread_ctx threads[CFG_NUM_THREADS]; 69 70 struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE] __nex_bss; 71 72 #ifdef CFG_WITH_STACK_CANARIES 73 #ifdef ARM32 74 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 75 #endif 76 #ifdef ARM64 77 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 78 #endif 79 #define START_CANARY_VALUE 0xdededede 80 #define END_CANARY_VALUE 0xabababab 81 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 82 #define GET_END_CANARY(name, stack_num) \ 83 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 84 #else 85 #define STACK_CANARY_SIZE 0 86 #endif 87 88 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 89 linkage uint32_t name[num_stacks] \ 90 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 91 sizeof(uint32_t)] \ 92 __attribute__((section(".nozi_stack." # name), \ 93 aligned(STACK_ALIGNMENT))) 94 95 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 96 97 #define GET_STACK(stack) \ 98 ((vaddr_t)(stack) + STACK_SIZE(stack)) 99 100 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, static); 101 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 102 #ifndef CFG_WITH_PAGER 103 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 104 #endif 105 106 const void *stack_tmp_export = (uint8_t *)stack_tmp + sizeof(stack_tmp[0]) - 107 (STACK_TMP_OFFS + STACK_CANARY_SIZE / 2); 108 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]); 109 110 /* 111 * These stack setup info are required by secondary boot cores before they 112 * each locally enable the pager (the mmu). Hence kept in pager sections. 113 */ 114 KEEP_PAGER(stack_tmp_export); 115 KEEP_PAGER(stack_tmp_stride); 116 117 thread_pm_handler_t thread_cpu_on_handler_ptr __nex_bss; 118 thread_pm_handler_t thread_cpu_off_handler_ptr __nex_bss; 119 thread_pm_handler_t thread_cpu_suspend_handler_ptr __nex_bss; 120 thread_pm_handler_t thread_cpu_resume_handler_ptr __nex_bss; 121 thread_pm_handler_t thread_system_off_handler_ptr __nex_bss; 122 thread_pm_handler_t thread_system_reset_handler_ptr __nex_bss; 123 124 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 125 static vaddr_t thread_user_kcode_va __nex_bss; 126 long thread_user_kcode_offset __nex_bss; 127 static size_t thread_user_kcode_size __nex_bss; 128 #endif 129 130 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 131 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 132 long thread_user_kdata_sp_offset __nex_bss; 133 static uint8_t thread_user_kdata_page[ 134 ROUNDUP(sizeof(thread_core_local), SMALL_PAGE_SIZE)] 135 __aligned(SMALL_PAGE_SIZE) 136 #ifndef CFG_VIRTUALIZATION 137 __section(".nozi.kdata_page"); 138 #else 139 __section(".nex_nozi.kdata_page"); 140 #endif 141 #endif 142 143 static unsigned int thread_global_lock __nex_bss = SPINLOCK_UNLOCK; 144 145 static void init_canaries(void) 146 { 147 #ifdef CFG_WITH_STACK_CANARIES 148 size_t n; 149 #define INIT_CANARY(name) \ 150 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 151 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 152 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 153 \ 154 *start_canary = START_CANARY_VALUE; \ 155 *end_canary = END_CANARY_VALUE; \ 156 DMSG("#Stack canaries for %s[%zu] with top at %p", \ 157 #name, n, (void *)(end_canary - 1)); \ 158 DMSG("watch *%p", (void *)end_canary); \ 159 } 160 161 INIT_CANARY(stack_tmp); 162 INIT_CANARY(stack_abt); 163 #if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION) 164 INIT_CANARY(stack_thread); 165 #endif 166 #endif/*CFG_WITH_STACK_CANARIES*/ 167 } 168 169 #define CANARY_DIED(stack, loc, n) \ 170 do { \ 171 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 172 panic(); \ 173 } while (0) 174 175 void thread_check_canaries(void) 176 { 177 #ifdef CFG_WITH_STACK_CANARIES 178 size_t n; 179 180 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 181 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 182 CANARY_DIED(stack_tmp, start, n); 183 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 184 CANARY_DIED(stack_tmp, end, n); 185 } 186 187 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 188 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 189 CANARY_DIED(stack_abt, start, n); 190 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 191 CANARY_DIED(stack_abt, end, n); 192 193 } 194 #if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION) 195 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 196 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 197 CANARY_DIED(stack_thread, start, n); 198 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 199 CANARY_DIED(stack_thread, end, n); 200 } 201 #endif 202 #endif/*CFG_WITH_STACK_CANARIES*/ 203 } 204 205 void thread_lock_global(void) 206 { 207 cpu_spin_lock(&thread_global_lock); 208 } 209 210 void thread_unlock_global(void) 211 { 212 cpu_spin_unlock(&thread_global_lock); 213 } 214 215 #ifdef ARM32 216 uint32_t thread_get_exceptions(void) 217 { 218 uint32_t cpsr = read_cpsr(); 219 220 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 221 } 222 223 void thread_set_exceptions(uint32_t exceptions) 224 { 225 uint32_t cpsr = read_cpsr(); 226 227 /* Foreign interrupts must not be unmasked while holding a spinlock */ 228 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 229 assert_have_no_spinlock(); 230 231 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 232 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 233 write_cpsr(cpsr); 234 } 235 #endif /*ARM32*/ 236 237 #ifdef ARM64 238 uint32_t thread_get_exceptions(void) 239 { 240 uint32_t daif = read_daif(); 241 242 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 243 } 244 245 void thread_set_exceptions(uint32_t exceptions) 246 { 247 uint32_t daif = read_daif(); 248 249 /* Foreign interrupts must not be unmasked while holding a spinlock */ 250 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 251 assert_have_no_spinlock(); 252 253 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 254 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 255 write_daif(daif); 256 } 257 #endif /*ARM64*/ 258 259 uint32_t thread_mask_exceptions(uint32_t exceptions) 260 { 261 uint32_t state = thread_get_exceptions(); 262 263 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 264 return state; 265 } 266 267 void thread_unmask_exceptions(uint32_t state) 268 { 269 thread_set_exceptions(state & THREAD_EXCP_ALL); 270 } 271 272 273 struct thread_core_local *thread_get_core_local(void) 274 { 275 uint32_t cpu_id = get_core_pos(); 276 277 /* 278 * Foreign interrupts must be disabled before playing with core_local 279 * since we otherwise may be rescheduled to a different core in the 280 * middle of this function. 281 */ 282 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 283 284 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 285 return &thread_core_local[cpu_id]; 286 } 287 288 static void thread_lazy_save_ns_vfp(void) 289 { 290 #ifdef CFG_WITH_VFP 291 struct thread_ctx *thr = threads + thread_get_id(); 292 293 thr->vfp_state.ns_saved = false; 294 vfp_lazy_save_state_init(&thr->vfp_state.ns); 295 #endif /*CFG_WITH_VFP*/ 296 } 297 298 static void thread_lazy_restore_ns_vfp(void) 299 { 300 #ifdef CFG_WITH_VFP 301 struct thread_ctx *thr = threads + thread_get_id(); 302 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 303 304 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 305 306 if (tuv && tuv->lazy_saved && !tuv->saved) { 307 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/); 308 tuv->saved = true; 309 } 310 311 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 312 thr->vfp_state.ns_saved = false; 313 #endif /*CFG_WITH_VFP*/ 314 } 315 316 #ifdef ARM32 317 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1, 318 uint32_t a2, uint32_t a3) 319 { 320 thread->regs.pc = (uint32_t)thread_std_smc_entry; 321 322 /* 323 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 324 * Asynchronous abort and unmasked native interrupts. 325 */ 326 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 327 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A | 328 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT); 329 /* Enable thumb mode if it's a thumb instruction */ 330 if (thread->regs.pc & 1) 331 thread->regs.cpsr |= CPSR_T; 332 /* Reinitialize stack pointer */ 333 thread->regs.svc_sp = thread->stack_va_end; 334 335 /* 336 * Copy arguments into context. This will make the 337 * arguments appear in r0-r7 when thread is started. 338 */ 339 thread->regs.r0 = a0; 340 thread->regs.r1 = a1; 341 thread->regs.r2 = a2; 342 thread->regs.r3 = a3; 343 thread->regs.r4 = 0; 344 thread->regs.r5 = 0; 345 thread->regs.r6 = 0; 346 thread->regs.r7 = 0; 347 } 348 #endif /*ARM32*/ 349 350 #ifdef ARM64 351 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1, 352 uint32_t a2, uint32_t a3) 353 { 354 thread->regs.pc = (uint64_t)thread_std_smc_entry; 355 356 /* 357 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 358 * Asynchronous abort and unmasked native interrupts. 359 */ 360 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 361 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT); 362 /* Reinitialize stack pointer */ 363 thread->regs.sp = thread->stack_va_end; 364 365 /* 366 * Copy arguments into context. This will make the 367 * arguments appear in x0-x7 when thread is started. 368 */ 369 thread->regs.x[0] = a0; 370 thread->regs.x[1] = a1; 371 thread->regs.x[2] = a2; 372 thread->regs.x[3] = a3; 373 thread->regs.x[4] = 0; 374 thread->regs.x[5] = 0; 375 thread->regs.x[6] = 0; 376 thread->regs.x[7] = 0; 377 378 /* Set up frame pointer as per the Aarch64 AAPCS */ 379 thread->regs.x[29] = 0; 380 } 381 #endif /*ARM64*/ 382 383 void thread_init_boot_thread(void) 384 { 385 struct thread_core_local *l = thread_get_core_local(); 386 387 thread_init_threads(); 388 389 l->curr_thread = 0; 390 threads[0].state = THREAD_STATE_ACTIVE; 391 } 392 393 void thread_clr_boot_thread(void) 394 { 395 struct thread_core_local *l = thread_get_core_local(); 396 397 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 398 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 399 threads[l->curr_thread].state = THREAD_STATE_FREE; 400 l->curr_thread = -1; 401 } 402 403 void thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3) 404 { 405 size_t n; 406 struct thread_core_local *l = thread_get_core_local(); 407 bool found_thread = false; 408 409 assert(l->curr_thread == -1); 410 411 thread_lock_global(); 412 413 for (n = 0; n < CFG_NUM_THREADS; n++) { 414 if (threads[n].state == THREAD_STATE_FREE) { 415 threads[n].state = THREAD_STATE_ACTIVE; 416 found_thread = true; 417 break; 418 } 419 } 420 421 thread_unlock_global(); 422 423 if (!found_thread) 424 return; 425 426 l->curr_thread = n; 427 428 threads[n].flags = 0; 429 init_regs(threads + n, a0, a1, a2, a3); 430 431 thread_lazy_save_ns_vfp(); 432 thread_resume(&threads[n].regs); 433 /*NOTREACHED*/ 434 panic(); 435 } 436 437 #ifdef ARM32 438 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0, 439 uint32_t a1, uint32_t a2, uint32_t a3) 440 { 441 /* 442 * Update returned values from RPC, values will appear in 443 * r0-r3 when thread is resumed. 444 */ 445 regs->r0 = a0; 446 regs->r1 = a1; 447 regs->r2 = a2; 448 regs->r3 = a3; 449 } 450 #endif /*ARM32*/ 451 452 #ifdef ARM64 453 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0, 454 uint32_t a1, uint32_t a2, uint32_t a3) 455 { 456 /* 457 * Update returned values from RPC, values will appear in 458 * x0-x3 when thread is resumed. 459 */ 460 regs->x[0] = a0; 461 regs->x[1] = a1; 462 regs->x[2] = a2; 463 regs->x[3] = a3; 464 } 465 #endif /*ARM64*/ 466 467 #ifdef ARM32 468 static bool is_from_user(uint32_t cpsr) 469 { 470 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 471 } 472 #endif 473 474 #ifdef ARM64 475 static bool is_from_user(uint32_t cpsr) 476 { 477 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 478 return true; 479 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 480 SPSR_64_MODE_EL0) 481 return true; 482 return false; 483 } 484 #endif 485 486 static bool is_user_mode(struct thread_ctx_regs *regs) 487 { 488 return is_from_user((uint32_t)regs->cpsr); 489 } 490 491 void thread_resume_from_rpc(uint32_t thread_id, uint32_t a0, uint32_t a1, 492 uint32_t a2, uint32_t a3) 493 { 494 size_t n = thread_id; 495 struct thread_core_local *l = thread_get_core_local(); 496 bool found_thread = false; 497 498 assert(l->curr_thread == -1); 499 500 thread_lock_global(); 501 502 if (n < CFG_NUM_THREADS && threads[n].state == THREAD_STATE_SUSPENDED) { 503 threads[n].state = THREAD_STATE_ACTIVE; 504 found_thread = true; 505 } 506 507 thread_unlock_global(); 508 509 if (!found_thread) 510 return; 511 512 l->curr_thread = n; 513 514 if (threads[n].have_user_map) { 515 core_mmu_set_user_map(&threads[n].user_map); 516 if (threads[n].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR) 517 tee_ta_ftrace_update_times_resume(); 518 } 519 520 if (is_user_mode(&threads[n].regs)) 521 tee_ta_update_session_utime_resume(); 522 523 /* 524 * Return from RPC to request service of a foreign interrupt must not 525 * get parameters from non-secure world. 526 */ 527 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 528 copy_a0_to_a3(&threads[n].regs, a0, a1, a2, a3); 529 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 530 } 531 532 thread_lazy_save_ns_vfp(); 533 534 thread_resume(&threads[n].regs); 535 /*NOTREACHED*/ 536 panic(); 537 } 538 539 void *thread_get_tmp_sp(void) 540 { 541 struct thread_core_local *l = thread_get_core_local(); 542 543 return (void *)l->tmp_stack_va_end; 544 } 545 546 #ifdef ARM64 547 vaddr_t thread_get_saved_thread_sp(void) 548 { 549 struct thread_core_local *l = thread_get_core_local(); 550 int ct = l->curr_thread; 551 552 assert(ct != -1); 553 return threads[ct].kern_sp; 554 } 555 #endif /*ARM64*/ 556 557 vaddr_t thread_stack_start(void) 558 { 559 struct thread_ctx *thr; 560 int ct = thread_get_id_may_fail(); 561 562 if (ct == -1) 563 return 0; 564 565 thr = threads + ct; 566 return thr->stack_va_end - STACK_THREAD_SIZE; 567 } 568 569 size_t thread_stack_size(void) 570 { 571 return STACK_THREAD_SIZE; 572 } 573 574 bool thread_is_from_abort_mode(void) 575 { 576 struct thread_core_local *l = thread_get_core_local(); 577 578 return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT; 579 } 580 581 #ifdef ARM32 582 bool thread_is_in_normal_mode(void) 583 { 584 return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC; 585 } 586 #endif 587 588 #ifdef ARM64 589 bool thread_is_in_normal_mode(void) 590 { 591 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 592 struct thread_core_local *l = thread_get_core_local(); 593 bool ret; 594 595 /* If any bit in l->flags is set we're handling some exception. */ 596 ret = !l->flags; 597 thread_unmask_exceptions(exceptions); 598 599 return ret; 600 } 601 #endif 602 603 void thread_state_free(void) 604 { 605 struct thread_core_local *l = thread_get_core_local(); 606 int ct = l->curr_thread; 607 608 assert(ct != -1); 609 610 thread_lazy_restore_ns_vfp(); 611 tee_pager_release_phys( 612 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 613 STACK_THREAD_SIZE); 614 615 thread_lock_global(); 616 617 assert(threads[ct].state == THREAD_STATE_ACTIVE); 618 threads[ct].state = THREAD_STATE_FREE; 619 threads[ct].flags = 0; 620 l->curr_thread = -1; 621 622 #ifdef CFG_VIRTUALIZATION 623 virt_unset_guest(); 624 #endif 625 thread_unlock_global(); 626 } 627 628 #ifdef CFG_WITH_PAGER 629 static void release_unused_kernel_stack(struct thread_ctx *thr, 630 uint32_t cpsr __maybe_unused) 631 { 632 #ifdef ARM64 633 /* 634 * If we're from user mode then thr->regs.sp is the saved user 635 * stack pointer and thr->kern_sp holds the last kernel stack 636 * pointer. But if we're from kernel mode then thr->kern_sp isn't 637 * up to date so we need to read from thr->regs.sp instead. 638 */ 639 vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp; 640 #else 641 vaddr_t sp = thr->regs.svc_sp; 642 #endif 643 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 644 size_t len = sp - base; 645 646 tee_pager_release_phys((void *)base, len); 647 } 648 #else 649 static void release_unused_kernel_stack(struct thread_ctx *thr __unused, 650 uint32_t cpsr __unused) 651 { 652 } 653 #endif 654 655 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 656 { 657 struct thread_core_local *l = thread_get_core_local(); 658 int ct = l->curr_thread; 659 660 assert(ct != -1); 661 662 thread_check_canaries(); 663 664 release_unused_kernel_stack(threads + ct, cpsr); 665 666 if (is_from_user(cpsr)) { 667 thread_user_save_vfp(); 668 tee_ta_update_session_utime_suspend(); 669 tee_ta_gprof_sample_pc(pc); 670 } 671 thread_lazy_restore_ns_vfp(); 672 673 thread_lock_global(); 674 675 assert(threads[ct].state == THREAD_STATE_ACTIVE); 676 threads[ct].flags |= flags; 677 threads[ct].regs.cpsr = cpsr; 678 threads[ct].regs.pc = pc; 679 threads[ct].state = THREAD_STATE_SUSPENDED; 680 681 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 682 if (threads[ct].have_user_map) { 683 if (threads[ct].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR) 684 tee_ta_ftrace_update_times_suspend(); 685 core_mmu_get_user_map(&threads[ct].user_map); 686 core_mmu_set_user_map(NULL); 687 } 688 689 l->curr_thread = -1; 690 691 #ifdef CFG_VIRTUALIZATION 692 virt_unset_guest(); 693 #endif 694 695 thread_unlock_global(); 696 697 return ct; 698 } 699 700 #ifdef ARM32 701 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 702 { 703 l->tmp_stack_va_end = sp; 704 thread_set_irq_sp(sp); 705 thread_set_fiq_sp(sp); 706 } 707 708 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 709 { 710 l->abt_stack_va_end = sp; 711 thread_set_abt_sp((vaddr_t)l); 712 thread_set_und_sp((vaddr_t)l); 713 } 714 #endif /*ARM32*/ 715 716 #ifdef ARM64 717 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 718 { 719 /* 720 * We're already using the tmp stack when this function is called 721 * so there's no need to assign it to any stack pointer. However, 722 * we'll need to restore it at different times so store it here. 723 */ 724 l->tmp_stack_va_end = sp; 725 } 726 727 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 728 { 729 l->abt_stack_va_end = sp; 730 } 731 #endif /*ARM64*/ 732 733 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 734 { 735 if (thread_id >= CFG_NUM_THREADS) 736 return false; 737 threads[thread_id].stack_va_end = sp; 738 return true; 739 } 740 741 int thread_get_id_may_fail(void) 742 { 743 /* 744 * thread_get_core_local() requires foreign interrupts to be disabled 745 */ 746 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 747 struct thread_core_local *l = thread_get_core_local(); 748 int ct = l->curr_thread; 749 750 thread_unmask_exceptions(exceptions); 751 return ct; 752 } 753 754 int thread_get_id(void) 755 { 756 int ct = thread_get_id_may_fail(); 757 758 assert(ct >= 0 && ct < CFG_NUM_THREADS); 759 return ct; 760 } 761 762 static void init_handlers(const struct thread_handlers *handlers) 763 { 764 thread_cpu_on_handler_ptr = handlers->cpu_on; 765 thread_cpu_off_handler_ptr = handlers->cpu_off; 766 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 767 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 768 thread_system_off_handler_ptr = handlers->system_off; 769 thread_system_reset_handler_ptr = handlers->system_reset; 770 } 771 772 #ifdef CFG_WITH_PAGER 773 static void init_thread_stacks(void) 774 { 775 size_t n = 0; 776 777 /* 778 * Allocate virtual memory for thread stacks. 779 */ 780 for (n = 0; n < CFG_NUM_THREADS; n++) { 781 tee_mm_entry_t *mm = NULL; 782 vaddr_t sp = 0; 783 size_t num_pages = 0; 784 struct fobj *fobj = NULL; 785 786 /* Find vmem for thread stack and its protection gap */ 787 mm = tee_mm_alloc(&tee_mm_vcore, 788 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 789 assert(mm); 790 791 /* Claim eventual physical page */ 792 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 793 true); 794 795 num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE - 1; 796 fobj = fobj_locked_paged_alloc(num_pages); 797 798 /* Add the area to the pager */ 799 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 800 PAGER_AREA_TYPE_LOCK, fobj); 801 fobj_put(fobj); 802 803 /* init effective stack */ 804 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 805 asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp); 806 if (!thread_init_stack(n, sp)) 807 panic("init stack failed"); 808 } 809 } 810 #else 811 static void init_thread_stacks(void) 812 { 813 size_t n; 814 815 /* Assign the thread stacks */ 816 for (n = 0; n < CFG_NUM_THREADS; n++) { 817 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 818 panic("thread_init_stack failed"); 819 } 820 } 821 #endif /*CFG_WITH_PAGER*/ 822 823 static void init_user_kcode(void) 824 { 825 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 826 vaddr_t v = (vaddr_t)thread_excp_vect; 827 vaddr_t ve = (vaddr_t)thread_excp_vect_end; 828 829 thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE); 830 ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE); 831 thread_user_kcode_size = ve - thread_user_kcode_va; 832 833 core_mmu_get_user_va_range(&v, NULL); 834 thread_user_kcode_offset = thread_user_kcode_va - v; 835 836 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 837 /* 838 * When transitioning to EL0 subtract SP with this much to point to 839 * this special kdata page instead. SP is restored by add this much 840 * while transitioning back to EL1. 841 */ 842 v += thread_user_kcode_size; 843 thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v; 844 #endif 845 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/ 846 } 847 848 void thread_init_threads(void) 849 { 850 size_t n; 851 852 init_thread_stacks(); 853 pgt_init(); 854 855 mutex_lockdep_init(); 856 857 for (n = 0; n < CFG_NUM_THREADS; n++) { 858 TAILQ_INIT(&threads[n].tsd.sess_stack); 859 SLIST_INIT(&threads[n].tsd.pgt_cache); 860 } 861 862 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 863 thread_core_local[n].curr_thread = -1; 864 } 865 866 void thread_init_primary(const struct thread_handlers *handlers) 867 { 868 init_handlers(handlers); 869 870 /* Initialize canaries around the stacks */ 871 init_canaries(); 872 873 init_user_kcode(); 874 } 875 876 static void init_sec_mon(size_t pos __maybe_unused) 877 { 878 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 879 /* Initialize secure monitor */ 880 sm_init(GET_STACK(stack_tmp[pos])); 881 #endif 882 } 883 884 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr) 885 { 886 return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK; 887 } 888 889 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr) 890 { 891 return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) & 892 MIDR_PRIMARY_PART_NUM_MASK; 893 } 894 895 #ifdef ARM64 896 static bool probe_workaround_available(void) 897 { 898 int32_t r; 899 900 r = thread_smc(SMCCC_VERSION, 0, 0, 0); 901 if (r < 0) 902 return false; 903 if (r < 0x10001) /* compare with version 1.1 */ 904 return false; 905 906 /* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */ 907 r = thread_smc(SMCCC_ARCH_FEATURES, SMCCC_ARCH_WORKAROUND_1, 0, 0); 908 return r >= 0; 909 } 910 911 static vaddr_t __maybe_unused select_vector(vaddr_t a) 912 { 913 if (probe_workaround_available()) { 914 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available", 915 SMCCC_ARCH_WORKAROUND_1); 916 DMSG("SMC Workaround for CVE-2017-5715 used"); 917 return a; 918 } 919 920 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable", 921 SMCCC_ARCH_WORKAROUND_1); 922 DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)"); 923 return (vaddr_t)thread_excp_vect; 924 } 925 #else 926 static vaddr_t __maybe_unused select_vector(vaddr_t a) 927 { 928 return a; 929 } 930 #endif 931 932 static vaddr_t get_excp_vect(void) 933 { 934 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC 935 uint32_t midr = read_midr(); 936 937 if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM) 938 return (vaddr_t)thread_excp_vect; 939 940 switch (get_midr_primary_part(midr)) { 941 #ifdef ARM32 942 case CORTEX_A8_PART_NUM: 943 case CORTEX_A9_PART_NUM: 944 case CORTEX_A17_PART_NUM: 945 #endif 946 case CORTEX_A57_PART_NUM: 947 case CORTEX_A72_PART_NUM: 948 case CORTEX_A73_PART_NUM: 949 case CORTEX_A75_PART_NUM: 950 return select_vector((vaddr_t)thread_excp_vect_workaround); 951 #ifdef ARM32 952 case CORTEX_A15_PART_NUM: 953 return select_vector((vaddr_t)thread_excp_vect_workaround_a15); 954 #endif 955 default: 956 return (vaddr_t)thread_excp_vect; 957 } 958 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/ 959 960 return (vaddr_t)thread_excp_vect; 961 } 962 963 void thread_init_per_cpu(void) 964 { 965 size_t pos = get_core_pos(); 966 struct thread_core_local *l = thread_get_core_local(); 967 968 init_sec_mon(pos); 969 970 set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); 971 set_abt_stack(l, GET_STACK(stack_abt[pos])); 972 973 thread_init_vbar(get_excp_vect()); 974 975 #ifdef CFG_TA_FTRACE_SUPPORT 976 /* 977 * Enable accesses to frequency register and physical counter 978 * register in EL0/PL0 required for timestamping during 979 * function tracing. 980 */ 981 write_cntkctl(read_cntkctl() | CNTKCTL_PL0PCTEN); 982 #endif 983 } 984 985 struct thread_specific_data *thread_get_tsd(void) 986 { 987 return &threads[thread_get_id()].tsd; 988 } 989 990 struct thread_ctx_regs *thread_get_ctx_regs(void) 991 { 992 struct thread_core_local *l = thread_get_core_local(); 993 994 assert(l->curr_thread != -1); 995 return &threads[l->curr_thread].regs; 996 } 997 998 void thread_set_foreign_intr(bool enable) 999 { 1000 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1001 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1002 struct thread_core_local *l; 1003 1004 l = thread_get_core_local(); 1005 1006 assert(l->curr_thread != -1); 1007 1008 if (enable) { 1009 threads[l->curr_thread].flags |= 1010 THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1011 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1012 } else { 1013 /* 1014 * No need to disable foreign interrupts here since they're 1015 * already disabled above. 1016 */ 1017 threads[l->curr_thread].flags &= 1018 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1019 } 1020 } 1021 1022 void thread_restore_foreign_intr(void) 1023 { 1024 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1025 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1026 struct thread_core_local *l; 1027 1028 l = thread_get_core_local(); 1029 1030 assert(l->curr_thread != -1); 1031 1032 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) 1033 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1034 } 1035 1036 #ifdef CFG_WITH_VFP 1037 uint32_t thread_kernel_enable_vfp(void) 1038 { 1039 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1040 struct thread_ctx *thr = threads + thread_get_id(); 1041 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1042 1043 assert(!vfp_is_enabled()); 1044 1045 if (!thr->vfp_state.ns_saved) { 1046 vfp_lazy_save_state_final(&thr->vfp_state.ns, 1047 true /*force_save*/); 1048 thr->vfp_state.ns_saved = true; 1049 } else if (thr->vfp_state.sec_lazy_saved && 1050 !thr->vfp_state.sec_saved) { 1051 /* 1052 * This happens when we're handling an abort while the 1053 * thread was using the VFP state. 1054 */ 1055 vfp_lazy_save_state_final(&thr->vfp_state.sec, 1056 false /*!force_save*/); 1057 thr->vfp_state.sec_saved = true; 1058 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 1059 /* 1060 * This can happen either during syscall or abort 1061 * processing (while processing a syscall). 1062 */ 1063 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/); 1064 tuv->saved = true; 1065 } 1066 1067 vfp_enable(); 1068 return exceptions; 1069 } 1070 1071 void thread_kernel_disable_vfp(uint32_t state) 1072 { 1073 uint32_t exceptions; 1074 1075 assert(vfp_is_enabled()); 1076 1077 vfp_disable(); 1078 exceptions = thread_get_exceptions(); 1079 assert(exceptions & THREAD_EXCP_FOREIGN_INTR); 1080 exceptions &= ~THREAD_EXCP_FOREIGN_INTR; 1081 exceptions |= state & THREAD_EXCP_FOREIGN_INTR; 1082 thread_set_exceptions(exceptions); 1083 } 1084 1085 void thread_kernel_save_vfp(void) 1086 { 1087 struct thread_ctx *thr = threads + thread_get_id(); 1088 1089 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1090 if (vfp_is_enabled()) { 1091 vfp_lazy_save_state_init(&thr->vfp_state.sec); 1092 thr->vfp_state.sec_lazy_saved = true; 1093 } 1094 } 1095 1096 void thread_kernel_restore_vfp(void) 1097 { 1098 struct thread_ctx *thr = threads + thread_get_id(); 1099 1100 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1101 assert(!vfp_is_enabled()); 1102 if (thr->vfp_state.sec_lazy_saved) { 1103 vfp_lazy_restore_state(&thr->vfp_state.sec, 1104 thr->vfp_state.sec_saved); 1105 thr->vfp_state.sec_saved = false; 1106 thr->vfp_state.sec_lazy_saved = false; 1107 } 1108 } 1109 1110 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 1111 { 1112 struct thread_ctx *thr = threads + thread_get_id(); 1113 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1114 1115 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1116 assert(!vfp_is_enabled()); 1117 1118 if (!thr->vfp_state.ns_saved) { 1119 vfp_lazy_save_state_final(&thr->vfp_state.ns, 1120 true /*force_save*/); 1121 thr->vfp_state.ns_saved = true; 1122 } else if (tuv && uvfp != tuv) { 1123 if (tuv->lazy_saved && !tuv->saved) { 1124 vfp_lazy_save_state_final(&tuv->vfp, 1125 false /*!force_save*/); 1126 tuv->saved = true; 1127 } 1128 } 1129 1130 if (uvfp->lazy_saved) 1131 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 1132 uvfp->lazy_saved = false; 1133 uvfp->saved = false; 1134 1135 thr->vfp_state.uvfp = uvfp; 1136 vfp_enable(); 1137 } 1138 1139 void thread_user_save_vfp(void) 1140 { 1141 struct thread_ctx *thr = threads + thread_get_id(); 1142 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1143 1144 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1145 if (!vfp_is_enabled()) 1146 return; 1147 1148 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1149 vfp_lazy_save_state_init(&tuv->vfp); 1150 tuv->lazy_saved = true; 1151 } 1152 1153 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1154 { 1155 struct thread_ctx *thr = threads + thread_get_id(); 1156 1157 if (uvfp == thr->vfp_state.uvfp) 1158 thr->vfp_state.uvfp = NULL; 1159 uvfp->lazy_saved = false; 1160 uvfp->saved = false; 1161 } 1162 #endif /*CFG_WITH_VFP*/ 1163 1164 #ifdef ARM32 1165 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1166 { 1167 uint32_t s; 1168 1169 if (!is_32bit) 1170 return false; 1171 1172 s = read_spsr(); 1173 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1174 s |= CPSR_MODE_USR; 1175 if (entry_func & 1) 1176 s |= CPSR_T; 1177 *spsr = s; 1178 return true; 1179 } 1180 #endif 1181 1182 #ifdef ARM64 1183 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1184 { 1185 uint32_t s; 1186 1187 if (is_32bit) { 1188 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1189 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1190 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1191 } else { 1192 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1193 } 1194 1195 *spsr = s; 1196 return true; 1197 } 1198 #endif 1199 1200 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1201 unsigned long a2, unsigned long a3, unsigned long user_sp, 1202 unsigned long entry_func, bool is_32bit, 1203 uint32_t *exit_status0, uint32_t *exit_status1) 1204 { 1205 uint32_t spsr; 1206 1207 tee_ta_update_session_utime_resume(); 1208 1209 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1210 *exit_status0 = 1; /* panic */ 1211 *exit_status1 = 0xbadbadba; 1212 return 0; 1213 } 1214 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1215 spsr, exit_status0, exit_status1); 1216 } 1217 1218 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 1219 void thread_get_user_kcode(struct mobj **mobj, size_t *offset, 1220 vaddr_t *va, size_t *sz) 1221 { 1222 core_mmu_get_user_va_range(va, NULL); 1223 *mobj = mobj_tee_ram; 1224 *offset = thread_user_kcode_va - TEE_RAM_START; 1225 *sz = thread_user_kcode_size; 1226 } 1227 #endif 1228 1229 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 1230 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 1231 void thread_get_user_kdata(struct mobj **mobj, size_t *offset, 1232 vaddr_t *va, size_t *sz) 1233 { 1234 vaddr_t v; 1235 1236 core_mmu_get_user_va_range(&v, NULL); 1237 *va = v + thread_user_kcode_size; 1238 *mobj = mobj_tee_ram; 1239 *offset = (vaddr_t)thread_user_kdata_page - TEE_RAM_START; 1240 *sz = sizeof(thread_user_kdata_page); 1241 } 1242 #endif 1243