1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 */ 6 7 #include <platform_config.h> 8 9 #include <arm.h> 10 #include <assert.h> 11 #include <io.h> 12 #include <keep.h> 13 #include <kernel/asan.h> 14 #include <kernel/lockdep.h> 15 #include <kernel/misc.h> 16 #include <kernel/msg_param.h> 17 #include <kernel/panic.h> 18 #include <kernel/spinlock.h> 19 #include <kernel/tee_ta_manager.h> 20 #include <kernel/thread_defs.h> 21 #include <kernel/thread.h> 22 #include <kernel/virtualization.h> 23 #include <mm/core_memprot.h> 24 #include <mm/mobj.h> 25 #include <mm/tee_mm.h> 26 #include <mm/tee_mmu.h> 27 #include <mm/tee_pager.h> 28 #include <optee_msg.h> 29 #include <optee_rpc_cmd.h> 30 #include <smccc.h> 31 #include <sm/optee_smc.h> 32 #include <sm/sm.h> 33 #include <tee/tee_cryp_utl.h> 34 #include <tee/tee_fs_rpc.h> 35 #include <trace.h> 36 #include <util.h> 37 38 #include "thread_private.h" 39 40 #ifdef CFG_WITH_ARM_TRUSTED_FW 41 #define STACK_TMP_OFFS 0 42 #else 43 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE 44 #endif 45 46 47 #ifdef ARM32 48 #ifdef CFG_CORE_SANITIZE_KADDRESS 49 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) 50 #else 51 #define STACK_TMP_SIZE (1536 + STACK_TMP_OFFS) 52 #endif 53 #define STACK_THREAD_SIZE 8192 54 55 #ifdef CFG_CORE_SANITIZE_KADDRESS 56 #define STACK_ABT_SIZE 3072 57 #else 58 #define STACK_ABT_SIZE 2048 59 #endif 60 61 #endif /*ARM32*/ 62 63 #ifdef ARM64 64 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 65 #define STACK_THREAD_SIZE 8192 66 67 #if TRACE_LEVEL > 0 68 #define STACK_ABT_SIZE 3072 69 #else 70 #define STACK_ABT_SIZE 1024 71 #endif 72 #endif /*ARM64*/ 73 74 struct thread_ctx threads[CFG_NUM_THREADS]; 75 76 struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE] __nex_bss; 77 78 #ifdef CFG_WITH_STACK_CANARIES 79 #ifdef ARM32 80 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 81 #endif 82 #ifdef ARM64 83 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 84 #endif 85 #define START_CANARY_VALUE 0xdededede 86 #define END_CANARY_VALUE 0xabababab 87 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 88 #define GET_END_CANARY(name, stack_num) \ 89 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 90 #else 91 #define STACK_CANARY_SIZE 0 92 #endif 93 94 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 95 linkage uint32_t name[num_stacks] \ 96 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 97 sizeof(uint32_t)] \ 98 __attribute__((section(".nozi_stack." # name), \ 99 aligned(STACK_ALIGNMENT))) 100 101 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 102 103 #define GET_STACK(stack) \ 104 ((vaddr_t)(stack) + STACK_SIZE(stack)) 105 106 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, static); 107 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 108 #ifndef CFG_WITH_PAGER 109 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 110 #endif 111 112 const void *stack_tmp_export = (uint8_t *)stack_tmp + sizeof(stack_tmp[0]) - 113 (STACK_TMP_OFFS + STACK_CANARY_SIZE / 2); 114 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]); 115 116 /* 117 * These stack setup info are required by secondary boot cores before they 118 * each locally enable the pager (the mmu). Hence kept in pager sections. 119 */ 120 KEEP_PAGER(stack_tmp_export); 121 KEEP_PAGER(stack_tmp_stride); 122 123 thread_smc_handler_t thread_std_smc_handler_ptr __nex_bss; 124 static thread_smc_handler_t thread_fast_smc_handler_ptr __nex_bss; 125 thread_nintr_handler_t thread_nintr_handler_ptr __nex_bss; 126 thread_pm_handler_t thread_cpu_on_handler_ptr __nex_bss; 127 thread_pm_handler_t thread_cpu_off_handler_ptr __nex_bss; 128 thread_pm_handler_t thread_cpu_suspend_handler_ptr __nex_bss; 129 thread_pm_handler_t thread_cpu_resume_handler_ptr __nex_bss; 130 thread_pm_handler_t thread_system_off_handler_ptr __nex_bss; 131 thread_pm_handler_t thread_system_reset_handler_ptr __nex_bss; 132 133 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 134 static vaddr_t thread_user_kcode_va __nex_bss; 135 long thread_user_kcode_offset __nex_bss; 136 static size_t thread_user_kcode_size __nex_bss; 137 #endif 138 139 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 140 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 141 long thread_user_kdata_sp_offset __nex_bss; 142 static uint8_t thread_user_kdata_page[ 143 ROUNDUP(sizeof(thread_core_local), SMALL_PAGE_SIZE)] 144 __aligned(SMALL_PAGE_SIZE) 145 #ifndef CFG_VIRTUALIZATION 146 __section(".nozi.kdata_page"); 147 #else 148 __section(".nex_nozi.kdata_page"); 149 #endif 150 #endif 151 152 static unsigned int thread_global_lock __nex_bss = SPINLOCK_UNLOCK; 153 static bool thread_prealloc_rpc_cache; 154 155 static unsigned int thread_rpc_pnum; 156 157 static void init_canaries(void) 158 { 159 #ifdef CFG_WITH_STACK_CANARIES 160 size_t n; 161 #define INIT_CANARY(name) \ 162 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 163 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 164 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 165 \ 166 *start_canary = START_CANARY_VALUE; \ 167 *end_canary = END_CANARY_VALUE; \ 168 DMSG("#Stack canaries for %s[%zu] with top at %p", \ 169 #name, n, (void *)(end_canary - 1)); \ 170 DMSG("watch *%p", (void *)end_canary); \ 171 } 172 173 INIT_CANARY(stack_tmp); 174 INIT_CANARY(stack_abt); 175 #if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION) 176 INIT_CANARY(stack_thread); 177 #endif 178 #endif/*CFG_WITH_STACK_CANARIES*/ 179 } 180 181 #define CANARY_DIED(stack, loc, n) \ 182 do { \ 183 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 184 panic(); \ 185 } while (0) 186 187 void thread_check_canaries(void) 188 { 189 #ifdef CFG_WITH_STACK_CANARIES 190 size_t n; 191 192 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 193 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 194 CANARY_DIED(stack_tmp, start, n); 195 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 196 CANARY_DIED(stack_tmp, end, n); 197 } 198 199 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 200 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 201 CANARY_DIED(stack_abt, start, n); 202 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 203 CANARY_DIED(stack_abt, end, n); 204 205 } 206 #if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION) 207 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 208 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 209 CANARY_DIED(stack_thread, start, n); 210 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 211 CANARY_DIED(stack_thread, end, n); 212 } 213 #endif 214 #endif/*CFG_WITH_STACK_CANARIES*/ 215 } 216 217 static void lock_global(void) 218 { 219 cpu_spin_lock(&thread_global_lock); 220 } 221 222 static void unlock_global(void) 223 { 224 cpu_spin_unlock(&thread_global_lock); 225 } 226 227 #ifdef ARM32 228 uint32_t thread_get_exceptions(void) 229 { 230 uint32_t cpsr = read_cpsr(); 231 232 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 233 } 234 235 void thread_set_exceptions(uint32_t exceptions) 236 { 237 uint32_t cpsr = read_cpsr(); 238 239 /* Foreign interrupts must not be unmasked while holding a spinlock */ 240 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 241 assert_have_no_spinlock(); 242 243 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 244 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 245 write_cpsr(cpsr); 246 } 247 #endif /*ARM32*/ 248 249 #ifdef ARM64 250 uint32_t thread_get_exceptions(void) 251 { 252 uint32_t daif = read_daif(); 253 254 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 255 } 256 257 void thread_set_exceptions(uint32_t exceptions) 258 { 259 uint32_t daif = read_daif(); 260 261 /* Foreign interrupts must not be unmasked while holding a spinlock */ 262 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 263 assert_have_no_spinlock(); 264 265 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 266 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 267 write_daif(daif); 268 } 269 #endif /*ARM64*/ 270 271 uint32_t thread_mask_exceptions(uint32_t exceptions) 272 { 273 uint32_t state = thread_get_exceptions(); 274 275 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 276 return state; 277 } 278 279 void thread_unmask_exceptions(uint32_t state) 280 { 281 thread_set_exceptions(state & THREAD_EXCP_ALL); 282 } 283 284 285 struct thread_core_local *thread_get_core_local(void) 286 { 287 uint32_t cpu_id = get_core_pos(); 288 289 /* 290 * Foreign interrupts must be disabled before playing with core_local 291 * since we otherwise may be rescheduled to a different core in the 292 * middle of this function. 293 */ 294 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 295 296 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 297 return &thread_core_local[cpu_id]; 298 } 299 300 static void thread_lazy_save_ns_vfp(void) 301 { 302 #ifdef CFG_WITH_VFP 303 struct thread_ctx *thr = threads + thread_get_id(); 304 305 thr->vfp_state.ns_saved = false; 306 vfp_lazy_save_state_init(&thr->vfp_state.ns); 307 #endif /*CFG_WITH_VFP*/ 308 } 309 310 static void thread_lazy_restore_ns_vfp(void) 311 { 312 #ifdef CFG_WITH_VFP 313 struct thread_ctx *thr = threads + thread_get_id(); 314 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 315 316 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 317 318 if (tuv && tuv->lazy_saved && !tuv->saved) { 319 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/); 320 tuv->saved = true; 321 } 322 323 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 324 thr->vfp_state.ns_saved = false; 325 #endif /*CFG_WITH_VFP*/ 326 } 327 328 #ifdef ARM32 329 static void init_regs(struct thread_ctx *thread, 330 struct thread_smc_args *args) 331 { 332 thread->regs.pc = (uint32_t)thread_std_smc_entry; 333 334 /* 335 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 336 * Asynchronous abort and unmasked native interrupts. 337 */ 338 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 339 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A | 340 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT); 341 /* Enable thumb mode if it's a thumb instruction */ 342 if (thread->regs.pc & 1) 343 thread->regs.cpsr |= CPSR_T; 344 /* Reinitialize stack pointer */ 345 thread->regs.svc_sp = thread->stack_va_end; 346 347 /* 348 * Copy arguments into context. This will make the 349 * arguments appear in r0-r7 when thread is started. 350 */ 351 thread->regs.r0 = args->a0; 352 thread->regs.r1 = args->a1; 353 thread->regs.r2 = args->a2; 354 thread->regs.r3 = args->a3; 355 thread->regs.r4 = args->a4; 356 thread->regs.r5 = args->a5; 357 thread->regs.r6 = args->a6; 358 thread->regs.r7 = args->a7; 359 } 360 #endif /*ARM32*/ 361 362 #ifdef ARM64 363 static void init_regs(struct thread_ctx *thread, 364 struct thread_smc_args *args) 365 { 366 thread->regs.pc = (uint64_t)thread_std_smc_entry; 367 368 /* 369 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 370 * Asynchronous abort and unmasked native interrupts. 371 */ 372 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 373 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT); 374 /* Reinitialize stack pointer */ 375 thread->regs.sp = thread->stack_va_end; 376 377 /* 378 * Copy arguments into context. This will make the 379 * arguments appear in x0-x7 when thread is started. 380 */ 381 thread->regs.x[0] = args->a0; 382 thread->regs.x[1] = args->a1; 383 thread->regs.x[2] = args->a2; 384 thread->regs.x[3] = args->a3; 385 thread->regs.x[4] = args->a4; 386 thread->regs.x[5] = args->a5; 387 thread->regs.x[6] = args->a6; 388 thread->regs.x[7] = args->a7; 389 390 /* Set up frame pointer as per the Aarch64 AAPCS */ 391 thread->regs.x[29] = 0; 392 } 393 #endif /*ARM64*/ 394 395 void thread_init_boot_thread(void) 396 { 397 struct thread_core_local *l = thread_get_core_local(); 398 399 thread_init_threads(); 400 401 l->curr_thread = 0; 402 threads[0].state = THREAD_STATE_ACTIVE; 403 } 404 405 void thread_clr_boot_thread(void) 406 { 407 struct thread_core_local *l = thread_get_core_local(); 408 409 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 410 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 411 threads[l->curr_thread].state = THREAD_STATE_FREE; 412 l->curr_thread = -1; 413 } 414 415 static void thread_alloc_and_run(struct thread_smc_args *args) 416 { 417 size_t n; 418 struct thread_core_local *l = thread_get_core_local(); 419 bool found_thread = false; 420 421 assert(l->curr_thread == -1); 422 423 lock_global(); 424 425 for (n = 0; n < CFG_NUM_THREADS; n++) { 426 if (threads[n].state == THREAD_STATE_FREE) { 427 threads[n].state = THREAD_STATE_ACTIVE; 428 found_thread = true; 429 break; 430 } 431 } 432 433 unlock_global(); 434 435 if (!found_thread) { 436 args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT; 437 return; 438 } 439 440 l->curr_thread = n; 441 442 threads[n].flags = 0; 443 init_regs(threads + n, args); 444 445 /* Save Hypervisor Client ID */ 446 threads[n].hyp_clnt_id = args->a7; 447 448 thread_lazy_save_ns_vfp(); 449 thread_resume(&threads[n].regs); 450 } 451 452 #ifdef ARM32 453 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 454 struct thread_smc_args *args) 455 { 456 /* 457 * Update returned values from RPC, values will appear in 458 * r0-r3 when thread is resumed. 459 */ 460 regs->r0 = args->a0; 461 regs->r1 = args->a1; 462 regs->r2 = args->a2; 463 regs->r3 = args->a3; 464 regs->r4 = args->a4; 465 regs->r5 = args->a5; 466 } 467 #endif /*ARM32*/ 468 469 #ifdef ARM64 470 static void copy_a0_to_a5(struct thread_ctx_regs *regs, 471 struct thread_smc_args *args) 472 { 473 /* 474 * Update returned values from RPC, values will appear in 475 * x0-x3 when thread is resumed. 476 */ 477 regs->x[0] = args->a0; 478 regs->x[1] = args->a1; 479 regs->x[2] = args->a2; 480 regs->x[3] = args->a3; 481 regs->x[4] = args->a4; 482 regs->x[5] = args->a5; 483 } 484 #endif /*ARM64*/ 485 486 #ifdef ARM32 487 static bool is_from_user(uint32_t cpsr) 488 { 489 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 490 } 491 #endif 492 493 #ifdef ARM64 494 static bool is_from_user(uint32_t cpsr) 495 { 496 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 497 return true; 498 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 499 SPSR_64_MODE_EL0) 500 return true; 501 return false; 502 } 503 #endif 504 505 static bool is_user_mode(struct thread_ctx_regs *regs) 506 { 507 return is_from_user((uint32_t)regs->cpsr); 508 } 509 510 static void thread_resume_from_rpc(struct thread_smc_args *args) 511 { 512 size_t n = args->a3; /* thread id */ 513 struct thread_core_local *l = thread_get_core_local(); 514 uint32_t rv = 0; 515 516 assert(l->curr_thread == -1); 517 518 lock_global(); 519 520 if (n < CFG_NUM_THREADS && 521 threads[n].state == THREAD_STATE_SUSPENDED && 522 args->a7 == threads[n].hyp_clnt_id) 523 threads[n].state = THREAD_STATE_ACTIVE; 524 else 525 rv = OPTEE_SMC_RETURN_ERESUME; 526 527 unlock_global(); 528 529 if (rv) { 530 args->a0 = rv; 531 return; 532 } 533 534 l->curr_thread = n; 535 536 if (is_user_mode(&threads[n].regs)) 537 tee_ta_update_session_utime_resume(); 538 539 if (threads[n].have_user_map) 540 core_mmu_set_user_map(&threads[n].user_map); 541 542 /* 543 * Return from RPC to request service of a foreign interrupt must not 544 * get parameters from non-secure world. 545 */ 546 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 547 copy_a0_to_a5(&threads[n].regs, args); 548 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 549 } 550 551 thread_lazy_save_ns_vfp(); 552 thread_resume(&threads[n].regs); 553 } 554 555 void thread_handle_fast_smc(struct thread_smc_args *args) 556 { 557 thread_check_canaries(); 558 559 #ifdef CFG_VIRTUALIZATION 560 if (!virt_set_guest(args->a7)) { 561 args->a0 = OPTEE_SMC_RETURN_ENOTAVAIL; 562 goto out; 563 } 564 #endif 565 566 thread_fast_smc_handler_ptr(args); 567 568 #ifdef CFG_VIRTUALIZATION 569 virt_unset_guest(); 570 #endif 571 /* Fast handlers must not unmask any exceptions */ 572 out: 573 __maybe_unused; 574 assert(thread_get_exceptions() == THREAD_EXCP_ALL); 575 } 576 577 void thread_handle_std_smc(struct thread_smc_args *args) 578 { 579 thread_check_canaries(); 580 581 #ifdef CFG_VIRTUALIZATION 582 if (!virt_set_guest(args->a7)) { 583 args->a0 = OPTEE_SMC_RETURN_ENOTAVAIL; 584 return; 585 } 586 #endif 587 588 if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC) 589 thread_resume_from_rpc(args); 590 else 591 thread_alloc_and_run(args); 592 593 #ifdef CFG_VIRTUALIZATION 594 virt_unset_guest(); 595 #endif 596 597 } 598 599 /** 600 * Free physical memory previously allocated with thread_rpc_alloc_arg() 601 * 602 * @cookie: cookie received when allocating the buffer 603 */ 604 static void thread_rpc_free_arg(uint64_t cookie) 605 { 606 if (cookie) { 607 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 608 OPTEE_SMC_RETURN_RPC_FREE 609 }; 610 611 reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2); 612 thread_rpc(rpc_args); 613 } 614 } 615 616 /* 617 * Helper routine for the assembly function thread_std_smc_entry() 618 * 619 * Note: this function is weak just to make it possible to exclude it from 620 * the unpaged area. 621 */ 622 void __weak __thread_std_smc_entry(struct thread_smc_args *args) 623 { 624 #ifdef CFG_VIRTUALIZATION 625 virt_on_stdcall(); 626 #endif 627 thread_std_smc_handler_ptr(args); 628 629 if (args->a0 == OPTEE_SMC_RETURN_OK) { 630 struct thread_ctx *thr = threads + thread_get_id(); 631 632 tee_fs_rpc_cache_clear(&thr->tsd); 633 if (!thread_prealloc_rpc_cache) { 634 thread_rpc_free_arg(mobj_get_cookie(thr->rpc_mobj)); 635 mobj_free(thr->rpc_mobj); 636 thr->rpc_arg = 0; 637 thr->rpc_mobj = NULL; 638 } 639 } 640 } 641 642 void *thread_get_tmp_sp(void) 643 { 644 struct thread_core_local *l = thread_get_core_local(); 645 646 return (void *)l->tmp_stack_va_end; 647 } 648 649 #ifdef ARM64 650 vaddr_t thread_get_saved_thread_sp(void) 651 { 652 struct thread_core_local *l = thread_get_core_local(); 653 int ct = l->curr_thread; 654 655 assert(ct != -1); 656 return threads[ct].kern_sp; 657 } 658 #endif /*ARM64*/ 659 660 vaddr_t thread_stack_start(void) 661 { 662 struct thread_ctx *thr; 663 int ct = thread_get_id_may_fail(); 664 665 if (ct == -1) 666 return 0; 667 668 thr = threads + ct; 669 return thr->stack_va_end - STACK_THREAD_SIZE; 670 } 671 672 size_t thread_stack_size(void) 673 { 674 return STACK_THREAD_SIZE; 675 } 676 677 bool thread_is_from_abort_mode(void) 678 { 679 struct thread_core_local *l = thread_get_core_local(); 680 681 return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT; 682 } 683 684 #ifdef ARM32 685 bool thread_is_in_normal_mode(void) 686 { 687 return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC; 688 } 689 #endif 690 691 #ifdef ARM64 692 bool thread_is_in_normal_mode(void) 693 { 694 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 695 struct thread_core_local *l = thread_get_core_local(); 696 bool ret; 697 698 /* If any bit in l->flags is set we're handling some exception. */ 699 ret = !l->flags; 700 thread_unmask_exceptions(exceptions); 701 702 return ret; 703 } 704 #endif 705 706 void thread_state_free(void) 707 { 708 struct thread_core_local *l = thread_get_core_local(); 709 int ct = l->curr_thread; 710 711 assert(ct != -1); 712 713 thread_lazy_restore_ns_vfp(); 714 tee_pager_release_phys( 715 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 716 STACK_THREAD_SIZE); 717 718 lock_global(); 719 720 assert(threads[ct].state == THREAD_STATE_ACTIVE); 721 threads[ct].state = THREAD_STATE_FREE; 722 threads[ct].flags = 0; 723 l->curr_thread = -1; 724 725 #ifdef CFG_VIRTUALIZATION 726 virt_unset_guest(); 727 #endif 728 unlock_global(); 729 } 730 731 #ifdef CFG_WITH_PAGER 732 static void release_unused_kernel_stack(struct thread_ctx *thr, 733 uint32_t cpsr __maybe_unused) 734 { 735 #ifdef ARM64 736 /* 737 * If we're from user mode then thr->regs.sp is the saved user 738 * stack pointer and thr->kern_sp holds the last kernel stack 739 * pointer. But if we're from kernel mode then thr->kern_sp isn't 740 * up to date so we need to read from thr->regs.sp instead. 741 */ 742 vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp; 743 #else 744 vaddr_t sp = thr->regs.svc_sp; 745 #endif 746 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 747 size_t len = sp - base; 748 749 tee_pager_release_phys((void *)base, len); 750 } 751 #else 752 static void release_unused_kernel_stack(struct thread_ctx *thr __unused, 753 uint32_t cpsr __unused) 754 { 755 } 756 #endif 757 758 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 759 { 760 struct thread_core_local *l = thread_get_core_local(); 761 int ct = l->curr_thread; 762 763 assert(ct != -1); 764 765 thread_check_canaries(); 766 767 release_unused_kernel_stack(threads + ct, cpsr); 768 769 if (is_from_user(cpsr)) { 770 thread_user_save_vfp(); 771 tee_ta_update_session_utime_suspend(); 772 tee_ta_gprof_sample_pc(pc); 773 } 774 thread_lazy_restore_ns_vfp(); 775 776 lock_global(); 777 778 assert(threads[ct].state == THREAD_STATE_ACTIVE); 779 threads[ct].flags |= flags; 780 threads[ct].regs.cpsr = cpsr; 781 threads[ct].regs.pc = pc; 782 threads[ct].state = THREAD_STATE_SUSPENDED; 783 784 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 785 if (threads[ct].have_user_map) { 786 core_mmu_get_user_map(&threads[ct].user_map); 787 core_mmu_set_user_map(NULL); 788 } 789 790 l->curr_thread = -1; 791 792 #ifdef CFG_VIRTUALIZATION 793 virt_unset_guest(); 794 #endif 795 796 unlock_global(); 797 798 return ct; 799 } 800 801 #ifdef ARM32 802 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 803 { 804 l->tmp_stack_va_end = sp; 805 thread_set_irq_sp(sp); 806 thread_set_fiq_sp(sp); 807 } 808 809 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 810 { 811 l->abt_stack_va_end = sp; 812 thread_set_abt_sp((vaddr_t)l); 813 thread_set_und_sp((vaddr_t)l); 814 } 815 #endif /*ARM32*/ 816 817 #ifdef ARM64 818 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 819 { 820 /* 821 * We're already using the tmp stack when this function is called 822 * so there's no need to assign it to any stack pointer. However, 823 * we'll need to restore it at different times so store it here. 824 */ 825 l->tmp_stack_va_end = sp; 826 } 827 828 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 829 { 830 l->abt_stack_va_end = sp; 831 } 832 #endif /*ARM64*/ 833 834 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 835 { 836 if (thread_id >= CFG_NUM_THREADS) 837 return false; 838 threads[thread_id].stack_va_end = sp; 839 return true; 840 } 841 842 int thread_get_id_may_fail(void) 843 { 844 /* 845 * thread_get_core_local() requires foreign interrupts to be disabled 846 */ 847 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 848 struct thread_core_local *l = thread_get_core_local(); 849 int ct = l->curr_thread; 850 851 thread_unmask_exceptions(exceptions); 852 return ct; 853 } 854 855 int thread_get_id(void) 856 { 857 int ct = thread_get_id_may_fail(); 858 859 assert(ct >= 0 && ct < CFG_NUM_THREADS); 860 return ct; 861 } 862 863 static void init_handlers(const struct thread_handlers *handlers) 864 { 865 thread_std_smc_handler_ptr = handlers->std_smc; 866 thread_fast_smc_handler_ptr = handlers->fast_smc; 867 thread_nintr_handler_ptr = handlers->nintr; 868 thread_cpu_on_handler_ptr = handlers->cpu_on; 869 thread_cpu_off_handler_ptr = handlers->cpu_off; 870 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 871 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 872 thread_system_off_handler_ptr = handlers->system_off; 873 thread_system_reset_handler_ptr = handlers->system_reset; 874 } 875 876 #ifdef CFG_WITH_PAGER 877 static void init_thread_stacks(void) 878 { 879 size_t n = 0; 880 881 /* 882 * Allocate virtual memory for thread stacks. 883 */ 884 for (n = 0; n < CFG_NUM_THREADS; n++) { 885 tee_mm_entry_t *mm = NULL; 886 vaddr_t sp = 0; 887 size_t num_pages = 0; 888 struct fobj *fobj = NULL; 889 890 /* Find vmem for thread stack and its protection gap */ 891 mm = tee_mm_alloc(&tee_mm_vcore, 892 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 893 assert(mm); 894 895 /* Claim eventual physical page */ 896 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 897 true); 898 899 num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE - 1; 900 fobj = fobj_locked_paged_alloc(num_pages); 901 902 /* Add the area to the pager */ 903 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 904 PAGER_AREA_TYPE_LOCK, fobj); 905 fobj_put(fobj); 906 907 /* init effective stack */ 908 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 909 asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp); 910 if (!thread_init_stack(n, sp)) 911 panic("init stack failed"); 912 } 913 } 914 #else 915 static void init_thread_stacks(void) 916 { 917 size_t n; 918 919 /* Assign the thread stacks */ 920 for (n = 0; n < CFG_NUM_THREADS; n++) { 921 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 922 panic("thread_init_stack failed"); 923 } 924 } 925 #endif /*CFG_WITH_PAGER*/ 926 927 static void init_user_kcode(void) 928 { 929 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 930 vaddr_t v = (vaddr_t)thread_excp_vect; 931 vaddr_t ve = (vaddr_t)thread_excp_vect_end; 932 933 thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE); 934 ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE); 935 thread_user_kcode_size = ve - thread_user_kcode_va; 936 937 core_mmu_get_user_va_range(&v, NULL); 938 thread_user_kcode_offset = thread_user_kcode_va - v; 939 940 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 941 /* 942 * When transitioning to EL0 subtract SP with this much to point to 943 * this special kdata page instead. SP is restored by add this much 944 * while transitioning back to EL1. 945 */ 946 v += thread_user_kcode_size; 947 thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v; 948 #endif 949 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/ 950 } 951 952 void thread_init_threads(void) 953 { 954 size_t n; 955 956 init_thread_stacks(); 957 pgt_init(); 958 959 mutex_lockdep_init(); 960 961 for (n = 0; n < CFG_NUM_THREADS; n++) { 962 TAILQ_INIT(&threads[n].tsd.sess_stack); 963 SLIST_INIT(&threads[n].tsd.pgt_cache); 964 } 965 966 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 967 thread_core_local[n].curr_thread = -1; 968 } 969 970 void thread_init_primary(const struct thread_handlers *handlers) 971 { 972 init_handlers(handlers); 973 974 /* Initialize canaries around the stacks */ 975 init_canaries(); 976 977 init_user_kcode(); 978 } 979 980 static void init_sec_mon(size_t pos __maybe_unused) 981 { 982 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 983 /* Initialize secure monitor */ 984 sm_init(GET_STACK(stack_tmp[pos])); 985 #endif 986 } 987 988 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr) 989 { 990 return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK; 991 } 992 993 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr) 994 { 995 return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) & 996 MIDR_PRIMARY_PART_NUM_MASK; 997 } 998 999 #ifdef ARM64 1000 static bool probe_workaround_available(void) 1001 { 1002 int32_t r; 1003 1004 r = thread_smc(SMCCC_VERSION, 0, 0, 0); 1005 if (r < 0) 1006 return false; 1007 if (r < 0x10001) /* compare with version 1.1 */ 1008 return false; 1009 1010 /* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */ 1011 r = thread_smc(SMCCC_ARCH_FEATURES, SMCCC_ARCH_WORKAROUND_1, 0, 0); 1012 return r >= 0; 1013 } 1014 1015 static vaddr_t __maybe_unused select_vector(vaddr_t a) 1016 { 1017 if (probe_workaround_available()) { 1018 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available", 1019 SMCCC_ARCH_WORKAROUND_1); 1020 DMSG("SMC Workaround for CVE-2017-5715 used"); 1021 return a; 1022 } 1023 1024 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable", 1025 SMCCC_ARCH_WORKAROUND_1); 1026 DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)"); 1027 return (vaddr_t)thread_excp_vect; 1028 } 1029 #else 1030 static vaddr_t __maybe_unused select_vector(vaddr_t a) 1031 { 1032 return a; 1033 } 1034 #endif 1035 1036 static vaddr_t get_excp_vect(void) 1037 { 1038 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC 1039 uint32_t midr = read_midr(); 1040 1041 if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM) 1042 return (vaddr_t)thread_excp_vect; 1043 1044 switch (get_midr_primary_part(midr)) { 1045 #ifdef ARM32 1046 case CORTEX_A8_PART_NUM: 1047 case CORTEX_A9_PART_NUM: 1048 case CORTEX_A17_PART_NUM: 1049 #endif 1050 case CORTEX_A57_PART_NUM: 1051 case CORTEX_A72_PART_NUM: 1052 case CORTEX_A73_PART_NUM: 1053 case CORTEX_A75_PART_NUM: 1054 return select_vector((vaddr_t)thread_excp_vect_workaround); 1055 #ifdef ARM32 1056 case CORTEX_A15_PART_NUM: 1057 return select_vector((vaddr_t)thread_excp_vect_workaround_a15); 1058 #endif 1059 default: 1060 return (vaddr_t)thread_excp_vect; 1061 } 1062 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/ 1063 1064 return (vaddr_t)thread_excp_vect; 1065 } 1066 1067 void thread_init_per_cpu(void) 1068 { 1069 size_t pos = get_core_pos(); 1070 struct thread_core_local *l = thread_get_core_local(); 1071 1072 init_sec_mon(pos); 1073 1074 set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); 1075 set_abt_stack(l, GET_STACK(stack_abt[pos])); 1076 1077 thread_init_vbar(get_excp_vect()); 1078 } 1079 1080 struct thread_specific_data *thread_get_tsd(void) 1081 { 1082 return &threads[thread_get_id()].tsd; 1083 } 1084 1085 struct thread_ctx_regs *thread_get_ctx_regs(void) 1086 { 1087 struct thread_core_local *l = thread_get_core_local(); 1088 1089 assert(l->curr_thread != -1); 1090 return &threads[l->curr_thread].regs; 1091 } 1092 1093 void thread_set_foreign_intr(bool enable) 1094 { 1095 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1096 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1097 struct thread_core_local *l; 1098 1099 l = thread_get_core_local(); 1100 1101 assert(l->curr_thread != -1); 1102 1103 if (enable) { 1104 threads[l->curr_thread].flags |= 1105 THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1106 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1107 } else { 1108 /* 1109 * No need to disable foreign interrupts here since they're 1110 * already disabled above. 1111 */ 1112 threads[l->curr_thread].flags &= 1113 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1114 } 1115 } 1116 1117 void thread_restore_foreign_intr(void) 1118 { 1119 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1120 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1121 struct thread_core_local *l; 1122 1123 l = thread_get_core_local(); 1124 1125 assert(l->curr_thread != -1); 1126 1127 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) 1128 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1129 } 1130 1131 #ifdef CFG_WITH_VFP 1132 uint32_t thread_kernel_enable_vfp(void) 1133 { 1134 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1135 struct thread_ctx *thr = threads + thread_get_id(); 1136 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1137 1138 assert(!vfp_is_enabled()); 1139 1140 if (!thr->vfp_state.ns_saved) { 1141 vfp_lazy_save_state_final(&thr->vfp_state.ns, 1142 true /*force_save*/); 1143 thr->vfp_state.ns_saved = true; 1144 } else if (thr->vfp_state.sec_lazy_saved && 1145 !thr->vfp_state.sec_saved) { 1146 /* 1147 * This happens when we're handling an abort while the 1148 * thread was using the VFP state. 1149 */ 1150 vfp_lazy_save_state_final(&thr->vfp_state.sec, 1151 false /*!force_save*/); 1152 thr->vfp_state.sec_saved = true; 1153 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 1154 /* 1155 * This can happen either during syscall or abort 1156 * processing (while processing a syscall). 1157 */ 1158 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/); 1159 tuv->saved = true; 1160 } 1161 1162 vfp_enable(); 1163 return exceptions; 1164 } 1165 1166 void thread_kernel_disable_vfp(uint32_t state) 1167 { 1168 uint32_t exceptions; 1169 1170 assert(vfp_is_enabled()); 1171 1172 vfp_disable(); 1173 exceptions = thread_get_exceptions(); 1174 assert(exceptions & THREAD_EXCP_FOREIGN_INTR); 1175 exceptions &= ~THREAD_EXCP_FOREIGN_INTR; 1176 exceptions |= state & THREAD_EXCP_FOREIGN_INTR; 1177 thread_set_exceptions(exceptions); 1178 } 1179 1180 void thread_kernel_save_vfp(void) 1181 { 1182 struct thread_ctx *thr = threads + thread_get_id(); 1183 1184 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1185 if (vfp_is_enabled()) { 1186 vfp_lazy_save_state_init(&thr->vfp_state.sec); 1187 thr->vfp_state.sec_lazy_saved = true; 1188 } 1189 } 1190 1191 void thread_kernel_restore_vfp(void) 1192 { 1193 struct thread_ctx *thr = threads + thread_get_id(); 1194 1195 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1196 assert(!vfp_is_enabled()); 1197 if (thr->vfp_state.sec_lazy_saved) { 1198 vfp_lazy_restore_state(&thr->vfp_state.sec, 1199 thr->vfp_state.sec_saved); 1200 thr->vfp_state.sec_saved = false; 1201 thr->vfp_state.sec_lazy_saved = false; 1202 } 1203 } 1204 1205 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 1206 { 1207 struct thread_ctx *thr = threads + thread_get_id(); 1208 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1209 1210 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1211 assert(!vfp_is_enabled()); 1212 1213 if (!thr->vfp_state.ns_saved) { 1214 vfp_lazy_save_state_final(&thr->vfp_state.ns, 1215 true /*force_save*/); 1216 thr->vfp_state.ns_saved = true; 1217 } else if (tuv && uvfp != tuv) { 1218 if (tuv->lazy_saved && !tuv->saved) { 1219 vfp_lazy_save_state_final(&tuv->vfp, 1220 false /*!force_save*/); 1221 tuv->saved = true; 1222 } 1223 } 1224 1225 if (uvfp->lazy_saved) 1226 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 1227 uvfp->lazy_saved = false; 1228 uvfp->saved = false; 1229 1230 thr->vfp_state.uvfp = uvfp; 1231 vfp_enable(); 1232 } 1233 1234 void thread_user_save_vfp(void) 1235 { 1236 struct thread_ctx *thr = threads + thread_get_id(); 1237 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1238 1239 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1240 if (!vfp_is_enabled()) 1241 return; 1242 1243 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1244 vfp_lazy_save_state_init(&tuv->vfp); 1245 tuv->lazy_saved = true; 1246 } 1247 1248 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1249 { 1250 struct thread_ctx *thr = threads + thread_get_id(); 1251 1252 if (uvfp == thr->vfp_state.uvfp) 1253 thr->vfp_state.uvfp = NULL; 1254 uvfp->lazy_saved = false; 1255 uvfp->saved = false; 1256 } 1257 #endif /*CFG_WITH_VFP*/ 1258 1259 #ifdef ARM32 1260 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1261 { 1262 uint32_t s; 1263 1264 if (!is_32bit) 1265 return false; 1266 1267 s = read_spsr(); 1268 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1269 s |= CPSR_MODE_USR; 1270 if (entry_func & 1) 1271 s |= CPSR_T; 1272 *spsr = s; 1273 return true; 1274 } 1275 #endif 1276 1277 #ifdef ARM64 1278 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1279 { 1280 uint32_t s; 1281 1282 if (is_32bit) { 1283 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1284 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1285 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1286 } else { 1287 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1288 } 1289 1290 *spsr = s; 1291 return true; 1292 } 1293 #endif 1294 1295 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1296 unsigned long a2, unsigned long a3, unsigned long user_sp, 1297 unsigned long entry_func, bool is_32bit, 1298 uint32_t *exit_status0, uint32_t *exit_status1) 1299 { 1300 uint32_t spsr; 1301 1302 tee_ta_update_session_utime_resume(); 1303 1304 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1305 *exit_status0 = 1; /* panic */ 1306 *exit_status1 = 0xbadbadba; 1307 return 0; 1308 } 1309 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1310 spsr, exit_status0, exit_status1); 1311 } 1312 1313 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 1314 void thread_get_user_kcode(struct mobj **mobj, size_t *offset, 1315 vaddr_t *va, size_t *sz) 1316 { 1317 core_mmu_get_user_va_range(va, NULL); 1318 *mobj = mobj_tee_ram; 1319 *offset = thread_user_kcode_va - TEE_RAM_START; 1320 *sz = thread_user_kcode_size; 1321 } 1322 #endif 1323 1324 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 1325 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 1326 void thread_get_user_kdata(struct mobj **mobj, size_t *offset, 1327 vaddr_t *va, size_t *sz) 1328 { 1329 vaddr_t v; 1330 1331 core_mmu_get_user_va_range(&v, NULL); 1332 *va = v + thread_user_kcode_size; 1333 *mobj = mobj_tee_ram; 1334 *offset = (vaddr_t)thread_user_kdata_page - TEE_RAM_START; 1335 *sz = sizeof(thread_user_kdata_page); 1336 } 1337 #endif 1338 1339 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie) 1340 { 1341 bool rv; 1342 size_t n; 1343 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1344 1345 lock_global(); 1346 1347 for (n = 0; n < CFG_NUM_THREADS; n++) { 1348 if (threads[n].state != THREAD_STATE_FREE) { 1349 rv = false; 1350 goto out; 1351 } 1352 } 1353 1354 rv = true; 1355 for (n = 0; n < CFG_NUM_THREADS; n++) { 1356 if (threads[n].rpc_arg) { 1357 *cookie = mobj_get_cookie(threads[n].rpc_mobj); 1358 mobj_free(threads[n].rpc_mobj); 1359 threads[n].rpc_arg = NULL; 1360 goto out; 1361 } 1362 } 1363 1364 *cookie = 0; 1365 thread_prealloc_rpc_cache = false; 1366 out: 1367 unlock_global(); 1368 thread_unmask_exceptions(exceptions); 1369 return rv; 1370 } 1371 1372 bool thread_enable_prealloc_rpc_cache(void) 1373 { 1374 bool rv; 1375 size_t n; 1376 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1377 1378 lock_global(); 1379 1380 for (n = 0; n < CFG_NUM_THREADS; n++) { 1381 if (threads[n].state != THREAD_STATE_FREE) { 1382 rv = false; 1383 goto out; 1384 } 1385 } 1386 1387 rv = true; 1388 thread_prealloc_rpc_cache = true; 1389 out: 1390 unlock_global(); 1391 thread_unmask_exceptions(exceptions); 1392 return rv; 1393 } 1394 1395 /** 1396 * Allocates data for struct optee_msg_arg. 1397 * 1398 * @size: size in bytes of struct optee_msg_arg 1399 * 1400 * @returns mobj that describes allocated buffer or NULL on error 1401 */ 1402 static struct mobj *thread_rpc_alloc_arg(size_t size) 1403 { 1404 paddr_t pa; 1405 uint64_t co; 1406 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 1407 OPTEE_SMC_RETURN_RPC_ALLOC, size 1408 }; 1409 struct mobj *mobj = NULL; 1410 1411 thread_rpc(rpc_args); 1412 1413 pa = reg_pair_to_64(rpc_args[1], rpc_args[2]); 1414 co = reg_pair_to_64(rpc_args[4], rpc_args[5]); 1415 1416 if (!ALIGNMENT_IS_OK(pa, struct optee_msg_arg)) 1417 goto err; 1418 1419 /* Check if this region is in static shared space */ 1420 if (core_pbuf_is(CORE_MEM_NSEC_SHM, pa, size)) 1421 mobj = mobj_shm_alloc(pa, size, co); 1422 #ifdef CFG_CORE_DYN_SHM 1423 else if ((!(pa & SMALL_PAGE_MASK)) && size <= SMALL_PAGE_SIZE) 1424 mobj = mobj_mapped_shm_alloc(&pa, 1, 0, co); 1425 #endif 1426 1427 if (!mobj) 1428 goto err; 1429 1430 return mobj; 1431 err: 1432 thread_rpc_free_arg(co); 1433 mobj_free(mobj); 1434 return NULL; 1435 } 1436 1437 static bool set_rmem(struct optee_msg_param *param, 1438 struct thread_param *tpm) 1439 { 1440 param->attr = tpm->attr - THREAD_PARAM_ATTR_MEMREF_IN + 1441 OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 1442 param->u.rmem.offs = tpm->u.memref.offs; 1443 param->u.rmem.size = tpm->u.memref.size; 1444 if (tpm->u.memref.mobj) { 1445 param->u.rmem.shm_ref = mobj_get_cookie(tpm->u.memref.mobj); 1446 if (!param->u.rmem.shm_ref) 1447 return false; 1448 } else { 1449 param->u.rmem.shm_ref = 0; 1450 } 1451 1452 return true; 1453 } 1454 1455 static bool set_tmem(struct optee_msg_param *param, 1456 struct thread_param *tpm) 1457 { 1458 paddr_t pa = 0; 1459 uint64_t shm_ref = 0; 1460 struct mobj *mobj = tpm->u.memref.mobj; 1461 1462 param->attr = tpm->attr - THREAD_PARAM_ATTR_MEMREF_IN + 1463 OPTEE_MSG_ATTR_TYPE_TMEM_INPUT; 1464 if (mobj) { 1465 shm_ref = mobj_get_cookie(mobj); 1466 if (!shm_ref) 1467 return false; 1468 if (mobj_get_pa(mobj, tpm->u.memref.offs, 0, &pa)) 1469 return false; 1470 } 1471 1472 param->u.tmem.size = tpm->u.memref.size; 1473 param->u.tmem.buf_ptr = pa; 1474 param->u.tmem.shm_ref = shm_ref; 1475 1476 return true; 1477 } 1478 1479 static uint32_t get_rpc_arg(uint32_t cmd, size_t num_params, 1480 struct thread_param *params, void **arg_ret, 1481 uint64_t *carg_ret) 1482 { 1483 struct thread_ctx *thr = threads + thread_get_id(); 1484 struct optee_msg_arg *arg = thr->rpc_arg; 1485 size_t sz = OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS); 1486 1487 if (num_params > THREAD_RPC_MAX_NUM_PARAMS) 1488 return TEE_ERROR_BAD_PARAMETERS; 1489 1490 if (!arg) { 1491 struct mobj *mobj = thread_rpc_alloc_arg(sz); 1492 1493 if (!mobj) 1494 return TEE_ERROR_OUT_OF_MEMORY; 1495 1496 arg = mobj_get_va(mobj, 0); 1497 if (!arg) { 1498 thread_rpc_free_arg(mobj_get_cookie(mobj)); 1499 return TEE_ERROR_OUT_OF_MEMORY; 1500 } 1501 1502 thr->rpc_arg = arg; 1503 thr->rpc_mobj = mobj; 1504 } 1505 1506 memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); 1507 arg->cmd = cmd; 1508 arg->num_params = num_params; 1509 arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */ 1510 1511 for (size_t n = 0; n < num_params; n++) { 1512 switch (params[n].attr) { 1513 case THREAD_PARAM_ATTR_NONE: 1514 arg->params[n].attr = OPTEE_MSG_ATTR_TYPE_NONE; 1515 break; 1516 case THREAD_PARAM_ATTR_VALUE_IN: 1517 case THREAD_PARAM_ATTR_VALUE_OUT: 1518 case THREAD_PARAM_ATTR_VALUE_INOUT: 1519 arg->params[n].attr = params[n].attr - 1520 THREAD_PARAM_ATTR_VALUE_IN + 1521 OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; 1522 arg->params[n].u.value.a = params[n].u.value.a; 1523 arg->params[n].u.value.b = params[n].u.value.b; 1524 arg->params[n].u.value.c = params[n].u.value.c; 1525 break; 1526 case THREAD_PARAM_ATTR_MEMREF_IN: 1527 case THREAD_PARAM_ATTR_MEMREF_OUT: 1528 case THREAD_PARAM_ATTR_MEMREF_INOUT: 1529 if (!params[n].u.memref.mobj || 1530 mobj_matches(params[n].u.memref.mobj, 1531 CORE_MEM_NSEC_SHM)) { 1532 if (!set_tmem(arg->params + n, params + n)) 1533 return TEE_ERROR_BAD_PARAMETERS; 1534 } else if (mobj_matches(params[n].u.memref.mobj, 1535 CORE_MEM_REG_SHM)) { 1536 if (!set_rmem(arg->params + n, params + n)) 1537 return TEE_ERROR_BAD_PARAMETERS; 1538 } else { 1539 return TEE_ERROR_BAD_PARAMETERS; 1540 } 1541 break; 1542 default: 1543 return TEE_ERROR_BAD_PARAMETERS; 1544 } 1545 } 1546 1547 *arg_ret = arg; 1548 *carg_ret = mobj_get_cookie(thr->rpc_mobj); 1549 1550 return TEE_SUCCESS; 1551 } 1552 1553 static uint32_t get_rpc_arg_res(struct optee_msg_arg *arg, size_t num_params, 1554 struct thread_param *params) 1555 { 1556 for (size_t n = 0; n < num_params; n++) { 1557 switch (params[n].attr) { 1558 case THREAD_PARAM_ATTR_VALUE_OUT: 1559 case THREAD_PARAM_ATTR_VALUE_INOUT: 1560 params[n].u.value.a = arg->params[n].u.value.a; 1561 params[n].u.value.b = arg->params[n].u.value.b; 1562 params[n].u.value.c = arg->params[n].u.value.c; 1563 break; 1564 case THREAD_PARAM_ATTR_MEMREF_OUT: 1565 case THREAD_PARAM_ATTR_MEMREF_INOUT: 1566 /* 1567 * rmem.size and tmem.size is the same type and 1568 * location. 1569 */ 1570 params[n].u.memref.size = arg->params[n].u.rmem.size; 1571 break; 1572 default: 1573 break; 1574 } 1575 } 1576 1577 return arg->ret; 1578 } 1579 1580 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params, 1581 struct thread_param *params) 1582 { 1583 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1584 void *arg = NULL; 1585 uint64_t carg = 0; 1586 uint32_t ret = 0; 1587 1588 /* The source CRYPTO_RNG_SRC_JITTER_RPC is safe to use here */ 1589 plat_prng_add_jitter_entropy(CRYPTO_RNG_SRC_JITTER_RPC, 1590 &thread_rpc_pnum); 1591 1592 ret = get_rpc_arg(cmd, num_params, params, &arg, &carg); 1593 if (ret) 1594 return ret; 1595 1596 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1597 thread_rpc(rpc_args); 1598 1599 return get_rpc_arg_res(arg, num_params, params); 1600 } 1601 1602 /** 1603 * Free physical memory previously allocated with thread_rpc_alloc() 1604 * 1605 * @cookie: cookie received when allocating the buffer 1606 * @bt: must be the same as supplied when allocating 1607 * @mobj: mobj that describes allocated buffer 1608 * 1609 * This function also frees corresponding mobj. 1610 */ 1611 static void thread_rpc_free(unsigned int bt, uint64_t cookie, struct mobj *mobj) 1612 { 1613 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1614 void *arg = NULL; 1615 uint64_t carg = 0; 1616 struct thread_param param = THREAD_PARAM_VALUE(IN, bt, cookie, 0); 1617 uint32_t ret = get_rpc_arg(OPTEE_RPC_CMD_SHM_FREE, 1, ¶m, 1618 &arg, &carg); 1619 1620 mobj_free(mobj); 1621 1622 if (!ret) { 1623 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1624 thread_rpc(rpc_args); 1625 } 1626 } 1627 1628 static struct mobj *get_rpc_alloc_res(struct optee_msg_arg *arg, 1629 unsigned int bt, size_t size) 1630 { 1631 struct mobj *mobj = NULL; 1632 uint64_t cookie = 0; 1633 size_t psize = 0; 1634 uint64_t attr = 0; 1635 1636 if (arg->ret || arg->num_params != 1) 1637 return NULL; 1638 1639 psize = READ_ONCE(arg->params[0].u.tmem.size); 1640 if (psize < size) 1641 return NULL; 1642 1643 attr = READ_ONCE(arg->params[0].attr); 1644 if (attr == OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT) { 1645 cookie = arg->params[0].u.tmem.shm_ref; 1646 mobj = mobj_shm_alloc(arg->params[0].u.tmem.buf_ptr, 1647 psize, 1648 cookie); 1649 } else if (attr == (OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 1650 OPTEE_MSG_ATTR_NONCONTIG)) { 1651 cookie = arg->params[0].u.tmem.shm_ref; 1652 mobj = msg_param_mobj_from_noncontig( 1653 arg->params[0].u.tmem.buf_ptr, 1654 psize, 1655 cookie, 1656 true); 1657 } else { 1658 return NULL; 1659 } 1660 1661 if (!mobj) { 1662 thread_rpc_free(bt, cookie, mobj); 1663 return NULL; 1664 } 1665 1666 assert(mobj_is_nonsec(mobj)); 1667 1668 return mobj; 1669 } 1670 1671 /** 1672 * Allocates shared memory buffer via RPC 1673 * 1674 * @size: size in bytes of shared memory buffer 1675 * @align: required alignment of buffer 1676 * @bt: buffer type OPTEE_RPC_SHM_TYPE_* 1677 * 1678 * Returns a pointer to MOBJ for the memory on success, or NULL on failure. 1679 */ 1680 static struct mobj *thread_rpc_alloc(size_t size, size_t align, unsigned int bt) 1681 { 1682 uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD }; 1683 void *arg = NULL; 1684 uint64_t carg = 0; 1685 struct thread_param param = THREAD_PARAM_VALUE(IN, bt, size, align); 1686 uint32_t ret = get_rpc_arg(OPTEE_RPC_CMD_SHM_ALLOC, 1, ¶m, 1687 &arg, &carg); 1688 1689 if (ret) 1690 return NULL; 1691 1692 reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2); 1693 thread_rpc(rpc_args); 1694 1695 return get_rpc_alloc_res(arg, bt, size); 1696 } 1697 1698 struct mobj *thread_rpc_alloc_payload(size_t size) 1699 { 1700 return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_APPL); 1701 } 1702 1703 void thread_rpc_free_payload(struct mobj *mobj) 1704 { 1705 thread_rpc_free(OPTEE_RPC_SHM_TYPE_APPL, mobj_get_cookie(mobj), 1706 mobj); 1707 } 1708 1709 struct mobj *thread_rpc_alloc_global_payload(size_t size) 1710 { 1711 return thread_rpc_alloc(size, 8, OPTEE_RPC_SHM_TYPE_GLOBAL); 1712 } 1713 1714 void thread_rpc_free_global_payload(struct mobj *mobj) 1715 { 1716 thread_rpc_free(OPTEE_RPC_SHM_TYPE_GLOBAL, mobj_get_cookie(mobj), 1717 mobj); 1718 } 1719